// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include static struct perf_cpu_map *perf_cpu_map__alloc(int nr_cpus) { struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(struct perf_cpu) * nr_cpus); if (cpus != NULL) { cpus->nr = nr_cpus; refcount_set(&cpus->refcnt, 1); } return cpus; } struct perf_cpu_map *perf_cpu_map__dummy_new(void) { struct perf_cpu_map *cpus = perf_cpu_map__alloc(1); if (cpus) cpus->map[0].cpu = -1; return cpus; } static void cpu_map__delete(struct perf_cpu_map *map) { if (map) { WARN_ONCE(refcount_read(&map->refcnt) != 0, "cpu_map refcnt unbalanced\n"); free(map); } } struct perf_cpu_map *perf_cpu_map__get(struct perf_cpu_map *map) { if (map) refcount_inc(&map->refcnt); return map; } void perf_cpu_map__put(struct perf_cpu_map *map) { if (map && refcount_dec_and_test(&map->refcnt)) cpu_map__delete(map); } static struct perf_cpu_map *cpu_map__default_new(void) { struct perf_cpu_map *cpus; int nr_cpus; nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (nr_cpus < 0) return NULL; cpus = perf_cpu_map__alloc(nr_cpus); if (cpus != NULL) { int i; for (i = 0; i < nr_cpus; ++i) cpus->map[i].cpu = i; } return cpus; } struct perf_cpu_map *perf_cpu_map__default_new(void) { return cpu_map__default_new(); } static int cmp_cpu(const void *a, const void *b) { const struct perf_cpu *cpu_a = a, *cpu_b = b; return cpu_a->cpu - cpu_b->cpu; } static struct perf_cpu_map *cpu_map__trim_new(int nr_cpus, const struct perf_cpu *tmp_cpus) { size_t payload_size = nr_cpus * sizeof(struct perf_cpu); struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr_cpus); int i, j; if (cpus != NULL) { memcpy(cpus->map, tmp_cpus, payload_size); qsort(cpus->map, nr_cpus, sizeof(struct perf_cpu), cmp_cpu); /* Remove dups */ j = 0; for (i = 0; i < nr_cpus; i++) { if (i == 0 || cpus->map[i].cpu != cpus->map[i - 1].cpu) cpus->map[j++].cpu = cpus->map[i].cpu; } cpus->nr = j; assert(j <= nr_cpus); } return cpus; } struct perf_cpu_map *perf_cpu_map__read(FILE *file) { struct perf_cpu_map *cpus = NULL; int nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; int n, cpu, prev; char sep; sep = 0; prev = -1; for (;;) { n = fscanf(file, "%u%c", &cpu, &sep); if (n <= 0) break; if (prev >= 0) { int new_max = nr_cpus + cpu - prev - 1; WARN_ONCE(new_max >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); if (new_max >= max_entries) { max_entries = new_max + MAX_NR_CPUS / 2; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } while (++prev < cpu) tmp_cpus[nr_cpus++].cpu = prev; } if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = cpu; if (n == 2 && sep == '-') prev = cpu; else prev = -1; if (n == 1 || sep == '\n') break; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else cpus = cpu_map__default_new(); out_free_tmp: free(tmp_cpus); return cpus; } static struct perf_cpu_map *cpu_map__read_all_cpu_map(void) { struct perf_cpu_map *cpus = NULL; FILE *onlnf; onlnf = fopen("/sys/devices/system/cpu/online", "r"); if (!onlnf) return cpu_map__default_new(); cpus = perf_cpu_map__read(onlnf); fclose(onlnf); return cpus; } struct perf_cpu_map *perf_cpu_map__new(const char *cpu_list) { struct perf_cpu_map *cpus = NULL; unsigned long start_cpu, end_cpu = 0; char *p = NULL; int i, nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; if (!cpu_list) return cpu_map__read_all_cpu_map(); /* * must handle the case of empty cpumap to cover * TOPOLOGY header for NUMA nodes with no CPU * ( e.g., because of CPU hotplug) */ if (!isdigit(*cpu_list) && *cpu_list != '\0') goto out; while (isdigit(*cpu_list)) { p = NULL; start_cpu = strtoul(cpu_list, &p, 0); if (start_cpu >= INT_MAX || (*p != '\0' && *p != ',' && *p != '-')) goto invalid; if (*p == '-') { cpu_list = ++p; p = NULL; end_cpu = strtoul(cpu_list, &p, 0); if (end_cpu >= INT_MAX || (*p != '\0' && *p != ',')) goto invalid; if (end_cpu < start_cpu) goto invalid; } else { end_cpu = start_cpu; } WARN_ONCE(end_cpu >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); for (; start_cpu <= end_cpu; start_cpu++) { /* check for duplicates */ for (i = 0; i < nr_cpus; i++) if (tmp_cpus[i].cpu == (int)start_cpu) goto invalid; if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto invalid; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = (int)start_cpu; } if (*p) ++p; cpu_list = p; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else if (*cpu_list != '\0') cpus = cpu_map__default_new(); else cpus = perf_cpu_map__dummy_new(); invalid: free(tmp_cpus); out: return cpus; } struct perf_cpu perf_cpu_map__cpu(const struct perf_cpu_map *cpus, int idx) { struct perf_cpu result = { .cpu = -1 }; if (cpus && idx < cpus->nr) return cpus->map[idx]; return result; } int perf_cpu_map__nr(const struct perf_cpu_map *cpus) { return cpus ? cpus->nr : 1; } bool perf_cpu_map__empty(const struct perf_cpu_map *map) { return map ? map->map[0].cpu == -1 : true; } int perf_cpu_map__idx(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { int low, high; if (!cpus) return -1; low = 0; high = cpus->nr; while (low < high) { int idx = (low + high) / 2; struct perf_cpu cpu_at_idx = cpus->map[idx]; if (cpu_at_idx.cpu == cpu.cpu) return idx; if (cpu_at_idx.cpu > cpu.cpu) high = idx; else low = idx + 1; } return -1; } bool perf_cpu_map__has(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { return perf_cpu_map__idx(cpus, cpu) != -1; } struct perf_cpu perf_cpu_map__max(const struct perf_cpu_map *map) { struct perf_cpu result = { .cpu = -1 }; // cpu_map__trim_new() qsort()s it, cpu_map__default_new() sorts it as well. return map->nr > 0 ? map->map[map->nr - 1] : result; } /** Is 'b' a subset of 'a'. */ bool perf_cpu_map__is_subset(const struct perf_cpu_map *a, const struct perf_cpu_map *b) { if (a == b || !b) return true; if (!a || b->nr > a->nr) return false; for (int i = 0, j = 0; i < a->nr; i++) { if (a->map[i].cpu > b->map[j].cpu) return false; if (a->map[i].cpu == b->map[j].cpu) { j++; if (j == b->nr) return true; } } return false; } /* * Merge two cpumaps * * orig either gets freed and replaced with a new map, or reused * with no reference count change (similar to "realloc") * other has its reference count increased. */ struct perf_cpu_map *perf_cpu_map__merge(struct perf_cpu_map *orig, struct perf_cpu_map *other) { struct perf_cpu *tmp_cpus; int tmp_len; int i, j, k; struct perf_cpu_map *merged; if (perf_cpu_map__is_subset(orig, other)) return orig; if (perf_cpu_map__is_subset(other, orig)) { perf_cpu_map__put(orig); return perf_cpu_map__get(other); } tmp_len = orig->nr + other->nr; tmp_cpus = malloc(tmp_len * sizeof(struct perf_cpu)); if (!tmp_cpus) return NULL; /* Standard merge algorithm from wikipedia */ i = j = k = 0; while (i < orig->nr && j < other->nr) { if (orig->map[i].cpu <= other->map[j].cpu) { if (orig->map[i].cpu == other->map[j].cpu) j++; tmp_cpus[k++] = orig->map[i++]; } else tmp_cpus[k++] = other->map[j++]; } while (i < orig->nr) tmp_cpus[k++] = orig->map[i++]; while (j < other->nr) tmp_cpus[k++] = other->map[j++]; assert(k <= tmp_len); merged = cpu_map__trim_new(k, tmp_cpus); free(tmp_cpus); perf_cpu_map__put(orig); return merged; }