1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* This file contains kasan initialization code for ARM.
*
* Copyright (c) 2018 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
* Author: Linus Walleij <linus.walleij@linaro.org>
*/
#define pr_fmt(fmt) "kasan: " fmt
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/sched/task.h>
#include <linux/start_kernel.h>
#include <linux/pgtable.h>
#include <asm/cputype.h>
#include <asm/highmem.h>
#include <asm/mach/map.h>
#include <asm/memory.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/procinfo.h>
#include <asm/proc-fns.h>
#include "mm.h"
static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
static __init void *kasan_alloc_block(size_t size)
{
return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
MEMBLOCK_ALLOC_NOLEAKTRACE, NUMA_NO_NODE);
}
static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
unsigned long end, bool early)
{
unsigned long next;
pte_t *ptep = pte_offset_kernel(pmdp, addr);
do {
pte_t entry;
void *p;
next = addr + PAGE_SIZE;
if (!early) {
if (!pte_none(READ_ONCE(*ptep)))
continue;
p = kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow page for address 0x%lx\n",
__func__, addr);
return;
}
memset(p, KASAN_SHADOW_INIT, PAGE_SIZE);
entry = pfn_pte(virt_to_pfn(p),
__pgprot(pgprot_val(PAGE_KERNEL)));
} else if (pte_none(READ_ONCE(*ptep))) {
/*
* The early shadow memory is mapping all KASan
* operations to one and the same page in memory,
* "kasan_early_shadow_page" so that the instrumentation
* will work on a scratch area until we can set up the
* proper KASan shadow memory.
*/
entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page),
__pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN));
} else {
/*
* Early shadow mappings are PMD_SIZE aligned, so if the
* first entry is already set, they must all be set.
*/
return;
}
set_pte_at(&init_mm, addr, ptep, entry);
} while (ptep++, addr = next, addr != end);
}
/*
* The pmd (page middle directory) is only used on LPAE
*/
static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
unsigned long end, bool early)
{
unsigned long next;
pmd_t *pmdp = pmd_offset(pudp, addr);
do {
if (pmd_none(*pmdp)) {
/*
* We attempt to allocate a shadow block for the PMDs
* used by the PTEs for this address if it isn't already
* allocated.
*/
void *p = early ? kasan_early_shadow_pte :
kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow block for address 0x%lx\n",
__func__, addr);
return;
}
pmd_populate_kernel(&init_mm, pmdp, p);
flush_pmd_entry(pmdp);
}
next = pmd_addr_end(addr, end);
kasan_pte_populate(pmdp, addr, next, early);
} while (pmdp++, addr = next, addr != end);
}
static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
bool early)
{
unsigned long next;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pgdp = pgd_offset_k(addr);
do {
/*
* Allocate and populate the shadow block of p4d folded into
* pud folded into pmd if it doesn't already exist
*/
if (!early && pgd_none(*pgdp)) {
void *p = kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow block for address 0x%lx\n",
__func__, addr);
return;
}
pgd_populate(&init_mm, pgdp, p);
}
next = pgd_addr_end(addr, end);
/*
* We just immediately jump over the p4d and pud page
* directories since we believe ARM32 will never gain four
* nor five level page tables.
*/
p4dp = p4d_offset(pgdp, addr);
pudp = pud_offset(p4dp, addr);
kasan_pmd_populate(pudp, addr, next, early);
} while (pgdp++, addr = next, addr != end);
}
extern struct proc_info_list *lookup_processor_type(unsigned int);
void __init kasan_early_init(void)
{
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc-*.S
*/
list = lookup_processor_type(read_cpuid_id());
if (list) {
#ifdef MULTI_CPU
processor = *list->proc;
#endif
}
BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET);
/*
* We walk the page table and set all of the shadow memory to point
* to the scratch page.
*/
kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true);
}
static void __init clear_pgds(unsigned long start,
unsigned long end)
{
for (; start && start < end; start += PMD_SIZE)
pmd_clear(pmd_off_k(start));
}
static int __init create_mapping(void *start, void *end)
{
void *shadow_start, *shadow_end;
shadow_start = kasan_mem_to_shadow(start);
shadow_end = kasan_mem_to_shadow(end);
pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n",
start, end, shadow_start, shadow_end);
kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK,
PAGE_ALIGN((unsigned long)shadow_end), false);
return 0;
}
void __init kasan_init(void)
{
phys_addr_t pa_start, pa_end;
u64 i;
/*
* We are going to perform proper setup of shadow memory.
*
* At first we should unmap early shadow (clear_pgds() call bellow).
* However, instrumented code can't execute without shadow memory.
*
* To keep the early shadow memory MMU tables around while setting up
* the proper shadow memory, we copy swapper_pg_dir (the initial page
* table) to tmp_pgd_table and use that to keep the early shadow memory
* mapped until the full shadow setup is finished. Then we swap back
* to the proper swapper_pg_dir.
*/
memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table));
#ifdef CONFIG_ARM_LPAE
/* We need to be in the same PGD or this won't work */
BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) !=
pgd_index(KASAN_SHADOW_END));
memcpy(tmp_pmd_table,
(void*)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)),
sizeof(tmp_pmd_table));
set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)],
__pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
#endif
cpu_switch_mm(tmp_pgd_table, &init_mm);
local_flush_tlb_all();
clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START),
kasan_mem_to_shadow((void *)VMALLOC_END));
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_END),
kasan_mem_to_shadow((void *)-1UL) + 1);
for_each_mem_range(i, &pa_start, &pa_end) {
void *start = __va(pa_start);
void *end = __va(pa_end);
/* Do not attempt to shadow highmem */
if (pa_start >= arm_lowmem_limit) {
pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end);
continue;
}
if (pa_end > arm_lowmem_limit) {
pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n",
&pa_start, &pa_end, &arm_lowmem_limit);
end = __va(arm_lowmem_limit);
}
if (start >= end) {
pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n",
&pa_start, &pa_end, start, end);
continue;
}
create_mapping(start, end);
}
/*
* 1. The module global variables are in MODULES_VADDR ~ MODULES_END,
* so we need to map this area if CONFIG_KASAN_VMALLOC=n. With
* VMALLOC support KASAN will manage this region dynamically,
* refer to kasan_populate_vmalloc() and ARM's implementation of
* module_alloc().
* 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR
* ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't
* use kasan_populate_zero_shadow.
*/
if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) && IS_ENABLED(CONFIG_MODULES))
create_mapping((void *)MODULES_VADDR, (void *)(MODULES_END));
create_mapping((void *)PKMAP_BASE, (void *)(PKMAP_BASE + PMD_SIZE));
/*
* KAsan may reuse the contents of kasan_early_shadow_pte directly, so
* we should make sure that it maps the zero page read-only.
*/
for (i = 0; i < PTRS_PER_PTE; i++)
set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE,
&kasan_early_shadow_pte[i],
pfn_pte(virt_to_pfn(kasan_early_shadow_page),
__pgprot(pgprot_val(PAGE_KERNEL)
| L_PTE_RDONLY)));
cpu_switch_mm(swapper_pg_dir, &init_mm);
local_flush_tlb_all();
memset(kasan_early_shadow_page, 0, PAGE_SIZE);
pr_info("Kernel address sanitizer initialized\n");
init_task.kasan_depth = 0;
}
|