summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/caam/caampkc.c
blob: 51b48b57266a65cf0ba0ee51d105a42992ce59cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
 * caam - Freescale FSL CAAM support for Public Key Cryptography
 *
 * Copyright 2016 Freescale Semiconductor, Inc.
 * Copyright 2018-2019 NXP
 *
 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
 * all the desired key parameters, input and output pointers.
 */
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "jr.h"
#include "error.h"
#include "desc_constr.h"
#include "sg_sw_sec4.h"
#include "caampkc.h"

#define DESC_RSA_PUB_LEN	(2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB)
#define DESC_RSA_PRIV_F1_LEN	(2 * CAAM_CMD_SZ + \
				 SIZEOF_RSA_PRIV_F1_PDB)
#define DESC_RSA_PRIV_F2_LEN	(2 * CAAM_CMD_SZ + \
				 SIZEOF_RSA_PRIV_F2_PDB)
#define DESC_RSA_PRIV_F3_LEN	(2 * CAAM_CMD_SZ + \
				 SIZEOF_RSA_PRIV_F3_PDB)
#define CAAM_RSA_MAX_INPUT_SIZE	512 /* for a 4096-bit modulus */

/* buffer filled with zeros, used for padding */
static u8 *zero_buffer;

/*
 * variable used to avoid double free of resources in case
 * algorithm registration was unsuccessful
 */
static bool init_done;

struct caam_akcipher_alg {
	struct akcipher_alg akcipher;
	bool registered;
};

static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
			 struct akcipher_request *req)
{
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);

	dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
	dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);

	if (edesc->sec4_sg_bytes)
		dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
				 DMA_TO_DEVICE);
}

static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
			  struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct rsa_pub_pdb *pdb = &edesc->pdb.pub;

	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
}

static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
			      struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;

	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
}

static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
			      struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
	size_t p_sz = key->p_sz;
	size_t q_sz = key->q_sz;

	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
}

static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
			      struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
	size_t p_sz = key->p_sz;
	size_t q_sz = key->q_sz;

	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
}

/* RSA Job Completion handler */
static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
{
	struct akcipher_request *req = context;
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
	struct rsa_edesc *edesc;
	int ecode = 0;
	bool has_bklog;

	if (err)
		ecode = caam_jr_strstatus(dev, err);

	edesc = req_ctx->edesc;
	has_bklog = edesc->bklog;

	rsa_pub_unmap(dev, edesc, req);
	rsa_io_unmap(dev, edesc, req);
	kfree(edesc);

	/*
	 * If no backlog flag, the completion of the request is done
	 * by CAAM, not crypto engine.
	 */
	if (!has_bklog)
		akcipher_request_complete(req, ecode);
	else
		crypto_finalize_akcipher_request(jrp->engine, req, ecode);
}

static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err,
			    void *context)
{
	struct akcipher_request *req = context;
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct rsa_edesc *edesc;
	int ecode = 0;
	bool has_bklog;

	if (err)
		ecode = caam_jr_strstatus(dev, err);

	edesc = req_ctx->edesc;
	has_bklog = edesc->bklog;

	switch (key->priv_form) {
	case FORM1:
		rsa_priv_f1_unmap(dev, edesc, req);
		break;
	case FORM2:
		rsa_priv_f2_unmap(dev, edesc, req);
		break;
	case FORM3:
		rsa_priv_f3_unmap(dev, edesc, req);
	}

	rsa_io_unmap(dev, edesc, req);
	kfree(edesc);

	/*
	 * If no backlog flag, the completion of the request is done
	 * by CAAM, not crypto engine.
	 */
	if (!has_bklog)
		akcipher_request_complete(req, ecode);
	else
		crypto_finalize_akcipher_request(jrp->engine, req, ecode);
}

/**
 * caam_rsa_count_leading_zeros - Count leading zeros, need it to strip,
 *                                from a given scatterlist
 *
 * @sgl   : scatterlist to count zeros from
 * @nbytes: number of zeros, in bytes, to strip
 * @flags : operation flags
 */
static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
					unsigned int nbytes,
					unsigned int flags)
{
	struct sg_mapping_iter miter;
	int lzeros, ents;
	unsigned int len;
	unsigned int tbytes = nbytes;
	const u8 *buff;

	ents = sg_nents_for_len(sgl, nbytes);
	if (ents < 0)
		return ents;

	sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);

	lzeros = 0;
	len = 0;
	while (nbytes > 0) {
		/* do not strip more than given bytes */
		while (len && !*buff && lzeros < nbytes) {
			lzeros++;
			len--;
			buff++;
		}

		if (len && *buff)
			break;

		if (!sg_miter_next(&miter))
			break;

		buff = miter.addr;
		len = miter.length;

		nbytes -= lzeros;
		lzeros = 0;
	}

	miter.consumed = lzeros;
	sg_miter_stop(&miter);
	nbytes -= lzeros;

	return tbytes - nbytes;
}

static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
					 size_t desclen)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct device *dev = ctx->dev;
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct caam_rsa_key *key = &ctx->key;
	struct rsa_edesc *edesc;
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		       GFP_KERNEL : GFP_ATOMIC;
	int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
	int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
	int src_nents, dst_nents;
	int mapped_src_nents, mapped_dst_nents;
	unsigned int diff_size = 0;
	int lzeros;

	if (req->src_len > key->n_sz) {
		/*
		 * strip leading zeros and
		 * return the number of zeros to skip
		 */
		lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
						      key->n_sz, sg_flags);
		if (lzeros < 0)
			return ERR_PTR(lzeros);

		req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
						      lzeros);
		req_ctx->fixup_src_len = req->src_len - lzeros;
	} else {
		/*
		 * input src is less then n key modulus,
		 * so there will be zero padding
		 */
		diff_size = key->n_sz - req->src_len;
		req_ctx->fixup_src = req->src;
		req_ctx->fixup_src_len = req->src_len;
	}

	src_nents = sg_nents_for_len(req_ctx->fixup_src,
				     req_ctx->fixup_src_len);
	dst_nents = sg_nents_for_len(req->dst, req->dst_len);

	mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents,
				      DMA_TO_DEVICE);
	if (unlikely(!mapped_src_nents)) {
		dev_err(dev, "unable to map source\n");
		return ERR_PTR(-ENOMEM);
	}
	mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
				      DMA_FROM_DEVICE);
	if (unlikely(!mapped_dst_nents)) {
		dev_err(dev, "unable to map destination\n");
		goto src_fail;
	}

	if (!diff_size && mapped_src_nents == 1)
		sec4_sg_len = 0; /* no need for an input hw s/g table */
	else
		sec4_sg_len = mapped_src_nents + !!diff_size;
	sec4_sg_index = sec4_sg_len;

	if (mapped_dst_nents > 1)
		sec4_sg_len += pad_sg_nents(mapped_dst_nents);
	else
		sec4_sg_len = pad_sg_nents(sec4_sg_len);

	sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);

	/* allocate space for base edesc, hw desc commands and link tables */
	edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
			GFP_DMA | flags);
	if (!edesc)
		goto dst_fail;

	edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
	if (diff_size)
		dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
				   0);

	if (sec4_sg_index)
		sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
				   edesc->sec4_sg + !!diff_size, 0);

	if (mapped_dst_nents > 1)
		sg_to_sec4_sg_last(req->dst, req->dst_len,
				   edesc->sec4_sg + sec4_sg_index, 0);

	/* Save nents for later use in Job Descriptor */
	edesc->src_nents = src_nents;
	edesc->dst_nents = dst_nents;

	req_ctx->edesc = edesc;

	if (!sec4_sg_bytes)
		return edesc;

	edesc->mapped_src_nents = mapped_src_nents;
	edesc->mapped_dst_nents = mapped_dst_nents;

	edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
					    sec4_sg_bytes, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
		dev_err(dev, "unable to map S/G table\n");
		goto sec4_sg_fail;
	}

	edesc->sec4_sg_bytes = sec4_sg_bytes;

	print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
			     DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
			     edesc->sec4_sg_bytes, 1);

	return edesc;

sec4_sg_fail:
	kfree(edesc);
dst_fail:
	dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
src_fail:
	dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
	return ERR_PTR(-ENOMEM);
}

static int akcipher_do_one_req(struct crypto_engine *engine, void *areq)
{
	struct akcipher_request *req = container_of(areq,
						    struct akcipher_request,
						    base);
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct device *jrdev = ctx->dev;
	u32 *desc = req_ctx->edesc->hw_desc;
	int ret;

	req_ctx->edesc->bklog = true;

	ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req);

	if (ret == -ENOSPC && engine->retry_support)
		return ret;

	if (ret != -EINPROGRESS) {
		rsa_pub_unmap(jrdev, req_ctx->edesc, req);
		rsa_io_unmap(jrdev, req_ctx->edesc, req);
		kfree(req_ctx->edesc);
	} else {
		ret = 0;
	}

	return ret;
}

static int set_rsa_pub_pdb(struct akcipher_request *req,
			   struct rsa_edesc *edesc)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct device *dev = ctx->dev;
	struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
	int sec4_sg_index = 0;

	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->n_dma)) {
		dev_err(dev, "Unable to map RSA modulus memory\n");
		return -ENOMEM;
	}

	pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->e_dma)) {
		dev_err(dev, "Unable to map RSA public exponent memory\n");
		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
		return -ENOMEM;
	}

	if (edesc->mapped_src_nents > 1) {
		pdb->sgf |= RSA_PDB_SGF_F;
		pdb->f_dma = edesc->sec4_sg_dma;
		sec4_sg_index += edesc->mapped_src_nents;
	} else {
		pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
	}

	if (edesc->mapped_dst_nents > 1) {
		pdb->sgf |= RSA_PDB_SGF_G;
		pdb->g_dma = edesc->sec4_sg_dma +
			     sec4_sg_index * sizeof(struct sec4_sg_entry);
	} else {
		pdb->g_dma = sg_dma_address(req->dst);
	}

	pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
	pdb->f_len = req_ctx->fixup_src_len;

	return 0;
}

static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
			       struct rsa_edesc *edesc)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct device *dev = ctx->dev;
	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
	int sec4_sg_index = 0;

	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->n_dma)) {
		dev_err(dev, "Unable to map modulus memory\n");
		return -ENOMEM;
	}

	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->d_dma)) {
		dev_err(dev, "Unable to map RSA private exponent memory\n");
		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
		return -ENOMEM;
	}

	if (edesc->mapped_src_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
		pdb->g_dma = edesc->sec4_sg_dma;
		sec4_sg_index += edesc->mapped_src_nents;

	} else {
		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);

		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
	}

	if (edesc->mapped_dst_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
		pdb->f_dma = edesc->sec4_sg_dma +
			     sec4_sg_index * sizeof(struct sec4_sg_entry);
	} else {
		pdb->f_dma = sg_dma_address(req->dst);
	}

	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;

	return 0;
}

static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
			       struct rsa_edesc *edesc)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct device *dev = ctx->dev;
	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
	int sec4_sg_index = 0;
	size_t p_sz = key->p_sz;
	size_t q_sz = key->q_sz;

	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->d_dma)) {
		dev_err(dev, "Unable to map RSA private exponent memory\n");
		return -ENOMEM;
	}

	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->p_dma)) {
		dev_err(dev, "Unable to map RSA prime factor p memory\n");
		goto unmap_d;
	}

	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->q_dma)) {
		dev_err(dev, "Unable to map RSA prime factor q memory\n");
		goto unmap_p;
	}

	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, pdb->tmp1_dma)) {
		dev_err(dev, "Unable to map RSA tmp1 memory\n");
		goto unmap_q;
	}

	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, pdb->tmp2_dma)) {
		dev_err(dev, "Unable to map RSA tmp2 memory\n");
		goto unmap_tmp1;
	}

	if (edesc->mapped_src_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
		pdb->g_dma = edesc->sec4_sg_dma;
		sec4_sg_index += edesc->mapped_src_nents;
	} else {
		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);

		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
	}

	if (edesc->mapped_dst_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
		pdb->f_dma = edesc->sec4_sg_dma +
			     sec4_sg_index * sizeof(struct sec4_sg_entry);
	} else {
		pdb->f_dma = sg_dma_address(req->dst);
	}

	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;

	return 0;

unmap_tmp1:
	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
unmap_q:
	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
unmap_p:
	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
unmap_d:
	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);

	return -ENOMEM;
}

static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
			       struct rsa_edesc *edesc)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct device *dev = ctx->dev;
	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
	int sec4_sg_index = 0;
	size_t p_sz = key->p_sz;
	size_t q_sz = key->q_sz;

	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->p_dma)) {
		dev_err(dev, "Unable to map RSA prime factor p memory\n");
		return -ENOMEM;
	}

	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->q_dma)) {
		dev_err(dev, "Unable to map RSA prime factor q memory\n");
		goto unmap_p;
	}

	pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->dp_dma)) {
		dev_err(dev, "Unable to map RSA exponent dp memory\n");
		goto unmap_q;
	}

	pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->dq_dma)) {
		dev_err(dev, "Unable to map RSA exponent dq memory\n");
		goto unmap_dp;
	}

	pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
	if (dma_mapping_error(dev, pdb->c_dma)) {
		dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
		goto unmap_dq;
	}

	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, pdb->tmp1_dma)) {
		dev_err(dev, "Unable to map RSA tmp1 memory\n");
		goto unmap_qinv;
	}

	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, pdb->tmp2_dma)) {
		dev_err(dev, "Unable to map RSA tmp2 memory\n");
		goto unmap_tmp1;
	}

	if (edesc->mapped_src_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
		pdb->g_dma = edesc->sec4_sg_dma;
		sec4_sg_index += edesc->mapped_src_nents;
	} else {
		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);

		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
	}

	if (edesc->mapped_dst_nents > 1) {
		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
		pdb->f_dma = edesc->sec4_sg_dma +
			     sec4_sg_index * sizeof(struct sec4_sg_entry);
	} else {
		pdb->f_dma = sg_dma_address(req->dst);
	}

	pdb->sgf |= key->n_sz;
	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;

	return 0;

unmap_tmp1:
	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
unmap_qinv:
	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
unmap_dq:
	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
unmap_dp:
	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
unmap_q:
	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
unmap_p:
	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);

	return -ENOMEM;
}

static int akcipher_enqueue_req(struct device *jrdev,
				void (*cbk)(struct device *jrdev, u32 *desc,
					    u32 err, void *context),
				struct akcipher_request *req)
{
	struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev);
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
	struct rsa_edesc *edesc = req_ctx->edesc;
	u32 *desc = edesc->hw_desc;
	int ret;

	req_ctx->akcipher_op_done = cbk;
	/*
	 * Only the backlog request are sent to crypto-engine since the others
	 * can be handled by CAAM, if free, especially since JR has up to 1024
	 * entries (more than the 10 entries from crypto-engine).
	 */
	if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
		ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine,
								 req);
	else
		ret = caam_jr_enqueue(jrdev, desc, cbk, req);

	if ((ret != -EINPROGRESS) && (ret != -EBUSY)) {
		switch (key->priv_form) {
		case FORM1:
			rsa_priv_f1_unmap(jrdev, edesc, req);
			break;
		case FORM2:
			rsa_priv_f2_unmap(jrdev, edesc, req);
			break;
		case FORM3:
			rsa_priv_f3_unmap(jrdev, edesc, req);
			break;
		default:
			rsa_pub_unmap(jrdev, edesc, req);
		}
		rsa_io_unmap(jrdev, edesc, req);
		kfree(edesc);
	}

	return ret;
}

static int caam_rsa_enc(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	struct device *jrdev = ctx->dev;
	struct rsa_edesc *edesc;
	int ret;

	if (unlikely(!key->n || !key->e))
		return -EINVAL;

	if (req->dst_len < key->n_sz) {
		req->dst_len = key->n_sz;
		dev_err(jrdev, "Output buffer length less than parameter n\n");
		return -EOVERFLOW;
	}

	/* Allocate extended descriptor */
	edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	/* Set RSA Encrypt Protocol Data Block */
	ret = set_rsa_pub_pdb(req, edesc);
	if (ret)
		goto init_fail;

	/* Initialize Job Descriptor */
	init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);

	return akcipher_enqueue_req(jrdev, rsa_pub_done, req);

init_fail:
	rsa_io_unmap(jrdev, edesc, req);
	kfree(edesc);
	return ret;
}

static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct device *jrdev = ctx->dev;
	struct rsa_edesc *edesc;
	int ret;

	/* Allocate extended descriptor */
	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
	ret = set_rsa_priv_f1_pdb(req, edesc);
	if (ret)
		goto init_fail;

	/* Initialize Job Descriptor */
	init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);

	return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);

init_fail:
	rsa_io_unmap(jrdev, edesc, req);
	kfree(edesc);
	return ret;
}

static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct device *jrdev = ctx->dev;
	struct rsa_edesc *edesc;
	int ret;

	/* Allocate extended descriptor */
	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	/* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
	ret = set_rsa_priv_f2_pdb(req, edesc);
	if (ret)
		goto init_fail;

	/* Initialize Job Descriptor */
	init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);

	return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);

init_fail:
	rsa_io_unmap(jrdev, edesc, req);
	kfree(edesc);
	return ret;
}

static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct device *jrdev = ctx->dev;
	struct rsa_edesc *edesc;
	int ret;

	/* Allocate extended descriptor */
	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
	if (IS_ERR(edesc))
		return PTR_ERR(edesc);

	/* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
	ret = set_rsa_priv_f3_pdb(req, edesc);
	if (ret)
		goto init_fail;

	/* Initialize Job Descriptor */
	init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);

	return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);

init_fail:
	rsa_io_unmap(jrdev, edesc, req);
	kfree(edesc);
	return ret;
}

static int caam_rsa_dec(struct akcipher_request *req)
{
	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;
	int ret;

	if (unlikely(!key->n || !key->d))
		return -EINVAL;

	if (req->dst_len < key->n_sz) {
		req->dst_len = key->n_sz;
		dev_err(ctx->dev, "Output buffer length less than parameter n\n");
		return -EOVERFLOW;
	}

	if (key->priv_form == FORM3)
		ret = caam_rsa_dec_priv_f3(req);
	else if (key->priv_form == FORM2)
		ret = caam_rsa_dec_priv_f2(req);
	else
		ret = caam_rsa_dec_priv_f1(req);

	return ret;
}

static void caam_rsa_free_key(struct caam_rsa_key *key)
{
	kfree_sensitive(key->d);
	kfree_sensitive(key->p);
	kfree_sensitive(key->q);
	kfree_sensitive(key->dp);
	kfree_sensitive(key->dq);
	kfree_sensitive(key->qinv);
	kfree_sensitive(key->tmp1);
	kfree_sensitive(key->tmp2);
	kfree(key->e);
	kfree(key->n);
	memset(key, 0, sizeof(*key));
}

static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
{
	while (!**ptr && *nbytes) {
		(*ptr)++;
		(*nbytes)--;
	}
}

/**
 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
 * dP, dQ and qInv could decode to less than corresponding p, q length, as the
 * BER-encoding requires that the minimum number of bytes be used to encode the
 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
 * length.
 *
 * @ptr   : pointer to {dP, dQ, qInv} CRT member
 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
 * @dstlen: length in bytes of corresponding p or q prime factor
 */
static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
{
	u8 *dst;

	caam_rsa_drop_leading_zeros(&ptr, &nbytes);
	if (!nbytes)
		return NULL;

	dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
	if (!dst)
		return NULL;

	memcpy(dst + (dstlen - nbytes), ptr, nbytes);

	return dst;
}

/**
 * caam_read_raw_data - Read a raw byte stream as a positive integer.
 * The function skips buffer's leading zeros, copies the remained data
 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
 * the address of the new buffer.
 *
 * @buf   : The data to read
 * @nbytes: The amount of data to read
 */
static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
{

	caam_rsa_drop_leading_zeros(&buf, nbytes);
	if (!*nbytes)
		return NULL;

	return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL);
}

static int caam_rsa_check_key_length(unsigned int len)
{
	if (len > 4096)
		return -EINVAL;
	return 0;
}

static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
				unsigned int keylen)
{
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct rsa_key raw_key = {NULL};
	struct caam_rsa_key *rsa_key = &ctx->key;
	int ret;

	/* Free the old RSA key if any */
	caam_rsa_free_key(rsa_key);

	ret = rsa_parse_pub_key(&raw_key, key, keylen);
	if (ret)
		return ret;

	/* Copy key in DMA zone */
	rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
	if (!rsa_key->e)
		goto err;

	/*
	 * Skip leading zeros and copy the positive integer to a buffer
	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
	 * expects a positive integer for the RSA modulus and uses its length as
	 * decryption output length.
	 */
	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
	if (!rsa_key->n)
		goto err;

	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
		caam_rsa_free_key(rsa_key);
		return -EINVAL;
	}

	rsa_key->e_sz = raw_key.e_sz;
	rsa_key->n_sz = raw_key.n_sz;

	return 0;
err:
	caam_rsa_free_key(rsa_key);
	return -ENOMEM;
}

static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
				       struct rsa_key *raw_key)
{
	struct caam_rsa_key *rsa_key = &ctx->key;
	size_t p_sz = raw_key->p_sz;
	size_t q_sz = raw_key->q_sz;

	rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
	if (!rsa_key->p)
		return;
	rsa_key->p_sz = p_sz;

	rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
	if (!rsa_key->q)
		goto free_p;
	rsa_key->q_sz = q_sz;

	rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
	if (!rsa_key->tmp1)
		goto free_q;

	rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
	if (!rsa_key->tmp2)
		goto free_tmp1;

	rsa_key->priv_form = FORM2;

	rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
	if (!rsa_key->dp)
		goto free_tmp2;

	rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
	if (!rsa_key->dq)
		goto free_dp;

	rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
					  q_sz);
	if (!rsa_key->qinv)
		goto free_dq;

	rsa_key->priv_form = FORM3;

	return;

free_dq:
	kfree_sensitive(rsa_key->dq);
free_dp:
	kfree_sensitive(rsa_key->dp);
free_tmp2:
	kfree_sensitive(rsa_key->tmp2);
free_tmp1:
	kfree_sensitive(rsa_key->tmp1);
free_q:
	kfree_sensitive(rsa_key->q);
free_p:
	kfree_sensitive(rsa_key->p);
}

static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
				 unsigned int keylen)
{
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct rsa_key raw_key = {NULL};
	struct caam_rsa_key *rsa_key = &ctx->key;
	int ret;

	/* Free the old RSA key if any */
	caam_rsa_free_key(rsa_key);

	ret = rsa_parse_priv_key(&raw_key, key, keylen);
	if (ret)
		return ret;

	/* Copy key in DMA zone */
	rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL);
	if (!rsa_key->d)
		goto err;

	rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
	if (!rsa_key->e)
		goto err;

	/*
	 * Skip leading zeros and copy the positive integer to a buffer
	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
	 * expects a positive integer for the RSA modulus and uses its length as
	 * decryption output length.
	 */
	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
	if (!rsa_key->n)
		goto err;

	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
		caam_rsa_free_key(rsa_key);
		return -EINVAL;
	}

	rsa_key->d_sz = raw_key.d_sz;
	rsa_key->e_sz = raw_key.e_sz;
	rsa_key->n_sz = raw_key.n_sz;

	caam_rsa_set_priv_key_form(ctx, &raw_key);

	return 0;

err:
	caam_rsa_free_key(rsa_key);
	return -ENOMEM;
}

static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
{
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);

	return ctx->key.n_sz;
}

/* Per session pkc's driver context creation function */
static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
{
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);

	ctx->dev = caam_jr_alloc();

	if (IS_ERR(ctx->dev)) {
		pr_err("Job Ring Device allocation for transform failed\n");
		return PTR_ERR(ctx->dev);
	}

	ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
					  CAAM_RSA_MAX_INPUT_SIZE - 1,
					  DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
		dev_err(ctx->dev, "unable to map padding\n");
		caam_jr_free(ctx->dev);
		return -ENOMEM;
	}

	ctx->enginectx.op.do_one_request = akcipher_do_one_req;

	return 0;
}

/* Per session pkc's driver context cleanup function */
static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
	struct caam_rsa_key *key = &ctx->key;

	dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
			 1, DMA_TO_DEVICE);
	caam_rsa_free_key(key);
	caam_jr_free(ctx->dev);
}

static struct caam_akcipher_alg caam_rsa = {
	.akcipher = {
		.encrypt = caam_rsa_enc,
		.decrypt = caam_rsa_dec,
		.set_pub_key = caam_rsa_set_pub_key,
		.set_priv_key = caam_rsa_set_priv_key,
		.max_size = caam_rsa_max_size,
		.init = caam_rsa_init_tfm,
		.exit = caam_rsa_exit_tfm,
		.reqsize = sizeof(struct caam_rsa_req_ctx),
		.base = {
			.cra_name = "rsa",
			.cra_driver_name = "rsa-caam",
			.cra_priority = 3000,
			.cra_module = THIS_MODULE,
			.cra_ctxsize = sizeof(struct caam_rsa_ctx),
		},
	}
};

/* Public Key Cryptography module initialization handler */
int caam_pkc_init(struct device *ctrldev)
{
	struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
	u32 pk_inst, pkha;
	int err;
	init_done = false;

	/* Determine public key hardware accelerator presence. */
	if (priv->era < 10) {
		pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
			   CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
	} else {
		pkha = rd_reg32(&priv->ctrl->vreg.pkha);
		pk_inst = pkha & CHA_VER_NUM_MASK;

		/*
		 * Newer CAAMs support partially disabled functionality. If this is the
		 * case, the number is non-zero, but this bit is set to indicate that
		 * no encryption or decryption is supported. Only signing and verifying
		 * is supported.
		 */
		if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT)
			pk_inst = 0;
	}

	/* Do not register algorithms if PKHA is not present. */
	if (!pk_inst)
		return 0;

	/* allocate zero buffer, used for padding input */
	zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA |
			      GFP_KERNEL);
	if (!zero_buffer)
		return -ENOMEM;

	err = crypto_register_akcipher(&caam_rsa.akcipher);

	if (err) {
		kfree(zero_buffer);
		dev_warn(ctrldev, "%s alg registration failed\n",
			 caam_rsa.akcipher.base.cra_driver_name);
	} else {
		init_done = true;
		caam_rsa.registered = true;
		dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
	}

	return err;
}

void caam_pkc_exit(void)
{
	if (!init_done)
		return;

	if (caam_rsa.registered)
		crypto_unregister_akcipher(&caam_rsa.akcipher);

	kfree(zero_buffer);
}