summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/fungible/funcore/fun_queue.c
blob: 8ab9f68434f5ae3392ce8621e0a8d13fdbb868c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)

#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/log2.h>
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/slab.h>

#include "fun_dev.h"
#include "fun_queue.h"

/* Allocate memory for a queue. This includes the memory for the HW descriptor
 * ring, an optional 64b HW write-back area, and an optional SW state ring.
 * Returns the virtual and DMA addresses of the HW ring, the VA of the SW ring,
 * and the VA of the write-back area.
 */
void *fun_alloc_ring_mem(struct device *dma_dev, size_t depth,
			 size_t hw_desc_sz, size_t sw_desc_sz, bool wb,
			 int numa_node, dma_addr_t *dma_addr, void **sw_va,
			 volatile __be64 **wb_va)
{
	int dev_node = dev_to_node(dma_dev);
	size_t dma_sz;
	void *va;

	if (numa_node == NUMA_NO_NODE)
		numa_node = dev_node;

	/* Place optional write-back area at end of descriptor ring. */
	dma_sz = hw_desc_sz * depth;
	if (wb)
		dma_sz += sizeof(u64);

	set_dev_node(dma_dev, numa_node);
	va = dma_alloc_coherent(dma_dev, dma_sz, dma_addr, GFP_KERNEL);
	set_dev_node(dma_dev, dev_node);
	if (!va)
		return NULL;

	if (sw_desc_sz) {
		*sw_va = kvzalloc_node(sw_desc_sz * depth, GFP_KERNEL,
				       numa_node);
		if (!*sw_va) {
			dma_free_coherent(dma_dev, dma_sz, va, *dma_addr);
			return NULL;
		}
	}

	if (wb)
		*wb_va = va + dma_sz - sizeof(u64);
	return va;
}
EXPORT_SYMBOL_GPL(fun_alloc_ring_mem);

void fun_free_ring_mem(struct device *dma_dev, size_t depth, size_t hw_desc_sz,
		       bool wb, void *hw_va, dma_addr_t dma_addr, void *sw_va)
{
	if (hw_va) {
		size_t sz = depth * hw_desc_sz;

		if (wb)
			sz += sizeof(u64);
		dma_free_coherent(dma_dev, sz, hw_va, dma_addr);
	}
	kvfree(sw_va);
}
EXPORT_SYMBOL_GPL(fun_free_ring_mem);

/* Prepare and issue an admin command to create an SQ on the device with the
 * provided parameters. If the queue ID is auto-allocated by the device it is
 * returned in *sqidp.
 */
int fun_sq_create(struct fun_dev *fdev, u16 flags, u32 sqid, u32 cqid,
		  u8 sqe_size_log2, u32 sq_depth, dma_addr_t dma_addr,
		  u8 coal_nentries, u8 coal_usec, u32 irq_num,
		  u32 scan_start_id, u32 scan_end_id,
		  u32 rq_buf_size_log2, u32 *sqidp, u32 __iomem **dbp)
{
	union {
		struct fun_admin_epsq_req req;
		struct fun_admin_generic_create_rsp rsp;
	} cmd;
	dma_addr_t wb_addr;
	u32 hw_qid;
	int rc;

	if (sq_depth > fdev->q_depth)
		return -EINVAL;
	if (flags & FUN_ADMIN_EPSQ_CREATE_FLAG_RQ)
		sqe_size_log2 = ilog2(sizeof(struct fun_eprq_rqbuf));

	wb_addr = dma_addr + (sq_depth << sqe_size_log2);

	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPSQ,
						    sizeof(cmd.req));
	cmd.req.u.create =
		FUN_ADMIN_EPSQ_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, flags,
					       sqid, cqid, sqe_size_log2,
					       sq_depth - 1, dma_addr, 0,
					       coal_nentries, coal_usec,
					       irq_num, scan_start_id,
					       scan_end_id, 0,
					       rq_buf_size_log2,
					       ilog2(sizeof(u64)), wb_addr);

	rc = fun_submit_admin_sync_cmd(fdev, &cmd.req.common,
				       &cmd.rsp, sizeof(cmd.rsp), 0);
	if (rc)
		return rc;

	hw_qid = be32_to_cpu(cmd.rsp.id);
	*dbp = fun_sq_db_addr(fdev, hw_qid);
	if (flags & FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR)
		*sqidp = hw_qid;
	return rc;
}
EXPORT_SYMBOL_GPL(fun_sq_create);

/* Prepare and issue an admin command to create a CQ on the device with the
 * provided parameters. If the queue ID is auto-allocated by the device it is
 * returned in *cqidp.
 */
int fun_cq_create(struct fun_dev *fdev, u16 flags, u32 cqid, u32 rqid,
		  u8 cqe_size_log2, u32 cq_depth, dma_addr_t dma_addr,
		  u16 headroom, u16 tailroom, u8 coal_nentries, u8 coal_usec,
		  u32 irq_num, u32 scan_start_id, u32 scan_end_id, u32 *cqidp,
		  u32 __iomem **dbp)
{
	union {
		struct fun_admin_epcq_req req;
		struct fun_admin_generic_create_rsp rsp;
	} cmd;
	u32 hw_qid;
	int rc;

	if (cq_depth > fdev->q_depth)
		return -EINVAL;

	cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ,
						    sizeof(cmd.req));
	cmd.req.u.create =
		FUN_ADMIN_EPCQ_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, flags,
					       cqid, rqid, cqe_size_log2,
					       cq_depth - 1, dma_addr, tailroom,
					       headroom / 2, 0, coal_nentries,
					       coal_usec, irq_num,
					       scan_start_id, scan_end_id, 0);

	rc = fun_submit_admin_sync_cmd(fdev, &cmd.req.common,
				       &cmd.rsp, sizeof(cmd.rsp), 0);
	if (rc)
		return rc;

	hw_qid = be32_to_cpu(cmd.rsp.id);
	*dbp = fun_cq_db_addr(fdev, hw_qid);
	if (flags & FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR)
		*cqidp = hw_qid;
	return rc;
}
EXPORT_SYMBOL_GPL(fun_cq_create);

static bool fun_sq_is_head_wb(const struct fun_queue *funq)
{
	return funq->sq_flags & FUN_ADMIN_EPSQ_CREATE_FLAG_HEAD_WB_ADDRESS;
}

static void fun_clean_rq(struct fun_queue *funq)
{
	struct fun_dev *fdev = funq->fdev;
	struct fun_rq_info *rqinfo;
	unsigned int i;

	for (i = 0; i < funq->rq_depth; i++) {
		rqinfo = &funq->rq_info[i];
		if (rqinfo->page) {
			dma_unmap_page(fdev->dev, rqinfo->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
			put_page(rqinfo->page);
			rqinfo->page = NULL;
		}
	}
}

static int fun_fill_rq(struct fun_queue *funq)
{
	struct device *dev = funq->fdev->dev;
	int i, node = dev_to_node(dev);
	struct fun_rq_info *rqinfo;

	for (i = 0; i < funq->rq_depth; i++) {
		rqinfo = &funq->rq_info[i];
		rqinfo->page = alloc_pages_node(node, GFP_KERNEL, 0);
		if (unlikely(!rqinfo->page))
			return -ENOMEM;

		rqinfo->dma = dma_map_page(dev, rqinfo->page, 0,
					   PAGE_SIZE, DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(dev, rqinfo->dma))) {
			put_page(rqinfo->page);
			rqinfo->page = NULL;
			return -ENOMEM;
		}

		funq->rqes[i] = FUN_EPRQ_RQBUF_INIT(rqinfo->dma);
	}

	funq->rq_tail = funq->rq_depth - 1;
	return 0;
}

static void fun_rq_update_pos(struct fun_queue *funq, int buf_offset)
{
	if (buf_offset <= funq->rq_buf_offset) {
		struct fun_rq_info *rqinfo = &funq->rq_info[funq->rq_buf_idx];
		struct device *dev = funq->fdev->dev;

		dma_sync_single_for_device(dev, rqinfo->dma, PAGE_SIZE,
					   DMA_FROM_DEVICE);
		funq->num_rqe_to_fill++;
		if (++funq->rq_buf_idx == funq->rq_depth)
			funq->rq_buf_idx = 0;
	}
	funq->rq_buf_offset = buf_offset;
}

/* Given a command response with data scattered across >= 1 RQ buffers return
 * a pointer to a contiguous buffer containing all the data. If the data is in
 * one RQ buffer the start address within that buffer is returned, otherwise a
 * new buffer is allocated and the data is gathered into it.
 */
static void *fun_data_from_rq(struct fun_queue *funq,
			      const struct fun_rsp_common *rsp, bool *need_free)
{
	u32 bufoff, total_len, remaining, fragsize, dataoff;
	struct device *dma_dev = funq->fdev->dev;
	const struct fun_dataop_rqbuf *databuf;
	const struct fun_dataop_hdr *dataop;
	const struct fun_rq_info *rqinfo;
	void *data;

	dataop = (void *)rsp + rsp->suboff8 * 8;
	total_len = be32_to_cpu(dataop->total_len);

	if (likely(dataop->nsgl == 1)) {
		databuf = (struct fun_dataop_rqbuf *)dataop->imm;
		bufoff = be32_to_cpu(databuf->bufoff);
		fun_rq_update_pos(funq, bufoff);
		rqinfo = &funq->rq_info[funq->rq_buf_idx];
		dma_sync_single_for_cpu(dma_dev, rqinfo->dma + bufoff,
					total_len, DMA_FROM_DEVICE);
		*need_free = false;
		return page_address(rqinfo->page) + bufoff;
	}

	/* For scattered completions gather the fragments into one buffer. */

	data = kmalloc(total_len, GFP_ATOMIC);
	/* NULL is OK here. In case of failure we still need to consume the data
	 * for proper buffer accounting but indicate an error in the response.
	 */
	if (likely(data))
		*need_free = true;

	dataoff = 0;
	for (remaining = total_len; remaining; remaining -= fragsize) {
		fun_rq_update_pos(funq, 0);
		fragsize = min_t(unsigned int, PAGE_SIZE, remaining);
		if (data) {
			rqinfo = &funq->rq_info[funq->rq_buf_idx];
			dma_sync_single_for_cpu(dma_dev, rqinfo->dma, fragsize,
						DMA_FROM_DEVICE);
			memcpy(data + dataoff, page_address(rqinfo->page),
			       fragsize);
			dataoff += fragsize;
		}
	}
	return data;
}

unsigned int __fun_process_cq(struct fun_queue *funq, unsigned int max)
{
	const struct fun_cqe_info *info;
	struct fun_rsp_common *rsp;
	unsigned int new_cqes;
	u16 sf_p, flags;
	bool need_free;
	void *cqe;

	if (!max)
		max = funq->cq_depth - 1;

	for (new_cqes = 0; new_cqes < max; new_cqes++) {
		cqe = funq->cqes + (funq->cq_head << funq->cqe_size_log2);
		info = funq_cqe_info(funq, cqe);
		sf_p = be16_to_cpu(info->sf_p);

		if ((sf_p & 1) != funq->cq_phase)
			break;

		/* ensure the phase tag is read before other CQE fields */
		dma_rmb();

		if (++funq->cq_head == funq->cq_depth) {
			funq->cq_head = 0;
			funq->cq_phase = !funq->cq_phase;
		}

		rsp = cqe;
		flags = be16_to_cpu(rsp->flags);

		need_free = false;
		if (unlikely(flags & FUN_REQ_COMMON_FLAG_CQE_IN_RQBUF)) {
			rsp = fun_data_from_rq(funq, rsp, &need_free);
			if (!rsp) {
				rsp = cqe;
				rsp->len8 = 1;
				if (rsp->ret == 0)
					rsp->ret = ENOMEM;
			}
		}

		if (funq->cq_cb)
			funq->cq_cb(funq, funq->cb_data, rsp, info);
		if (need_free)
			kfree(rsp);
	}

	dev_dbg(funq->fdev->dev, "CQ %u, new CQEs %u/%u, head %u, phase %u\n",
		funq->cqid, new_cqes, max, funq->cq_head, funq->cq_phase);
	return new_cqes;
}

unsigned int fun_process_cq(struct fun_queue *funq, unsigned int max)
{
	unsigned int processed;
	u32 db;

	processed = __fun_process_cq(funq, max);

	if (funq->num_rqe_to_fill) {
		funq->rq_tail = (funq->rq_tail + funq->num_rqe_to_fill) %
				funq->rq_depth;
		funq->num_rqe_to_fill = 0;
		writel(funq->rq_tail, funq->rq_db);
	}

	db = funq->cq_head | FUN_DB_IRQ_ARM_F;
	writel(db, funq->cq_db);
	return processed;
}

static int fun_alloc_sqes(struct fun_queue *funq)
{
	funq->sq_cmds = fun_alloc_ring_mem(funq->fdev->dev, funq->sq_depth,
					   1 << funq->sqe_size_log2, 0,
					   fun_sq_is_head_wb(funq),
					   NUMA_NO_NODE, &funq->sq_dma_addr,
					   NULL, &funq->sq_head);
	return funq->sq_cmds ? 0 : -ENOMEM;
}

static int fun_alloc_cqes(struct fun_queue *funq)
{
	funq->cqes = fun_alloc_ring_mem(funq->fdev->dev, funq->cq_depth,
					1 << funq->cqe_size_log2, 0, false,
					NUMA_NO_NODE, &funq->cq_dma_addr, NULL,
					NULL);
	return funq->cqes ? 0 : -ENOMEM;
}

static int fun_alloc_rqes(struct fun_queue *funq)
{
	funq->rqes = fun_alloc_ring_mem(funq->fdev->dev, funq->rq_depth,
					sizeof(*funq->rqes),
					sizeof(*funq->rq_info), false,
					NUMA_NO_NODE, &funq->rq_dma_addr,
					(void **)&funq->rq_info, NULL);
	return funq->rqes ? 0 : -ENOMEM;
}

/* Free a queue's structures. */
void fun_free_queue(struct fun_queue *funq)
{
	struct device *dev = funq->fdev->dev;

	fun_free_ring_mem(dev, funq->cq_depth, 1 << funq->cqe_size_log2, false,
			  funq->cqes, funq->cq_dma_addr, NULL);
	fun_free_ring_mem(dev, funq->sq_depth, 1 << funq->sqe_size_log2,
			  fun_sq_is_head_wb(funq), funq->sq_cmds,
			  funq->sq_dma_addr, NULL);

	if (funq->rqes) {
		fun_clean_rq(funq);
		fun_free_ring_mem(dev, funq->rq_depth, sizeof(*funq->rqes),
				  false, funq->rqes, funq->rq_dma_addr,
				  funq->rq_info);
	}

	kfree(funq);
}

/* Allocate and initialize a funq's structures. */
struct fun_queue *fun_alloc_queue(struct fun_dev *fdev, int qid,
				  const struct fun_queue_alloc_req *req)
{
	struct fun_queue *funq = kzalloc(sizeof(*funq), GFP_KERNEL);

	if (!funq)
		return NULL;

	funq->fdev = fdev;
	spin_lock_init(&funq->sq_lock);

	funq->qid = qid;

	/* Initial CQ/SQ/RQ ids */
	if (req->rq_depth) {
		funq->cqid = 2 * qid;
		if (funq->qid) {
			/* I/O Q: use rqid = cqid, sqid = +1 */
			funq->rqid = funq->cqid;
			funq->sqid = funq->rqid + 1;
		} else {
			/* Admin Q: sqid is always 0, use ID 1 for RQ */
			funq->sqid = 0;
			funq->rqid = 1;
		}
	} else {
		funq->cqid = qid;
		funq->sqid = qid;
	}

	funq->cq_flags = req->cq_flags;
	funq->sq_flags = req->sq_flags;

	funq->cqe_size_log2 = req->cqe_size_log2;
	funq->sqe_size_log2 = req->sqe_size_log2;

	funq->cq_depth = req->cq_depth;
	funq->sq_depth = req->sq_depth;

	funq->cq_intcoal_nentries = req->cq_intcoal_nentries;
	funq->cq_intcoal_usec = req->cq_intcoal_usec;

	funq->sq_intcoal_nentries = req->sq_intcoal_nentries;
	funq->sq_intcoal_usec = req->sq_intcoal_usec;

	if (fun_alloc_cqes(funq))
		goto free_funq;

	funq->cq_phase = 1;

	if (fun_alloc_sqes(funq))
		goto free_funq;

	if (req->rq_depth) {
		funq->rq_flags = req->rq_flags | FUN_ADMIN_EPSQ_CREATE_FLAG_RQ;
		funq->rq_depth = req->rq_depth;
		funq->rq_buf_offset = -1;

		if (fun_alloc_rqes(funq) || fun_fill_rq(funq))
			goto free_funq;
	}

	funq->cq_vector = -1;
	funq->cqe_info_offset = (1 << funq->cqe_size_log2) - sizeof(struct fun_cqe_info);

	/* SQ/CQ 0 are implicitly created, assign their doorbells now.
	 * Other queues are assigned doorbells at their explicit creation.
	 */
	if (funq->sqid == 0)
		funq->sq_db = fun_sq_db_addr(fdev, 0);
	if (funq->cqid == 0)
		funq->cq_db = fun_cq_db_addr(fdev, 0);

	return funq;

free_funq:
	fun_free_queue(funq);
	return NULL;
}

/* Create a funq's CQ on the device. */
static int fun_create_cq(struct fun_queue *funq)
{
	struct fun_dev *fdev = funq->fdev;
	unsigned int rqid;
	int rc;

	rqid = funq->cq_flags & FUN_ADMIN_EPCQ_CREATE_FLAG_RQ ?
		funq->rqid : FUN_HCI_ID_INVALID;
	rc = fun_cq_create(fdev, funq->cq_flags, funq->cqid, rqid,
			   funq->cqe_size_log2, funq->cq_depth,
			   funq->cq_dma_addr, 0, 0, funq->cq_intcoal_nentries,
			   funq->cq_intcoal_usec, funq->cq_vector, 0, 0,
			   &funq->cqid, &funq->cq_db);
	if (!rc)
		dev_dbg(fdev->dev, "created CQ %u\n", funq->cqid);

	return rc;
}

/* Create a funq's SQ on the device. */
static int fun_create_sq(struct fun_queue *funq)
{
	struct fun_dev *fdev = funq->fdev;
	int rc;

	rc = fun_sq_create(fdev, funq->sq_flags, funq->sqid, funq->cqid,
			   funq->sqe_size_log2, funq->sq_depth,
			   funq->sq_dma_addr, funq->sq_intcoal_nentries,
			   funq->sq_intcoal_usec, funq->cq_vector, 0, 0,
			   0, &funq->sqid, &funq->sq_db);
	if (!rc)
		dev_dbg(fdev->dev, "created SQ %u\n", funq->sqid);

	return rc;
}

/* Create a funq's RQ on the device. */
int fun_create_rq(struct fun_queue *funq)
{
	struct fun_dev *fdev = funq->fdev;
	int rc;

	rc = fun_sq_create(fdev, funq->rq_flags, funq->rqid, funq->cqid, 0,
			   funq->rq_depth, funq->rq_dma_addr, 0, 0,
			   funq->cq_vector, 0, 0, PAGE_SHIFT, &funq->rqid,
			   &funq->rq_db);
	if (!rc)
		dev_dbg(fdev->dev, "created RQ %u\n", funq->rqid);

	return rc;
}

static unsigned int funq_irq(struct fun_queue *funq)
{
	return pci_irq_vector(to_pci_dev(funq->fdev->dev), funq->cq_vector);
}

int fun_request_irq(struct fun_queue *funq, const char *devname,
		    irq_handler_t handler, void *data)
{
	int rc;

	if (funq->cq_vector < 0)
		return -EINVAL;

	funq->irq_handler = handler;
	funq->irq_data = data;

	snprintf(funq->irqname, sizeof(funq->irqname),
		 funq->qid ? "%s-q[%d]" : "%s-adminq", devname, funq->qid);

	rc = request_irq(funq_irq(funq), handler, 0, funq->irqname, data);
	if (rc)
		funq->irq_handler = NULL;

	return rc;
}

/* Create all component queues of a funq  on the device. */
int fun_create_queue(struct fun_queue *funq)
{
	int rc;

	rc = fun_create_cq(funq);
	if (rc)
		return rc;

	if (funq->rq_depth) {
		rc = fun_create_rq(funq);
		if (rc)
			goto release_cq;
	}

	rc = fun_create_sq(funq);
	if (rc)
		goto release_rq;

	return 0;

release_rq:
	fun_destroy_sq(funq->fdev, funq->rqid);
release_cq:
	fun_destroy_cq(funq->fdev, funq->cqid);
	return rc;
}

void fun_free_irq(struct fun_queue *funq)
{
	if (funq->irq_handler) {
		unsigned int vector = funq_irq(funq);

		free_irq(vector, funq->irq_data);
		funq->irq_handler = NULL;
		funq->irq_data = NULL;
	}
}