/* $OpenLDAP$ */ /* This work is part of OpenLDAP Software . * * Copyright 1998-2022 The OpenLDAP Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted only as authorized by the OpenLDAP * Public License. * * A copy of this license is available in file LICENSE in the * top-level directory of the distribution or, alternatively, at * . */ /* Copyright 2001 Computing Research Labs, New Mexico State University * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COMPUTING RESEARCH LAB OR NEW MEXICO STATE UNIVERSITY BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT * OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR * THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* $Id: ucdata.c,v 1.4 2001/01/02 18:46:20 mleisher Exp $" */ #include "portable.h" #include "ldap_config.h" #include #include #include #include #include #include "lber_pvt.h" #include "ucdata.h" #ifndef HARDCODE_DATA #define HARDCODE_DATA 1 #endif #if HARDCODE_DATA #include "uctable.h" #endif /************************************************************************** * * Miscellaneous types, data, and support functions. * **************************************************************************/ typedef struct { ac_uint2 bom; ac_uint2 cnt; union { ac_uint4 bytes; ac_uint2 len[2]; } size; } _ucheader_t; /* * A simple array of 32-bit masks for lookup. */ static ac_uint4 masks32[32] = { 0x00000001UL, 0x00000002UL, 0x00000004UL, 0x00000008UL, 0x00000010UL, 0x00000020UL, 0x00000040UL, 0x00000080UL, 0x00000100UL, 0x00000200UL, 0x00000400UL, 0x00000800UL, 0x00001000UL, 0x00002000UL, 0x00004000UL, 0x00008000UL, 0x00010000UL, 0x00020000UL, 0x00040000UL, 0x00080000UL, 0x00100000UL, 0x00200000UL, 0x00400000UL, 0x00800000UL, 0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL, 0x20000000UL, 0x40000000UL, 0x80000000UL }; #define endian_short(cc) (((cc) >> 8) | (((cc) & 0xff) << 8)) #define endian_long(cc) ((((cc) & 0xff) << 24)|((((cc) >> 8) & 0xff) << 16)|\ ((((cc) >> 16) & 0xff) << 8)|((cc) >> 24)) #if !HARDCODE_DATA static FILE * _ucopenfile(char *paths, char *filename, char *mode) { FILE *f; char *fp, *dp, *pp, path[BUFSIZ]; if (filename == 0 || *filename == 0) return 0; dp = paths; while (dp && *dp) { pp = path; while (*dp && *dp != ':') *pp++ = *dp++; *pp++ = *LDAP_DIRSEP; fp = filename; while (*fp) *pp++ = *fp++; *pp = 0; if ((f = fopen(path, mode)) != 0) return f; if (*dp == ':') dp++; } return 0; } #endif /************************************************************************** * * Support for the character properties. * **************************************************************************/ #if !HARDCODE_DATA static ac_uint4 _ucprop_size; static ac_uint2 *_ucprop_offsets; static ac_uint4 *_ucprop_ranges; /* * Return -1 on error, 0 if okay */ static int _ucprop_load(char *paths, int reload) { FILE *in; ac_uint4 size, i; _ucheader_t hdr; if (_ucprop_size > 0) { if (!reload) /* * The character properties have already been loaded. */ return 0; /* * Unload the current character property data in preparation for * loading a new copy. Only the first array has to be deallocated * because all the memory for the arrays is allocated as a single * block. */ free((char *) _ucprop_offsets); _ucprop_size = 0; } if ((in = _ucopenfile(paths, "ctype.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } if ((_ucprop_size = hdr.cnt) == 0) { fclose(in); return -1; } /* * Allocate all the storage needed for the lookup table. */ _ucprop_offsets = (ac_uint2 *) malloc(hdr.size.bytes); /* * Calculate the offset into the storage for the ranges. The offsets * array is on a 4-byte boundary and one larger than the value provided in * the header count field. This means the offset to the ranges must be * calculated after aligning the count to a 4-byte boundary. */ if ((size = ((hdr.cnt + 1) * sizeof(ac_uint2))) & 3) size += 4 - (size & 3); size >>= 1; _ucprop_ranges = (ac_uint4 *) (_ucprop_offsets + size); /* * Load the offset array. */ fread((char *) _ucprop_offsets, sizeof(ac_uint2), size, in); /* * Do an endian swap if necessary. Don't forget there is an extra node on * the end with the final index. */ if (hdr.bom == 0xfffe) { for (i = 0; i <= _ucprop_size; i++) _ucprop_offsets[i] = endian_short(_ucprop_offsets[i]); } /* * Load the ranges. The number of elements is in the last array position * of the offsets. */ fread((char *) _ucprop_ranges, sizeof(ac_uint4), _ucprop_offsets[_ucprop_size], in); fclose(in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < _ucprop_offsets[_ucprop_size]; i++) _ucprop_ranges[i] = endian_long(_ucprop_ranges[i]); } return 0; } static void _ucprop_unload(void) { if (_ucprop_size == 0) return; /* * Only need to free the offsets because the memory is allocated as a * single block. */ free((char *) _ucprop_offsets); _ucprop_size = 0; } #endif static int _ucprop_lookup(ac_uint4 code, ac_uint4 n) { long l, r, m; if (_ucprop_size == 0) return 0; /* * There is an extra node on the end of the offsets to allow this routine * to work right. If the index is 0xffff, then there are no nodes for the * property. */ if ((l = _ucprop_offsets[n]) == 0xffff) return 0; /* * Locate the next offset that is not 0xffff. The sentinel at the end of * the array is the max index value. */ for (m = 1; n + m < _ucprop_size && _ucprop_offsets[n + m] == 0xffff; m++) ; r = _ucprop_offsets[n + m] - 1; while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a range pair. */ m = (l + r) >> 1; m -= (m & 1); if (code > _ucprop_ranges[m + 1]) l = m + 2; else if (code < _ucprop_ranges[m]) r = m - 2; else if (code >= _ucprop_ranges[m] && code <= _ucprop_ranges[m + 1]) return 1; } return 0; } int ucisprop(ac_uint4 code, ac_uint4 mask1, ac_uint4 mask2) { ac_uint4 i; if (mask1 == 0 && mask2 == 0) return 0; for (i = 0; mask1 && i < 32; i++) { if ((mask1 & masks32[i]) && _ucprop_lookup(code, i)) return 1; } for (i = 32; mask2 && i < _ucprop_size; i++) { if ((mask2 & masks32[i & 31]) && _ucprop_lookup(code, i)) return 1; } return 0; } /************************************************************************** * * Support for case mapping. * **************************************************************************/ #if !HARDCODE_DATA /* These record the number of slots in the map. * There are 3 words per slot. */ static ac_uint4 _uccase_size; static ac_uint2 _uccase_len[2]; static ac_uint4 *_uccase_map; /* * Return -1 on error, 0 if okay */ static int _uccase_load(char *paths, int reload) { FILE *in; ac_uint4 i; _ucheader_t hdr; if (_uccase_size > 0) { if (!reload) /* * The case mappings have already been loaded. */ return 0; free((char *) _uccase_map); _uccase_size = 0; } if ((in = _ucopenfile(paths, "case.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.len[0] = endian_short(hdr.size.len[0]); hdr.size.len[1] = endian_short(hdr.size.len[1]); } /* * Set the node count and lengths of the upper and lower case mapping * tables. */ _uccase_size = hdr.cnt; _uccase_len[0] = hdr.size.len[0]; _uccase_len[1] = hdr.size.len[1]; _uccase_map = (ac_uint4 *) malloc(_uccase_size * 3 * sizeof(ac_uint4)); /* * Load the case mapping table. */ fread((char *) _uccase_map, sizeof(ac_uint4), _uccase_size * 3, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < _uccase_size * 3; i++) _uccase_map[i] = endian_long(_uccase_map[i]); } fclose(in); return 0; } static void _uccase_unload(void) { if (_uccase_size == 0) return; free((char *) _uccase_map); _uccase_size = 0; } #endif static ac_uint4 _uccase_lookup(ac_uint4 code, long l, long r, int field) { long m; const ac_uint4 *tmp; /* * Do the binary search. */ while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a case mapping triple. */ m = (l + r) >> 1; tmp = &_uccase_map[m*3]; if (code > *tmp) l = m + 1; else if (code < *tmp) r = m - 1; else if (code == *tmp) return tmp[field]; } return code; } ac_uint4 uctoupper(ac_uint4 code) { int field; long l, r; if (ucisupper(code)) return code; if (ucislower(code)) { /* * The character is lower case. */ field = 2; l = _uccase_len[0]; r = (l + _uccase_len[1]) - 1; } else { /* * The character is title case. */ field = 1; l = _uccase_len[0] + _uccase_len[1]; r = _uccase_size - 1; } return _uccase_lookup(code, l, r, field); } ac_uint4 uctolower(ac_uint4 code) { int field; long l, r; if (ucislower(code)) return code; if (ucisupper(code)) { /* * The character is upper case. */ field = 1; l = 0; r = _uccase_len[0] - 1; } else { /* * The character is title case. */ field = 2; l = _uccase_len[0] + _uccase_len[1]; r = _uccase_size - 1; } return _uccase_lookup(code, l, r, field); } ac_uint4 uctotitle(ac_uint4 code) { int field; long l, r; if (ucistitle(code)) return code; /* * The offset will always be the same for converting to title case. */ field = 2; if (ucisupper(code)) { /* * The character is upper case. */ l = 0; r = _uccase_len[0] - 1; } else { /* * The character is lower case. */ l = _uccase_len[0]; r = (l + _uccase_len[1]) - 1; } return _uccase_lookup(code, l, r, field); } /************************************************************************** * * Support for compositions. * **************************************************************************/ #if !HARDCODE_DATA static ac_uint4 _uccomp_size; static ac_uint4 *_uccomp_data; /* * Return -1 on error, 0 if okay */ static int _uccomp_load(char *paths, int reload) { FILE *in; ac_uint4 size, i; _ucheader_t hdr; if (_uccomp_size > 0) { if (!reload) /* * The compositions have already been loaded. */ return 0; free((char *) _uccomp_data); _uccomp_size = 0; } if ((in = _ucopenfile(paths, "comp.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } _uccomp_size = hdr.cnt; _uccomp_data = (ac_uint4 *) malloc(hdr.size.bytes); /* * Read the composition data in. */ size = hdr.size.bytes / sizeof(ac_uint4); fread((char *) _uccomp_data, sizeof(ac_uint4), size, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < size; i++) _uccomp_data[i] = endian_long(_uccomp_data[i]); } /* * Assume that the data is ordered on count, so that all compositions * of length 2 come first. Only handling length 2 for now. */ for (i = 1; i < size; i += 4) if (_uccomp_data[i] != 2) break; _uccomp_size = i - 1; fclose(in); return 0; } static void _uccomp_unload(void) { if (_uccomp_size == 0) return; free((char *) _uccomp_data); _uccomp_size = 0; } #endif int uccomp(ac_uint4 node1, ac_uint4 node2, ac_uint4 *comp) { int l, r, m; l = 0; r = _uccomp_size - 1; while (l <= r) { m = ((r + l) >> 1); m -= m & 3; if (node1 > _uccomp_data[m+2]) l = m + 4; else if (node1 < _uccomp_data[m+2]) r = m - 4; else if (node2 > _uccomp_data[m+3]) l = m + 4; else if (node2 < _uccomp_data[m+3]) r = m - 4; else { *comp = _uccomp_data[m]; return 1; } } return 0; } int uccomp_hangul(ac_uint4 *str, int len) { const int SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7, LCount = 19, VCount = 21, TCount = 28, NCount = VCount * TCount, /* 588 */ SCount = LCount * NCount; /* 11172 */ int i, rlen; ac_uint4 ch, last, lindex, sindex; last = str[0]; rlen = 1; for ( i = 1; i < len; i++ ) { ch = str[i]; /* check if two current characters are L and V */ lindex = last - LBase; if (lindex < (ac_uint4) LCount) { ac_uint4 vindex = ch - VBase; if (vindex < (ac_uint4) VCount) { /* make syllable of form LV */ last = SBase + (lindex * VCount + vindex) * TCount; str[rlen-1] = last; /* reset last */ continue; } } /* check if two current characters are LV and T */ sindex = last - SBase; if (sindex < (ac_uint4) SCount && (sindex % TCount) == 0) { ac_uint4 tindex = ch - TBase; if (tindex <= (ac_uint4) TCount) { /* make syllable of form LVT */ last += tindex; str[rlen-1] = last; /* reset last */ continue; } } /* if neither case was true, just add the character */ last = ch; str[rlen] = ch; rlen++; } return rlen; } int uccanoncomp(ac_uint4 *str, int len) { int i, stpos, copos; ac_uint4 cl, prevcl, st, ch, co; st = str[0]; stpos = 0; copos = 1; prevcl = uccombining_class(st) == 0 ? 0 : 256; for (i = 1; i < len; i++) { ch = str[i]; cl = uccombining_class(ch); if (uccomp(st, ch, &co) && (prevcl < cl || prevcl == 0)) st = str[stpos] = co; else { if (cl == 0) { stpos = copos; st = ch; } prevcl = cl; str[copos++] = ch; } } return uccomp_hangul(str, copos); } /************************************************************************** * * Support for decompositions. * **************************************************************************/ #if !HARDCODE_DATA static ac_uint4 _ucdcmp_size; static ac_uint4 *_ucdcmp_nodes; static ac_uint4 *_ucdcmp_decomp; static ac_uint4 _uckdcmp_size; static ac_uint4 *_uckdcmp_nodes; static ac_uint4 *_uckdcmp_decomp; /* * Return -1 on error, 0 if okay */ static int _ucdcmp_load(char *paths, int reload) { FILE *in; ac_uint4 size, i; _ucheader_t hdr; if (_ucdcmp_size > 0) { if (!reload) /* * The decompositions have already been loaded. */ return 0; free((char *) _ucdcmp_nodes); _ucdcmp_size = 0; } if ((in = _ucopenfile(paths, "decomp.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } _ucdcmp_size = hdr.cnt << 1; _ucdcmp_nodes = (ac_uint4 *) malloc(hdr.size.bytes); _ucdcmp_decomp = _ucdcmp_nodes + (_ucdcmp_size + 1); /* * Read the decomposition data in. */ size = hdr.size.bytes / sizeof(ac_uint4); fread((char *) _ucdcmp_nodes, sizeof(ac_uint4), size, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < size; i++) _ucdcmp_nodes[i] = endian_long(_ucdcmp_nodes[i]); } fclose(in); return 0; } /* * Return -1 on error, 0 if okay */ static int _uckdcmp_load(char *paths, int reload) { FILE *in; ac_uint4 size, i; _ucheader_t hdr; if (_uckdcmp_size > 0) { if (!reload) /* * The decompositions have already been loaded. */ return 0; free((char *) _uckdcmp_nodes); _uckdcmp_size = 0; } if ((in = _ucopenfile(paths, "kdecomp.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } _uckdcmp_size = hdr.cnt << 1; _uckdcmp_nodes = (ac_uint4 *) malloc(hdr.size.bytes); _uckdcmp_decomp = _uckdcmp_nodes + (_uckdcmp_size + 1); /* * Read the decomposition data in. */ size = hdr.size.bytes / sizeof(ac_uint4); fread((char *) _uckdcmp_nodes, sizeof(ac_uint4), size, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < size; i++) _uckdcmp_nodes[i] = endian_long(_uckdcmp_nodes[i]); } fclose(in); return 0; } static void _ucdcmp_unload(void) { if (_ucdcmp_size == 0) return; /* * Only need to free the offsets because the memory is allocated as a * single block. */ free((char *) _ucdcmp_nodes); _ucdcmp_size = 0; } static void _uckdcmp_unload(void) { if (_uckdcmp_size == 0) return; /* * Only need to free the offsets because the memory is allocated as a * single block. */ free((char *) _uckdcmp_nodes); _uckdcmp_size = 0; } #endif int ucdecomp(ac_uint4 code, ac_uint4 *num, ac_uint4 **decomp) { long l, r, m; if (code < _ucdcmp_nodes[0]) { return 0; } l = 0; r = _ucdcmp_nodes[_ucdcmp_size] - 1; while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a code+offset pair. */ m = (l + r) >> 1; m -= (m & 1); if (code > _ucdcmp_nodes[m]) l = m + 2; else if (code < _ucdcmp_nodes[m]) r = m - 2; else if (code == _ucdcmp_nodes[m]) { *num = _ucdcmp_nodes[m + 3] - _ucdcmp_nodes[m + 1]; *decomp = (ac_uint4*)&_ucdcmp_decomp[_ucdcmp_nodes[m + 1]]; return 1; } } return 0; } int uckdecomp(ac_uint4 code, ac_uint4 *num, ac_uint4 **decomp) { long l, r, m; if (code < _uckdcmp_nodes[0]) { return 0; } l = 0; r = _uckdcmp_nodes[_uckdcmp_size] - 1; while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a code+offset pair. */ m = (l + r) >> 1; m -= (m & 1); if (code > _uckdcmp_nodes[m]) l = m + 2; else if (code < _uckdcmp_nodes[m]) r = m - 2; else if (code == _uckdcmp_nodes[m]) { *num = _uckdcmp_nodes[m + 3] - _uckdcmp_nodes[m + 1]; *decomp = (ac_uint4*)&_uckdcmp_decomp[_uckdcmp_nodes[m + 1]]; return 1; } } return 0; } int ucdecomp_hangul(ac_uint4 code, ac_uint4 *num, ac_uint4 decomp[]) { if (!ucishangul(code)) return 0; code -= 0xac00; decomp[0] = 0x1100 + (ac_uint4) (code / 588); decomp[1] = 0x1161 + (ac_uint4) ((code % 588) / 28); decomp[2] = 0x11a7 + (ac_uint4) (code % 28); *num = (decomp[2] != 0x11a7) ? 3 : 2; return 1; } /* mode == 0 for canonical, mode == 1 for compatibility */ static int uccanoncompatdecomp(const ac_uint4 *in, int inlen, ac_uint4 **out, int *outlen, short mode, void *ctx) { int l, size; unsigned i, j, k; ac_uint4 num, class, *decomp, hangdecomp[3]; size = inlen * 2; *out = (ac_uint4 *) ber_memalloc_x(size * sizeof(**out), ctx); if (*out == NULL) return *outlen = -1; i = 0; for (j = 0; j < (unsigned) inlen; j++) { if (mode ? uckdecomp(in[j], &num, &decomp) : ucdecomp(in[j], &num, &decomp)) { if ( size - i < num) { size = inlen + i - j + num - 1; *out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx ); if (*out == NULL) return *outlen = -1; } for (k = 0; k < num; k++) { class = uccombining_class(decomp[k]); if (class == 0) { (*out)[i] = decomp[k]; } else { for (l = i; l > 0; l--) if (class >= uccombining_class((*out)[l-1])) break; AC_MEMCPY(*out + l + 1, *out + l, (i - l) * sizeof(**out)); (*out)[l] = decomp[k]; } i++; } } else if (ucdecomp_hangul(in[j], &num, hangdecomp)) { if (size - i < num) { size = inlen + i - j + num - 1; *out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx); if (*out == NULL) return *outlen = -1; } for (k = 0; k < num; k++) { (*out)[i] = hangdecomp[k]; i++; } } else { if (size - i < 1) { size = inlen + i - j; *out = (ac_uint4 *) ber_memrealloc_x(*out, size * sizeof(**out), ctx); if (*out == NULL) return *outlen = -1; } class = uccombining_class(in[j]); if (class == 0) { (*out)[i] = in[j]; } else { for (l = i; l > 0; l--) if (class >= uccombining_class((*out)[l-1])) break; AC_MEMCPY(*out + l + 1, *out + l, (i - l) * sizeof(**out)); (*out)[l] = in[j]; } i++; } } return *outlen = i; } int uccanondecomp(const ac_uint4 *in, int inlen, ac_uint4 **out, int *outlen, void *ctx) { return uccanoncompatdecomp(in, inlen, out, outlen, 0, ctx); } int uccompatdecomp(const ac_uint4 *in, int inlen, ac_uint4 **out, int *outlen, void *ctx) { return uccanoncompatdecomp(in, inlen, out, outlen, 1, ctx); } /************************************************************************** * * Support for combining classes. * **************************************************************************/ #if !HARDCODE_DATA static ac_uint4 _uccmcl_size; static ac_uint4 *_uccmcl_nodes; /* * Return -1 on error, 0 if okay */ static int _uccmcl_load(char *paths, int reload) { FILE *in; ac_uint4 i; _ucheader_t hdr; if (_uccmcl_size > 0) { if (!reload) /* * The combining classes have already been loaded. */ return 0; free((char *) _uccmcl_nodes); _uccmcl_size = 0; } if ((in = _ucopenfile(paths, "cmbcl.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } _uccmcl_size = hdr.cnt * 3; _uccmcl_nodes = (ac_uint4 *) malloc(hdr.size.bytes); /* * Read the combining classes in. */ fread((char *) _uccmcl_nodes, sizeof(ac_uint4), _uccmcl_size, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < _uccmcl_size; i++) _uccmcl_nodes[i] = endian_long(_uccmcl_nodes[i]); } fclose(in); return 0; } static void _uccmcl_unload(void) { if (_uccmcl_size == 0) return; free((char *) _uccmcl_nodes); _uccmcl_size = 0; } #endif ac_uint4 uccombining_class(ac_uint4 code) { long l, r, m; l = 0; r = _uccmcl_size - 1; while (l <= r) { m = (l + r) >> 1; m -= (m % 3); if (code > _uccmcl_nodes[m + 1]) l = m + 3; else if (code < _uccmcl_nodes[m]) r = m - 3; else if (code >= _uccmcl_nodes[m] && code <= _uccmcl_nodes[m + 1]) return _uccmcl_nodes[m + 2]; } return 0; } /************************************************************************** * * Support for numeric values. * **************************************************************************/ #if !HARDCODE_DATA static ac_uint4 *_ucnum_nodes; static ac_uint4 _ucnum_size; static short *_ucnum_vals; /* * Return -1 on error, 0 if okay */ static int _ucnumb_load(char *paths, int reload) { FILE *in; ac_uint4 size, i; _ucheader_t hdr; if (_ucnum_size > 0) { if (!reload) /* * The numbers have already been loaded. */ return 0; free((char *) _ucnum_nodes); _ucnum_size = 0; } if ((in = _ucopenfile(paths, "num.dat", "rb")) == 0) return -1; /* * Load the header. */ fread((char *) &hdr, sizeof(_ucheader_t), 1, in); if (hdr.bom == 0xfffe) { hdr.cnt = endian_short(hdr.cnt); hdr.size.bytes = endian_long(hdr.size.bytes); } _ucnum_size = hdr.cnt; _ucnum_nodes = (ac_uint4 *) malloc(hdr.size.bytes); _ucnum_vals = (short *) (_ucnum_nodes + _ucnum_size); /* * Read the combining classes in. */ fread((char *) _ucnum_nodes, sizeof(unsigned char), hdr.size.bytes, in); /* * Do an endian swap if necessary. */ if (hdr.bom == 0xfffe) { for (i = 0; i < _ucnum_size; i++) _ucnum_nodes[i] = endian_long(_ucnum_nodes[i]); /* * Determine the number of values that have to be adjusted. */ size = (hdr.size.bytes - (_ucnum_size * (sizeof(ac_uint4) << 1))) / sizeof(short); for (i = 0; i < size; i++) _ucnum_vals[i] = endian_short(_ucnum_vals[i]); } fclose(in); return 0; } static void _ucnumb_unload(void) { if (_ucnum_size == 0) return; free((char *) _ucnum_nodes); _ucnum_size = 0; } #endif int ucnumber_lookup(ac_uint4 code, struct ucnumber *num) { long l, r, m; short *vp; l = 0; r = _ucnum_size - 1; while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a code+offset pair. */ m = (l + r) >> 1; m -= (m & 1); if (code > _ucnum_nodes[m]) l = m + 2; else if (code < _ucnum_nodes[m]) r = m - 2; else { vp = (short *)_ucnum_vals + _ucnum_nodes[m + 1]; num->numerator = (int) *vp++; num->denominator = (int) *vp; return 1; } } return 0; } int ucdigit_lookup(ac_uint4 code, int *digit) { long l, r, m; short *vp; l = 0; r = _ucnum_size - 1; while (l <= r) { /* * Determine a "mid" point and adjust to make sure the mid point is at * the beginning of a code+offset pair. */ m = (l + r) >> 1; m -= (m & 1); if (code > _ucnum_nodes[m]) l = m + 2; else if (code < _ucnum_nodes[m]) r = m - 2; else { vp = (short *)_ucnum_vals + _ucnum_nodes[m + 1]; if (*vp == *(vp + 1)) { *digit = *vp; return 1; } return 0; } } return 0; } struct ucnumber ucgetnumber(ac_uint4 code) { struct ucnumber num; /* * Initialize with some arbitrary value, because the caller simply cannot * tell for sure if the code is a number without calling the ucisnumber() * macro before calling this function. */ num.numerator = num.denominator = -111; (void) ucnumber_lookup(code, &num); return num; } int ucgetdigit(ac_uint4 code) { int dig; /* * Initialize with some arbitrary value, because the caller simply cannot * tell for sure if the code is a number without calling the ucisdigit() * macro before calling this function. */ dig = -111; (void) ucdigit_lookup(code, &dig); return dig; } /************************************************************************** * * Setup and cleanup routines. * **************************************************************************/ #if HARDCODE_DATA int ucdata_load(char *paths, int masks) { return 0; } void ucdata_unload(int masks) { } int ucdata_reload(char *paths, int masks) { return 0; } #else /* * Return 0 if okay, negative on error */ int ucdata_load(char *paths, int masks) { int error = 0; if (masks & UCDATA_CTYPE) error |= _ucprop_load(paths, 0) < 0 ? UCDATA_CTYPE : 0; if (masks & UCDATA_CASE) error |= _uccase_load(paths, 0) < 0 ? UCDATA_CASE : 0; if (masks & UCDATA_DECOMP) error |= _ucdcmp_load(paths, 0) < 0 ? UCDATA_DECOMP : 0; if (masks & UCDATA_CMBCL) error |= _uccmcl_load(paths, 0) < 0 ? UCDATA_CMBCL : 0; if (masks & UCDATA_NUM) error |= _ucnumb_load(paths, 0) < 0 ? UCDATA_NUM : 0; if (masks & UCDATA_COMP) error |= _uccomp_load(paths, 0) < 0 ? UCDATA_COMP : 0; if (masks & UCDATA_KDECOMP) error |= _uckdcmp_load(paths, 0) < 0 ? UCDATA_KDECOMP : 0; return -error; } void ucdata_unload(int masks) { if (masks & UCDATA_CTYPE) _ucprop_unload(); if (masks & UCDATA_CASE) _uccase_unload(); if (masks & UCDATA_DECOMP) _ucdcmp_unload(); if (masks & UCDATA_CMBCL) _uccmcl_unload(); if (masks & UCDATA_NUM) _ucnumb_unload(); if (masks & UCDATA_COMP) _uccomp_unload(); if (masks & UCDATA_KDECOMP) _uckdcmp_unload(); } /* * Return 0 if okay, negative on error */ int ucdata_reload(char *paths, int masks) { int error = 0; if (masks & UCDATA_CTYPE) error |= _ucprop_load(paths, 1) < 0 ? UCDATA_CTYPE : 0; if (masks & UCDATA_CASE) error |= _uccase_load(paths, 1) < 0 ? UCDATA_CASE : 0; if (masks & UCDATA_DECOMP) error |= _ucdcmp_load(paths, 1) < 0 ? UCDATA_DECOMP : 0; if (masks & UCDATA_CMBCL) error |= _uccmcl_load(paths, 1) < 0 ? UCDATA_CMBCL : 0; if (masks & UCDATA_NUM) error |= _ucnumb_load(paths, 1) < 0 ? UCDATA_NUM : 0; if (masks & UCDATA_COMP) error |= _uccomp_load(paths, 1) < 0 ? UCDATA_COMP : 0; if (masks & UCDATA_KDECOMP) error |= _uckdcmp_load(paths, 1) < 0 ? UCDATA_KDECOMP : 0; return -error; } #endif #ifdef TEST void main(void) { int dig; ac_uint4 i, lo, *dec; struct ucnumber num; /* ucdata_setup("."); */ if (ucisweak(0x30)) printf("WEAK\n"); else printf("NOT WEAK\n"); printf("LOWER 0x%04lX\n", uctolower(0xff3a)); printf("UPPER 0x%04lX\n", uctoupper(0xff5a)); if (ucisalpha(0x1d5)) printf("ALPHA\n"); else printf("NOT ALPHA\n"); if (ucisupper(0x1d5)) { printf("UPPER\n"); lo = uctolower(0x1d5); printf("0x%04lx\n", lo); lo = uctotitle(0x1d5); printf("0x%04lx\n", lo); } else printf("NOT UPPER\n"); if (ucistitle(0x1d5)) printf("TITLE\n"); else printf("NOT TITLE\n"); if (uciscomposite(0x1d5)) printf("COMPOSITE\n"); else printf("NOT COMPOSITE\n"); if (ucdecomp(0x1d5, &lo, &dec)) { for (i = 0; i < lo; i++) printf("0x%04lx ", dec[i]); putchar('\n'); } if ((lo = uccombining_class(0x41)) != 0) printf("0x41 CCL %ld\n", lo); if (ucisxdigit(0xfeff)) printf("0xFEFF HEX DIGIT\n"); else printf("0xFEFF NOT HEX DIGIT\n"); if (ucisdefined(0x10000)) printf("0x10000 DEFINED\n"); else printf("0x10000 NOT DEFINED\n"); if (ucnumber_lookup(0x30, &num)) { if (num.denominator != 1) printf("UCNUMBER: 0x30 = %d/%d\n", num.numerator, num.denominator); else printf("UCNUMBER: 0x30 = %d\n", num.numerator); } else printf("UCNUMBER: 0x30 NOT A NUMBER\n"); if (ucnumber_lookup(0xbc, &num)) { if (num.denominator != 1) printf("UCNUMBER: 0xbc = %d/%d\n", num.numerator, num.denominator); else printf("UCNUMBER: 0xbc = %d\n", num.numerator); } else printf("UCNUMBER: 0xbc NOT A NUMBER\n"); if (ucnumber_lookup(0xff19, &num)) { if (num.denominator != 1) printf("UCNUMBER: 0xff19 = %d/%d\n", num.numerator, num.denominator); else printf("UCNUMBER: 0xff19 = %d\n", num.numerator); } else printf("UCNUMBER: 0xff19 NOT A NUMBER\n"); if (ucnumber_lookup(0x4e00, &num)) { if (num.denominator != 1) printf("UCNUMBER: 0x4e00 = %d/%d\n", num.numerator, num.denominator); else printf("UCNUMBER: 0x4e00 = %d\n", num.numerator); } else printf("UCNUMBER: 0x4e00 NOT A NUMBER\n"); if (ucdigit_lookup(0x06f9, &dig)) printf("UCDIGIT: 0x6f9 = %d\n", dig); else printf("UCDIGIT: 0x6f9 NOT A NUMBER\n"); dig = ucgetdigit(0x0969); printf("UCGETDIGIT: 0x969 = %d\n", dig); num = ucgetnumber(0x30); if (num.denominator != 1) printf("UCGETNUMBER: 0x30 = %d/%d\n", num.numerator, num.denominator); else printf("UCGETNUMBER: 0x30 = %d\n", num.numerator); num = ucgetnumber(0xbc); if (num.denominator != 1) printf("UCGETNUMBER: 0xbc = %d/%d\n", num.numerator, num.denominator); else printf("UCGETNUMBER: 0xbc = %d\n", num.numerator); num = ucgetnumber(0xff19); if (num.denominator != 1) printf("UCGETNUMBER: 0xff19 = %d/%d\n", num.numerator, num.denominator); else printf("UCGETNUMBER: 0xff19 = %d\n", num.numerator); /* ucdata_cleanup(); */ exit(0); } #endif /* TEST */