diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:28:17 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:28:17 +0000 |
commit | 7a46c07230b8d8108c0e8e80df4522d0ac116538 (patch) | |
tree | d483300dab478b994fe199a5d19d18d74153718a /spa/plugins/audioconvert/fmt-ops-sse2.c | |
parent | Initial commit. (diff) | |
download | pipewire-upstream.tar.xz pipewire-upstream.zip |
Adding upstream version 0.3.65.upstream/0.3.65upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | spa/plugins/audioconvert/fmt-ops-sse2.c | 1438 |
1 files changed, 1438 insertions, 0 deletions
diff --git a/spa/plugins/audioconvert/fmt-ops-sse2.c b/spa/plugins/audioconvert/fmt-ops-sse2.c new file mode 100644 index 0000000..4e2fce7 --- /dev/null +++ b/spa/plugins/audioconvert/fmt-ops-sse2.c @@ -0,0 +1,1438 @@ +/* Spa + * + * Copyright © 2018 Wim Taymans + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#include "fmt-ops.h" + +#include <emmintrin.h> + +#define _MM_CLAMP_PS(r,min,max) \ + _mm_min_ps(_mm_max_ps(r, min), max) + +#define _MM_CLAMP_SS(r,min,max) \ + _mm_min_ss(_mm_max_ss(r, min), max) + +static void +conv_s16_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const int16_t *s = src; + float *d0 = dst[0]; + uint32_t n, unrolled; + __m128i in = _mm_setzero_si128(); + __m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE); + + if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16))) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in = _mm_insert_epi16(in, s[0*n_channels], 1); + in = _mm_insert_epi16(in, s[1*n_channels], 3); + in = _mm_insert_epi16(in, s[2*n_channels], 5); + in = _mm_insert_epi16(in, s[3*n_channels], 7); + in = _mm_srai_epi32(in, 16); + out = _mm_cvtepi32_ps(in); + out = _mm_mul_ps(out, factor); + _mm_store_ps(&d0[n], out); + s += 4*n_channels; + } + for(; n < n_samples; n++) { + out = _mm_cvtsi32_ss(factor, s[0]); + out = _mm_mul_ss(out, factor); + _mm_store_ss(&d0[n], out); + s += n_channels; + } +} + +void +conv_s16_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const int16_t *s = src[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i < n_channels; i++) + conv_s16_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); +} + +void +conv_s16_to_f32d_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const int16_t *s = src[0]; + float *d0 = dst[0], *d1 = dst[1]; + uint32_t n, unrolled; + __m128i in[2], t[4]; + __m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE); + + if (SPA_IS_ALIGNED(s, 16) && + SPA_IS_ALIGNED(d0, 16) && + SPA_IS_ALIGNED(d1, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_load_si128((__m128i*)(s + 0)); + in[1] = _mm_load_si128((__m128i*)(s + 8)); + + t[0] = _mm_slli_epi32(in[0], 16); + t[0] = _mm_srai_epi32(t[0], 16); + out[0] = _mm_cvtepi32_ps(t[0]); + out[0] = _mm_mul_ps(out[0], factor); + + t[1] = _mm_srai_epi32(in[0], 16); + out[1] = _mm_cvtepi32_ps(t[1]); + out[1] = _mm_mul_ps(out[1], factor); + + t[2] = _mm_slli_epi32(in[1], 16); + t[2] = _mm_srai_epi32(t[2], 16); + out[2] = _mm_cvtepi32_ps(t[2]); + out[2] = _mm_mul_ps(out[2], factor); + + t[3] = _mm_srai_epi32(in[1], 16); + out[3] = _mm_cvtepi32_ps(t[3]); + out[3] = _mm_mul_ps(out[3], factor); + + _mm_store_ps(&d0[n + 0], out[0]); + _mm_store_ps(&d1[n + 0], out[1]); + _mm_store_ps(&d0[n + 4], out[2]); + _mm_store_ps(&d1[n + 4], out[3]); + + s += 16; + } + for(; n < n_samples; n++) { + out[0] = _mm_cvtsi32_ss(factor, s[0]); + out[0] = _mm_mul_ss(out[0], factor); + out[1] = _mm_cvtsi32_ss(factor, s[1]); + out[1] = _mm_mul_ss(out[1], factor); + _mm_store_ss(&d0[n], out[0]); + _mm_store_ss(&d1[n], out[1]); + s += 2; + } +} + +void +conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const int24_t *s = src; + float *d0 = dst[0]; + uint32_t n, unrolled; + __m128i in; + __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); + + if (SPA_IS_ALIGNED(d0, 16) && n_samples > 0) { + unrolled = n_samples & ~3; + if ((n_samples & 3) == 0) + unrolled -= 4; + } + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in = _mm_setr_epi32( + *((uint32_t*)&s[0 * n_channels]), + *((uint32_t*)&s[1 * n_channels]), + *((uint32_t*)&s[2 * n_channels]), + *((uint32_t*)&s[3 * n_channels])); + in = _mm_slli_epi32(in, 8); + in = _mm_srai_epi32(in, 8); + out = _mm_cvtepi32_ps(in); + out = _mm_mul_ps(out, factor); + _mm_store_ps(&d0[n], out); + s += 4 * n_channels; + } + for(; n < n_samples; n++) { + out = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); + out = _mm_mul_ss(out, factor); + _mm_store_ss(&d0[n], out); + s += n_channels; + } +} + +static void +conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const int24_t *s = src; + float *d0 = dst[0], *d1 = dst[1]; + uint32_t n, unrolled; + __m128i in[2]; + __m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE); + + if (SPA_IS_ALIGNED(d0, 16) && + SPA_IS_ALIGNED(d1, 16) && + n_samples > 0) { + unrolled = n_samples & ~3; + if ((n_samples & 3) == 0) + unrolled -= 4; + } + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_setr_epi32( + *((uint32_t*)&s[0 + 0*n_channels]), + *((uint32_t*)&s[0 + 1*n_channels]), + *((uint32_t*)&s[0 + 2*n_channels]), + *((uint32_t*)&s[0 + 3*n_channels])); + in[1] = _mm_setr_epi32( + *((uint32_t*)&s[1 + 0*n_channels]), + *((uint32_t*)&s[1 + 1*n_channels]), + *((uint32_t*)&s[1 + 2*n_channels]), + *((uint32_t*)&s[1 + 3*n_channels])); + + in[0] = _mm_slli_epi32(in[0], 8); + in[1] = _mm_slli_epi32(in[1], 8); + + in[0] = _mm_srai_epi32(in[0], 8); + in[1] = _mm_srai_epi32(in[1], 8); + + out[0] = _mm_cvtepi32_ps(in[0]); + out[1] = _mm_cvtepi32_ps(in[1]); + + out[0] = _mm_mul_ps(out[0], factor); + out[1] = _mm_mul_ps(out[1], factor); + + _mm_store_ps(&d0[n], out[0]); + _mm_store_ps(&d1[n], out[1]); + + s += 4 * n_channels; + } + for(; n < n_samples; n++) { + out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); + out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1))); + out[0] = _mm_mul_ss(out[0], factor); + out[1] = _mm_mul_ss(out[1], factor); + _mm_store_ss(&d0[n], out[0]); + _mm_store_ss(&d1[n], out[1]); + s += n_channels; + } +} +static void +conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const int24_t *s = src; + float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; + uint32_t n, unrolled; + __m128i in[4]; + __m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE); + + if (SPA_IS_ALIGNED(d0, 16) && + SPA_IS_ALIGNED(d1, 16) && + SPA_IS_ALIGNED(d2, 16) && + SPA_IS_ALIGNED(d3, 16) && + n_samples > 0) { + unrolled = n_samples & ~3; + if ((n_samples & 3) == 0) + unrolled -= 4; + } + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_setr_epi32( + *((uint32_t*)&s[0 + 0*n_channels]), + *((uint32_t*)&s[0 + 1*n_channels]), + *((uint32_t*)&s[0 + 2*n_channels]), + *((uint32_t*)&s[0 + 3*n_channels])); + in[1] = _mm_setr_epi32( + *((uint32_t*)&s[1 + 0*n_channels]), + *((uint32_t*)&s[1 + 1*n_channels]), + *((uint32_t*)&s[1 + 2*n_channels]), + *((uint32_t*)&s[1 + 3*n_channels])); + in[2] = _mm_setr_epi32( + *((uint32_t*)&s[2 + 0*n_channels]), + *((uint32_t*)&s[2 + 1*n_channels]), + *((uint32_t*)&s[2 + 2*n_channels]), + *((uint32_t*)&s[2 + 3*n_channels])); + in[3] = _mm_setr_epi32( + *((uint32_t*)&s[3 + 0*n_channels]), + *((uint32_t*)&s[3 + 1*n_channels]), + *((uint32_t*)&s[3 + 2*n_channels]), + *((uint32_t*)&s[3 + 3*n_channels])); + + in[0] = _mm_slli_epi32(in[0], 8); + in[1] = _mm_slli_epi32(in[1], 8); + in[2] = _mm_slli_epi32(in[2], 8); + in[3] = _mm_slli_epi32(in[3], 8); + + in[0] = _mm_srai_epi32(in[0], 8); + in[1] = _mm_srai_epi32(in[1], 8); + in[2] = _mm_srai_epi32(in[2], 8); + in[3] = _mm_srai_epi32(in[3], 8); + + out[0] = _mm_cvtepi32_ps(in[0]); + out[1] = _mm_cvtepi32_ps(in[1]); + out[2] = _mm_cvtepi32_ps(in[2]); + out[3] = _mm_cvtepi32_ps(in[3]); + + out[0] = _mm_mul_ps(out[0], factor); + out[1] = _mm_mul_ps(out[1], factor); + out[2] = _mm_mul_ps(out[2], factor); + out[3] = _mm_mul_ps(out[3], factor); + + _mm_store_ps(&d0[n], out[0]); + _mm_store_ps(&d1[n], out[1]); + _mm_store_ps(&d2[n], out[2]); + _mm_store_ps(&d3[n], out[3]); + + s += 4 * n_channels; + } + for(; n < n_samples; n++) { + out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); + out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1))); + out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2))); + out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3))); + out[0] = _mm_mul_ss(out[0], factor); + out[1] = _mm_mul_ss(out[1], factor); + out[2] = _mm_mul_ss(out[2], factor); + out[3] = _mm_mul_ss(out[3], factor); + _mm_store_ss(&d0[n], out[0]); + _mm_store_ss(&d1[n], out[1]); + _mm_store_ss(&d2[n], out[2]); + _mm_store_ss(&d3[n], out[3]); + s += n_channels; + } +} + +void +conv_s24_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const int8_t *s = src[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_s24_to_f32d_4s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); + for(; i + 1 < n_channels; i += 2) + conv_s24_to_f32d_2s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); +} + + +void +conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const int32_t *s = src; + float *d0 = dst[0]; + uint32_t n, unrolled; + __m128i in; + __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); + + if (SPA_IS_ALIGNED(d0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in = _mm_setr_epi32(s[0*n_channels], + s[1*n_channels], + s[2*n_channels], + s[3*n_channels]); + in = _mm_srai_epi32(in, 8); + out = _mm_cvtepi32_ps(in); + out = _mm_mul_ps(out, factor); + _mm_store_ps(&d0[n], out); + s += 4*n_channels; + } + for(; n < n_samples; n++) { + out = _mm_cvtsi32_ss(factor, s[0]>>8); + out = _mm_mul_ss(out, factor); + _mm_store_ss(&d0[n], out); + s += n_channels; + } +} + +void +conv_s32_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const int32_t *s = src[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i < n_channels; i++) + conv_s32_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); +} + +static void +conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0]; + int32_t *d = dst; + uint32_t n, unrolled; + __m128 in[1]; + __m128i out[4]; + __m128 scale = _mm_set1_ps(S24_SCALE); + __m128 int_min = _mm_set1_ps(S24_MIN); + __m128 int_max = _mm_set1_ps(S24_MAX); + + if (SPA_IS_ALIGNED(s0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + out[0] = _mm_cvtps_epi32(in[0]); + out[0] = _mm_slli_epi32(out[0], 8); + out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); + out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); + out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); + + d[0*n_channels] = _mm_cvtsi128_si32(out[0]); + d[1*n_channels] = _mm_cvtsi128_si32(out[1]); + d[2*n_channels] = _mm_cvtsi128_si32(out[2]); + d[3*n_channels] = _mm_cvtsi128_si32(out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_load_ss(&s0[n]); + in[0] = _mm_mul_ss(in[0], scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + *d = _mm_cvtss_si32(in[0]) << 8; + d += n_channels; + } +} + +static void +conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1]; + int32_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[2], t[2]; + __m128 scale = _mm_set1_ps(S24_SCALE); + __m128 int_min = _mm_set1_ps(S24_MIN); + __m128 int_max = _mm_set1_ps(S24_MAX); + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); + + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + in[1] = _MM_CLAMP_PS(in[1], int_min, int_max); + + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[0] = _mm_slli_epi32(out[0], 8); + out[1] = _mm_slli_epi32(out[1], 8); + + t[0] = _mm_unpacklo_epi32(out[0], out[1]); + t[1] = _mm_unpackhi_epi32(out[0], out[1]); + + _mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]); + _mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]); + _mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]); + _mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_load_ss(&s0[n]); + in[1] = _mm_load_ss(&s1[n]); + + in[0] = _mm_unpacklo_ps(in[0], in[1]); + + in[0] = _mm_mul_ps(in[0], scale); + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + out[0] = _mm_cvtps_epi32(in[0]); + out[0] = _mm_slli_epi32(out[0], 8); + _mm_storel_epi64((__m128i*)d, out[0]); + d += n_channels; + } +} + +static void +conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; + int32_t *d = dst; + uint32_t n, unrolled; + __m128 in[4]; + __m128i out[4]; + __m128 scale = _mm_set1_ps(S24_SCALE); + __m128 int_min = _mm_set1_ps(S24_MIN); + __m128 int_max = _mm_set1_ps(S24_MAX); + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16) && + SPA_IS_ALIGNED(s2, 16) && + SPA_IS_ALIGNED(s3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); + in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale); + in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale); + + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + in[1] = _MM_CLAMP_PS(in[1], int_min, int_max); + in[2] = _MM_CLAMP_PS(in[2], int_min, int_max); + in[3] = _MM_CLAMP_PS(in[3], int_min, int_max); + + _MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]); + + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[2] = _mm_cvtps_epi32(in[2]); + out[3] = _mm_cvtps_epi32(in[3]); + out[0] = _mm_slli_epi32(out[0], 8); + out[1] = _mm_slli_epi32(out[1], 8); + out[2] = _mm_slli_epi32(out[2], 8); + out[3] = _mm_slli_epi32(out[3], 8); + + _mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]); + _mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]); + _mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]); + _mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_load_ss(&s0[n]); + in[1] = _mm_load_ss(&s1[n]); + in[2] = _mm_load_ss(&s2[n]); + in[3] = _mm_load_ss(&s3[n]); + + in[0] = _mm_unpacklo_ps(in[0], in[2]); + in[1] = _mm_unpacklo_ps(in[1], in[3]); + in[0] = _mm_unpacklo_ps(in[0], in[1]); + + in[0] = _mm_mul_ps(in[0], scale); + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + out[0] = _mm_cvtps_epi32(in[0]); + out[0] = _mm_slli_epi32(out[0], 8); + _mm_storeu_si128((__m128i*)d, out[0]); + d += n_channels; + } +} + +void +conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int32_t *d = dst[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_f32d_to_s32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i + 1 < n_channels; i += 2) + conv_f32d_to_s32_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); +} + +/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */ +#define _MM_XORSHIFT_EPI32(r) \ +({ \ + __m128i i, t; \ + i = _mm_load_si128((__m128i*)r); \ + t = _mm_slli_epi32(i, 13); \ + i = _mm_xor_si128(i, t); \ + t = _mm_srli_epi32(i, 17); \ + i = _mm_xor_si128(i, t); \ + t = _mm_slli_epi32(i, 5); \ + i = _mm_xor_si128(i, t); \ + _mm_store_si128((__m128i*)r, i); \ + i; \ +}) + +void conv_noise_rect_sse2(struct convert *conv, float *noise, uint32_t n_samples) +{ + uint32_t n; + const uint32_t *r = conv->random; + __m128 scale = _mm_set1_ps(conv->scale); + __m128i in[1]; + __m128 out[1]; + + for (n = 0; n < n_samples; n += 4) { + in[0] = _MM_XORSHIFT_EPI32(r); + out[0] = _mm_cvtepi32_ps(in[0]); + out[0] = _mm_mul_ps(out[0], scale); + _mm_store_ps(&noise[n], out[0]); + } +} + +void conv_noise_tri_sse2(struct convert *conv, float *noise, uint32_t n_samples) +{ + uint32_t n; + const uint32_t *r = conv->random; + __m128 scale = _mm_set1_ps(conv->scale); + __m128i in[1]; + __m128 out[1]; + + for (n = 0; n < n_samples; n += 4) { + in[0] = _mm_sub_epi32( _MM_XORSHIFT_EPI32(r), _MM_XORSHIFT_EPI32(r)); + out[0] = _mm_cvtepi32_ps(in[0]); + out[0] = _mm_mul_ps(out[0], scale); + _mm_store_ps(&noise[n], out[0]); + } +} + +void conv_noise_tri_hf_sse2(struct convert *conv, float *noise, uint32_t n_samples) +{ + uint32_t n; + int32_t *p = conv->prev; + const uint32_t *r = conv->random; + __m128 scale = _mm_set1_ps(conv->scale); + __m128i in[1], old[1], new[1]; + __m128 out[1]; + + old[0] = _mm_load_si128((__m128i*)p); + for (n = 0; n < n_samples; n += 4) { + new[0] = _MM_XORSHIFT_EPI32(r); + in[0] = _mm_sub_epi32(old[0], new[0]); + old[0] = new[0]; + out[0] = _mm_cvtepi32_ps(in[0]); + out[0] = _mm_mul_ps(out[0], scale); + _mm_store_ps(&noise[n], out[0]); + } + _mm_store_si128((__m128i*)p, old[0]); +} + +static void +conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, + float *noise, uint32_t n_channels, uint32_t n_samples) +{ + const float *s = src; + int32_t *d = dst; + uint32_t n, unrolled; + __m128 in[1]; + __m128i out[4]; + __m128 scale = _mm_set1_ps(S24_SCALE); + __m128 int_min = _mm_set1_ps(S24_MIN); + __m128 int_max = _mm_set1_ps(S24_MAX); + + if (SPA_IS_ALIGNED(s, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), scale); + in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); + in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); + out[0] = _mm_cvtps_epi32(in[0]); + out[0] = _mm_slli_epi32(out[0], 8); + out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); + out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); + out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); + + d[0*n_channels] = _mm_cvtsi128_si32(out[0]); + d[1*n_channels] = _mm_cvtsi128_si32(out[1]); + d[2*n_channels] = _mm_cvtsi128_si32(out[2]); + d[3*n_channels] = _mm_cvtsi128_si32(out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_load_ss(&s[n]); + in[0] = _mm_mul_ss(in[0], scale); + in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + *d = _mm_cvtss_si32(in[0]) << 8; + d += n_channels; + } +} + +void +conv_f32d_to_s32_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int32_t *d = dst[0]; + uint32_t i, k, chunk, n_channels = conv->n_channels; + float *noise = conv->noise; + + convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); + + for(i = 0; i < n_channels; i++) { + const float *s = src[i]; + for(k = 0; k < n_samples; k += chunk) { + chunk = SPA_MIN(n_samples - k, conv->noise_size); + conv_f32d_to_s32_1s_noise_sse2(conv, &d[i + k*n_channels], + &s[k], noise, n_channels, chunk); + } + } +} + +static void +conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const int32_t *s0 = src[0]; + int32_t *d = dst; + uint32_t n, unrolled; + __m128i out[4]; + + if (SPA_IS_ALIGNED(s0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_load_si128((__m128i*)&s0[n]); + out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); + out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); + out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); + + d[0*n_channels] = _mm_cvtsi128_si32(out[0]); + d[1*n_channels] = _mm_cvtsi128_si32(out[1]); + d[2*n_channels] = _mm_cvtsi128_si32(out[2]); + d[3*n_channels] = _mm_cvtsi128_si32(out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + *d = s0[n]; + d += n_channels; + } +} +static void +conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; + float *d = dst; + uint32_t n, unrolled; + __m128 out[4]; + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16) && + SPA_IS_ALIGNED(s2, 16) && + SPA_IS_ALIGNED(s3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_load_ps(&s0[n]); + out[1] = _mm_load_ps(&s1[n]); + out[2] = _mm_load_ps(&s2[n]); + out[3] = _mm_load_ps(&s3[n]); + + _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); + + _mm_storeu_ps((d + 0*n_channels), out[0]); + _mm_storeu_ps((d + 1*n_channels), out[1]); + _mm_storeu_ps((d + 2*n_channels), out[2]); + _mm_storeu_ps((d + 3*n_channels), out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]); + _mm_storeu_ps(d, out[0]); + d += n_channels; + } +} + +void +conv_32d_to_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int32_t *d = dst[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); +} + +#define _MM_BSWAP_EPI32(x) \ +({ \ + __m128i a = _mm_or_si128( \ + _mm_slli_epi16(x, 8), \ + _mm_srli_epi16(x, 8)); \ + a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \ + a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \ +}) + +static void +conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const int32_t *s0 = src[0]; + int32_t *d = dst; + uint32_t n, unrolled; + __m128i out[4]; + + if (SPA_IS_ALIGNED(s0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_load_si128((__m128i*)&s0[n]); + out[0] = _MM_BSWAP_EPI32(out[0]); + out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); + out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); + out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); + + d[0*n_channels] = _mm_cvtsi128_si32(out[0]); + d[1*n_channels] = _mm_cvtsi128_si32(out[1]); + d[2*n_channels] = _mm_cvtsi128_si32(out[2]); + d[3*n_channels] = _mm_cvtsi128_si32(out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + *d = bswap_32(s0[n]); + d += n_channels; + } +} +static void +conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; + float *d = dst; + uint32_t n, unrolled; + __m128 out[4]; + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16) && + SPA_IS_ALIGNED(s2, 16) && + SPA_IS_ALIGNED(s3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_load_ps(&s0[n]); + out[1] = _mm_load_ps(&s1[n]); + out[2] = _mm_load_ps(&s2[n]); + out[3] = _mm_load_ps(&s3[n]); + + _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); + + out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); + out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]); + out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]); + out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]); + + _mm_storeu_ps(&d[0*n_channels], out[0]); + _mm_storeu_ps(&d[1*n_channels], out[1]); + _mm_storeu_ps(&d[2*n_channels], out[2]); + _mm_storeu_ps(&d[3*n_channels], out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]); + out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); + _mm_storeu_ps(d, out[0]); + d += n_channels; + } +} + +void +conv_32d_to_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int32_t *d = dst[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); +} + +static void +conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const float *s = src; + float *d0 = dst[0]; + uint32_t n, unrolled; + __m128 out; + + if (SPA_IS_ALIGNED(d0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out = _mm_setr_ps(s[0*n_channels], + s[1*n_channels], + s[2*n_channels], + s[3*n_channels]); + _mm_store_ps(&d0[n], out); + s += 4*n_channels; + } + for(; n < n_samples; n++) { + d0[n] = *s; + s += n_channels; + } +} + +static void +conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const float *s = src; + float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; + uint32_t n, unrolled; + __m128 out[4]; + + if (SPA_IS_ALIGNED(d0, 16) && + SPA_IS_ALIGNED(d1, 16) && + SPA_IS_ALIGNED(d2, 16) && + SPA_IS_ALIGNED(d3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_loadu_ps(&s[0 * n_channels]); + out[1] = _mm_loadu_ps(&s[1 * n_channels]); + out[2] = _mm_loadu_ps(&s[2 * n_channels]); + out[3] = _mm_loadu_ps(&s[3 * n_channels]); + + _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); + + _mm_store_ps(&d0[n], out[0]); + _mm_store_ps(&d1[n], out[1]); + _mm_store_ps(&d2[n], out[2]); + _mm_store_ps(&d3[n], out[3]); + s += 4 * n_channels; + } + for(; n < n_samples; n++) { + d0[n] = s[0]; + d1[n] = s[1]; + d2[n] = s[2]; + d3[n] = s[3]; + s += n_channels; + } +} + +void +conv_32_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const float *s = src[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); +} + +static void +conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const float *s = src; + float *d0 = dst[0]; + uint32_t n, unrolled; + __m128 out; + + if (SPA_IS_ALIGNED(d0, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out = _mm_setr_ps(s[0*n_channels], + s[1*n_channels], + s[2*n_channels], + s[3*n_channels]); + out = (__m128) _MM_BSWAP_EPI32((__m128i)out); + _mm_store_ps(&d0[n], out); + s += 4*n_channels; + } + for(; n < n_samples; n++) { + d0[n] = bswap_32(*s); + s += n_channels; + } +} + +static void +conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, + uint32_t n_channels, uint32_t n_samples) +{ + const float *s = src; + float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; + uint32_t n, unrolled; + __m128 out[4]; + + if (SPA_IS_ALIGNED(d0, 16) && + SPA_IS_ALIGNED(d1, 16) && + SPA_IS_ALIGNED(d2, 16) && + SPA_IS_ALIGNED(d3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + out[0] = _mm_loadu_ps(&s[0 * n_channels]); + out[1] = _mm_loadu_ps(&s[1 * n_channels]); + out[2] = _mm_loadu_ps(&s[2 * n_channels]); + out[3] = _mm_loadu_ps(&s[3 * n_channels]); + + _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); + + out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); + out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]); + out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]); + out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]); + + _mm_store_ps(&d0[n], out[0]); + _mm_store_ps(&d1[n], out[1]); + _mm_store_ps(&d2[n], out[2]); + _mm_store_ps(&d3[n], out[3]); + s += 4 * n_channels; + } + for(; n < n_samples; n++) { + d0[n] = bswap_32(s[0]); + d1[n] = bswap_32(s[1]); + d2[n] = bswap_32(s[2]); + d3[n] = bswap_32(s[3]); + s += n_channels; + } +} + +void +conv_32s_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const float *s = src[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); +} + +static void +conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, + uint32_t n_samples) +{ + const float *s = src; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[2]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale); + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[0] = _mm_packs_epi32(out[0], out[1]); + _mm_storeu_si128((__m128i*)(d+0), out[0]); + d += 8; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + *d++ = _mm_cvtss_si32(in[0]); + } +} + +void +conv_f32d_to_s16d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + uint32_t i, n_channels = conv->n_channels; + for(i = 0; i < n_channels; i++) + conv_f32_to_s16_1_sse2(conv, dst[i], src[i], n_samples); +} + +void +conv_f32_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + conv_f32_to_s16_1_sse2(conv, dst[0], src[0], n_samples * conv->n_channels); +} + +static void +conv_f32d_to_s16_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0]; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[2]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s0, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[0] = _mm_packs_epi32(out[0], out[1]); + + d[0*n_channels] = _mm_extract_epi16(out[0], 0); + d[1*n_channels] = _mm_extract_epi16(out[0], 1); + d[2*n_channels] = _mm_extract_epi16(out[0], 2); + d[3*n_channels] = _mm_extract_epi16(out[0], 3); + d[4*n_channels] = _mm_extract_epi16(out[0], 4); + d[5*n_channels] = _mm_extract_epi16(out[0], 5); + d[6*n_channels] = _mm_extract_epi16(out[0], 6); + d[7*n_channels] = _mm_extract_epi16(out[0], 7); + d += 8*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + *d = _mm_cvtss_si32(in[0]); + d += n_channels; + } +} + +static void +conv_f32d_to_s16_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1]; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[4], t[2]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale); + + t[0] = _mm_cvtps_epi32(in[0]); + t[1] = _mm_cvtps_epi32(in[1]); + + t[0] = _mm_packs_epi32(t[0], t[0]); + t[1] = _mm_packs_epi32(t[1], t[1]); + + out[0] = _mm_unpacklo_epi16(t[0], t[1]); + out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); + out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); + out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); + + *((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]); + *((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]); + *((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]); + *((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]); + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); + in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); + d[0] = _mm_cvtss_si32(in[0]); + d[1] = _mm_cvtss_si32(in[1]); + d += n_channels; + } +} + +static void +conv_f32d_to_s16_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], + uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[4]; + __m128i out[4], t[4]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16) && + SPA_IS_ALIGNED(s2, 16) && + SPA_IS_ALIGNED(s3, 16)) + unrolled = n_samples & ~3; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 4) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale); + in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_scale); + in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_scale); + + t[0] = _mm_cvtps_epi32(in[0]); + t[1] = _mm_cvtps_epi32(in[1]); + t[2] = _mm_cvtps_epi32(in[2]); + t[3] = _mm_cvtps_epi32(in[3]); + + t[0] = _mm_packs_epi32(t[0], t[2]); + t[1] = _mm_packs_epi32(t[1], t[3]); + + out[0] = _mm_unpacklo_epi16(t[0], t[1]); + out[1] = _mm_unpackhi_epi16(t[0], t[1]); + out[2] = _mm_unpacklo_epi32(out[0], out[1]); + out[3] = _mm_unpackhi_epi32(out[0], out[1]); + + _mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]); + _mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]); + _mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]); + _mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]); + + d += 4*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); + in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); + in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_scale); + in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); + in[2] = _MM_CLAMP_SS(in[2], int_min, int_max); + in[3] = _MM_CLAMP_SS(in[3], int_min, int_max); + d[0] = _mm_cvtss_si32(in[0]); + d[1] = _mm_cvtss_si32(in[1]); + d[2] = _mm_cvtss_si32(in[2]); + d[3] = _mm_cvtss_si32(in[3]); + d += n_channels; + } +} + +void +conv_f32d_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int16_t *d = dst[0]; + uint32_t i = 0, n_channels = conv->n_channels; + + for(; i + 3 < n_channels; i += 4) + conv_f32d_to_s16_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i + 1 < n_channels; i += 2) + conv_f32d_to_s16_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples); + for(; i < n_channels; i++) + conv_f32d_to_s16_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); +} + +static void +conv_f32d_to_s16_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, + const float *noise, uint32_t n_channels, uint32_t n_samples) +{ + const float *s0 = src; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[2]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s0, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); + in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); + in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4])); + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[0] = _mm_packs_epi32(out[0], out[1]); + + d[0*n_channels] = _mm_extract_epi16(out[0], 0); + d[1*n_channels] = _mm_extract_epi16(out[0], 1); + d[2*n_channels] = _mm_extract_epi16(out[0], 2); + d[3*n_channels] = _mm_extract_epi16(out[0], 3); + d[4*n_channels] = _mm_extract_epi16(out[0], 4); + d[5*n_channels] = _mm_extract_epi16(out[0], 5); + d[6*n_channels] = _mm_extract_epi16(out[0], 6); + d[7*n_channels] = _mm_extract_epi16(out[0], 7); + d += 8*n_channels; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); + in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + *d = _mm_cvtss_si32(in[0]); + d += n_channels; + } +} + +void +conv_f32d_to_s16_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + int16_t *d = dst[0]; + uint32_t i, k, chunk, n_channels = conv->n_channels; + float *noise = conv->noise; + + convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); + + for(i = 0; i < n_channels; i++) { + const float *s = src[i]; + for(k = 0; k < n_samples; k += chunk) { + chunk = SPA_MIN(n_samples - k, conv->noise_size); + conv_f32d_to_s16_1s_noise_sse2(conv, &d[i + k*n_channels], + &s[k], noise, n_channels, chunk); + } + } +} + +static void +conv_f32_to_s16_1_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, + const float *noise, uint32_t n_samples) +{ + const float *s = src; + int16_t *d = dst; + uint32_t n, unrolled; + __m128 in[2]; + __m128i out[2]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale); + in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); + in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4])); + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[0] = _mm_packs_epi32(out[0], out[1]); + _mm_storeu_si128((__m128i*)(&d[n]), out[0]); + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale); + in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + d[n] = _mm_cvtss_si32(in[0]); + } +} + +void +conv_f32d_to_s16d_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + uint32_t i, k, chunk, n_channels = conv->n_channels; + float *noise = conv->noise; + + convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); + + for(i = 0; i < n_channels; i++) { + const float *s = src[i]; + int16_t *d = dst[i]; + for(k = 0; k < n_samples; k += chunk) { + chunk = SPA_MIN(n_samples - k, conv->noise_size); + conv_f32_to_s16_1_noise_sse2(conv, &d[k], &s[k], noise, chunk); + } + } +} + +void +conv_f32d_to_s16_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], + uint32_t n_samples) +{ + const float *s0 = src[0], *s1 = src[1]; + int16_t *d = dst[0]; + uint32_t n, unrolled; + __m128 in[4]; + __m128i out[4]; + __m128 int_scale = _mm_set1_ps(S16_SCALE); + __m128 int_max = _mm_set1_ps(S16_MAX); + __m128 int_min = _mm_set1_ps(S16_MIN); + + if (SPA_IS_ALIGNED(s0, 16) && + SPA_IS_ALIGNED(s1, 16)) + unrolled = n_samples & ~7; + else + unrolled = 0; + + for(n = 0; n < unrolled; n += 8) { + in[0] = _mm_mul_ps(_mm_load_ps(&s0[n+0]), int_scale); + in[1] = _mm_mul_ps(_mm_load_ps(&s1[n+0]), int_scale); + in[2] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); + in[3] = _mm_mul_ps(_mm_load_ps(&s1[n+4]), int_scale); + + out[0] = _mm_cvtps_epi32(in[0]); + out[1] = _mm_cvtps_epi32(in[1]); + out[2] = _mm_cvtps_epi32(in[2]); + out[3] = _mm_cvtps_epi32(in[3]); + + out[0] = _mm_packs_epi32(out[0], out[2]); + out[1] = _mm_packs_epi32(out[1], out[3]); + + out[2] = _mm_unpacklo_epi16(out[0], out[1]); + out[3] = _mm_unpackhi_epi16(out[0], out[1]); + + _mm_storeu_si128((__m128i*)(d+0), out[2]); + _mm_storeu_si128((__m128i*)(d+8), out[3]); + + d += 16; + } + for(; n < n_samples; n++) { + in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); + in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); + in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); + in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); + d[0] = _mm_cvtss_si32(in[0]); + d[1] = _mm_cvtss_si32(in[1]); + d += 2; + } +} |