summaryrefslogtreecommitdiffstats
path: root/spa/plugins/bluez5/decode-buffer.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:28:17 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:28:17 +0000
commit7a46c07230b8d8108c0e8e80df4522d0ac116538 (patch)
treed483300dab478b994fe199a5d19d18d74153718a /spa/plugins/bluez5/decode-buffer.h
parentInitial commit. (diff)
downloadpipewire-upstream/0.3.65.tar.xz
pipewire-upstream/0.3.65.zip
Adding upstream version 0.3.65.upstream/0.3.65upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'spa/plugins/bluez5/decode-buffer.h')
-rw-r--r--spa/plugins/bluez5/decode-buffer.h486
1 files changed, 486 insertions, 0 deletions
diff --git a/spa/plugins/bluez5/decode-buffer.h b/spa/plugins/bluez5/decode-buffer.h
new file mode 100644
index 0000000..434f735
--- /dev/null
+++ b/spa/plugins/bluez5/decode-buffer.h
@@ -0,0 +1,486 @@
+/* Spa Bluez5 decode buffer
+ *
+ * Copyright © 2022 Pauli Virtanen
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file decode-buffer.h Buffering for Bluetooth sources
+ *
+ * A linear buffer, which is compacted when it gets half full.
+ *
+ * Also contains buffering logic, which calculates a rate correction
+ * factor to maintain the buffer level at the target value.
+ *
+ * Consider typical packet intervals with nominal frame duration
+ * of 10ms:
+ *
+ * ... 5ms | 5ms | 20ms | 5ms | 5ms | 20ms ...
+ *
+ * ... 3ms | 3ms | 4ms | 30ms | 3ms | 3ms | 4ms | 30ms ...
+ *
+ * plus random jitter; 10ms nominal may occasionally have 20+ms interval.
+ * The regular timer cycle cannot be aligned with this, so process()
+ * may occur at any time.
+ *
+ * The buffer level is the difference between the number of samples in
+ * buffer immediately after receiving a packet, and the samples consumed
+ * before receiving the next packet.
+ *
+ * The buffer level indicates how much any packet can be delayed without
+ * underrun. If it is positive, there are no underruns.
+ *
+ * The rate correction aims to maintain the average level at a safety margin.
+ */
+
+#ifndef SPA_BLUEZ5_DECODE_BUFFER_H
+#define SPA_BLUEZ5_DECODE_BUFFER_H
+
+#include <stdlib.h>
+#include <spa/utils/defs.h>
+#include <spa/support/log.h>
+
+#define BUFFERING_LONG_MSEC (2*60000)
+#define BUFFERING_SHORT_MSEC 1000
+#define BUFFERING_RATE_DIFF_MAX 0.005
+
+/**
+ * Safety margin.
+ *
+ * The spike is the long-window maximum difference
+ * between minimum and average buffer level.
+ */
+#define BUFFERING_TARGET(spike,packet_size) \
+ SPA_CLAMP((spike)*3/2, (packet_size), 6*(packet_size))
+
+/**
+ * Rate controller.
+ *
+ * It's here in a form, where it operates on the running average
+ * so it's compatible with the level spike determination, and
+ * clamping the rate to a range is easy. The impulse response
+ * is similar to spa_dll, and step response does not have sign changes.
+ *
+ * The controller iterates as
+ *
+ * avg(j+1) = (1 - beta) avg(j) + beta level(j)
+ * corr(j+1) = corr(j) + a [avg(j+1) - avg(j)] / duration
+ * + b [avg(j) - target] / duration
+ *
+ * with beta = duration/avg_period < 0.5 is the moving average parameter,
+ * and a = beta/3 + ..., b = beta^2/27 + ....
+ *
+ * This choice results to c(j) being low-pass filtered, and buffer level(j)
+ * converging towards target with stable damped evolution with eigenvalues
+ * real and close to each other around (1 - beta)^(1/3).
+ *
+ * Derivation:
+ *
+ * The deviation from the buffer level target evolves as
+ *
+ * delta(j) = level(j) - target
+ * delta(j+1) = delta(j) + r(j) - c(j+1)
+ *
+ * where r is samples received in one duration, and c corrected rate
+ * (samples per duration).
+ *
+ * The rate correction is in general determined by linear filter f
+ *
+ * c(j+1) = c(j) + \sum_{k=0}^\infty delta(j - k) f(k)
+ *
+ * If \sum_k f(k) is not zero, the only fixed point is c=r, delta=0,
+ * so this structure (if the filter is stable) rate matches and
+ * drives buffer level to target.
+ *
+ * The z-transform then is
+ *
+ * delta(z) = G(z) r(z)
+ * c(z) = F(z) delta(z)
+ * G(z) = (z - 1) / [(z - 1)^2 + z f(z)]
+ * F(z) = f(z) / (z - 1)
+ *
+ * We now want: poles of G(z) must be in |z|<1 for stability, F(z)
+ * should damp high frequencies, and f(z) is causal.
+ *
+ * To satisfy the conditions, take
+ *
+ * (z - 1)^2 + z f(z) = p(z) / q(z)
+ *
+ * where p(z) is polynomial with leading term z^n with wanted root
+ * structure, and q(z) is any polynomial with leading term z^{n-2}.
+ * This guarantees f(z) is causal, and G(z) = (z-1) q(z) / p(z).
+ * We can choose p(z) and q(z) to improve low-pass properties of F(z).
+ *
+ * Simplest choice is p(z)=(z-x)^2 and q(z)=1, but that gives flat
+ * high frequency response in F(z). Better choice is p(z) = (z-u)*(z-v)*(z-w)
+ * and q(z) = z - r. To make F(z) better lowpass, one can cancel
+ * a resulting 1/z pole in F(z) by setting r=u*v*w. Then,
+ *
+ * G(z) = (z - u*v*w)*(z - 1) / [(z - u)*(z - v)*(z - w)]
+ * F(z) = (a z + b - a) / (z - 1) * H(z)
+ * H(z) = beta / (z - 1 + beta)
+ * beta = 1 - u*v*w
+ * a = [(1-u) + (1-v) + (1-w) - beta] / beta
+ * b = (1-u)*(1-v)*(1-w) / beta
+ *
+ * which corresponds to iteration for c(j):
+ *
+ * avg(j+1) = (1 - beta) avg(j) + beta delta(j)
+ * c(j+1) = c(j) + a [avg(j+1) - avg(j)] + b avg(j)
+ *
+ * So the controller operates on the running average,
+ * which gives the low-pass property for c(j).
+ *
+ * The simplest filter is obtained by putting the poles at
+ * u=v=w=(1-beta)**(1/3). Since beta << 1, computing the root
+ * can be avoided by expanding in series.
+ *
+ * Overshoot in impulse response could be reduced by moving one of the
+ * poles closer to z=1, but this increases the step response time.
+ */
+struct spa_bt_rate_control
+{
+ double avg;
+ double corr;
+};
+
+static void spa_bt_rate_control_init(struct spa_bt_rate_control *this, double level)
+{
+ this->avg = level;
+ this->corr = 1.0;
+}
+
+static double spa_bt_rate_control_update(struct spa_bt_rate_control *this, double level,
+ double target, double duration, double period)
+{
+ /*
+ * u = (1 - beta)^(1/3)
+ * x = a / beta
+ * y = b / beta
+ * a = (2 + u) * (1 - u)^2 / beta
+ * b = (1 - u)^3 / beta
+ * beta -> 0
+ */
+ const double beta = SPA_CLAMP(duration / period, 0, 0.5);
+ const double x = 1.0/3;
+ const double y = beta/27;
+ double avg;
+
+ avg = beta * level + (1 - beta) * this->avg;
+ this->corr += x * (avg - this->avg) / period
+ + y * (this->avg - target) / period;
+ this->avg = avg;
+
+ this->corr = SPA_CLAMP(this->corr,
+ 1 - BUFFERING_RATE_DIFF_MAX,
+ 1 + BUFFERING_RATE_DIFF_MAX);
+
+ return this->corr;
+}
+
+
+/** Windowed min/max */
+struct spa_bt_ptp
+{
+ union {
+ int32_t min;
+ int32_t mins[4];
+ };
+ union {
+ int32_t max;
+ int32_t maxs[4];
+ };
+ uint32_t pos;
+ uint32_t period;
+};
+
+struct spa_bt_decode_buffer
+{
+ struct spa_log *log;
+
+ uint32_t frame_size;
+ uint32_t rate;
+
+ uint8_t *buffer_decoded;
+ uint32_t buffer_size;
+ uint32_t buffer_reserve;
+ uint32_t write_index;
+ uint32_t read_index;
+
+ struct spa_bt_ptp spike; /**< spikes (long window) */
+ struct spa_bt_ptp packet_size; /**< packet size (short window) */
+
+ struct spa_bt_rate_control ctl;
+ double corr;
+
+ uint32_t prev_consumed;
+ uint32_t prev_avail;
+ uint32_t prev_duration;
+ uint32_t underrun;
+ uint32_t pos;
+
+ uint8_t received:1;
+ uint8_t buffering:1;
+};
+
+static void spa_bt_ptp_init(struct spa_bt_ptp *p, int32_t period)
+{
+ size_t i;
+
+ spa_zero(*p);
+ for (i = 0; i < SPA_N_ELEMENTS(p->mins); ++i) {
+ p->mins[i] = INT32_MAX;
+ p->maxs[i] = INT32_MIN;
+ }
+ p->period = period;
+}
+
+static void spa_bt_ptp_update(struct spa_bt_ptp *p, int32_t value, uint32_t duration)
+{
+ const size_t n = SPA_N_ELEMENTS(p->mins);
+ size_t i;
+
+ for (i = 0; i < n; ++i) {
+ p->mins[i] = SPA_MIN(p->mins[i], value);
+ p->maxs[i] = SPA_MAX(p->maxs[i], value);
+ }
+
+ p->pos += duration;
+ if (p->pos >= p->period / (n - 1)) {
+ p->pos = 0;
+ for (i = 1; i < SPA_N_ELEMENTS(p->mins); ++i) {
+ p->mins[i-1] = p->mins[i];
+ p->maxs[i-1] = p->maxs[i];
+ }
+ p->mins[n-1] = INT32_MAX;
+ p->maxs[n-1] = INT32_MIN;
+ }
+}
+
+static int spa_bt_decode_buffer_init(struct spa_bt_decode_buffer *this, struct spa_log *log,
+ uint32_t frame_size, uint32_t rate, uint32_t quantum_limit, uint32_t reserve)
+{
+ spa_zero(*this);
+ this->frame_size = frame_size;
+ this->rate = rate;
+ this->log = log;
+ this->buffer_reserve = this->frame_size * reserve;
+ this->buffer_size = this->frame_size * quantum_limit * 2;
+ this->buffer_size += this->buffer_reserve;
+ this->corr = 1.0;
+ this->buffering = true;
+
+ spa_bt_rate_control_init(&this->ctl, 0);
+
+ spa_bt_ptp_init(&this->spike, (uint64_t)this->rate * BUFFERING_LONG_MSEC / 1000);
+ spa_bt_ptp_init(&this->packet_size, (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000);
+
+ if ((this->buffer_decoded = malloc(this->buffer_size)) == NULL) {
+ this->buffer_size = 0;
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void spa_bt_decode_buffer_clear(struct spa_bt_decode_buffer *this)
+{
+ free(this->buffer_decoded);
+ spa_zero(*this);
+}
+
+static void spa_bt_decode_buffer_compact(struct spa_bt_decode_buffer *this)
+{
+ uint32_t avail;
+
+ spa_assert(this->read_index <= this->write_index);
+
+ if (this->read_index == this->write_index) {
+ this->read_index = 0;
+ this->write_index = 0;
+ goto done;
+ }
+
+ if (this->write_index > this->read_index + this->buffer_size - this->buffer_reserve) {
+ /* Drop data to keep buffer reserve free */
+ spa_log_info(this->log, "%p buffer overrun: dropping data", this);
+ this->read_index = this->write_index + this->buffer_reserve - this->buffer_size;
+ }
+
+ if (this->write_index < (this->buffer_size - this->buffer_reserve) / 2
+ || this->read_index == 0)
+ goto done;
+
+ avail = this->write_index - this->read_index;
+ spa_memmove(this->buffer_decoded,
+ SPA_PTROFF(this->buffer_decoded, this->read_index, void),
+ avail);
+ this->read_index = 0;
+ this->write_index = avail;
+
+done:
+ spa_assert(this->buffer_size - this->write_index >= this->buffer_reserve);
+}
+
+static void *spa_bt_decode_buffer_get_write(struct spa_bt_decode_buffer *this, uint32_t *avail)
+{
+ spa_bt_decode_buffer_compact(this);
+ spa_assert(this->buffer_size >= this->write_index);
+ *avail = this->buffer_size - this->write_index;
+ return SPA_PTROFF(this->buffer_decoded, this->write_index, void);
+}
+
+static void spa_bt_decode_buffer_write_packet(struct spa_bt_decode_buffer *this, uint32_t size)
+{
+ spa_assert(size % this->frame_size == 0);
+ this->write_index += size;
+ this->received = true;
+ spa_bt_ptp_update(&this->packet_size, size / this->frame_size, size / this->frame_size);
+}
+
+static void *spa_bt_decode_buffer_get_read(struct spa_bt_decode_buffer *this, uint32_t *avail)
+{
+ spa_assert(this->write_index >= this->read_index);
+ if (!this->buffering)
+ *avail = this->write_index - this->read_index;
+ else
+ *avail = 0;
+ return SPA_PTROFF(this->buffer_decoded, this->read_index, void);
+}
+
+static void spa_bt_decode_buffer_read(struct spa_bt_decode_buffer *this, uint32_t size)
+{
+ spa_assert(size % this->frame_size == 0);
+ this->read_index += size;
+}
+
+static void spa_bt_decode_buffer_recover(struct spa_bt_decode_buffer *this)
+{
+ int32_t size = (this->write_index - this->read_index) / this->frame_size;
+ int32_t level;
+
+ this->prev_avail = size * this->frame_size;
+ this->prev_consumed = this->prev_duration;
+
+ level = (int32_t)this->prev_avail/this->frame_size
+ - (int32_t)this->prev_duration;
+ this->corr = 1.0;
+
+ spa_bt_rate_control_init(&this->ctl, level);
+}
+
+static void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint32_t samples, uint32_t duration)
+{
+ const uint32_t data_size = samples * this->frame_size;
+ const int32_t packet_size = SPA_CLAMP(this->packet_size.max, 0, INT32_MAX/8);
+ const int32_t max_level = SPA_MAX(8 * packet_size, (int32_t)duration);
+ uint32_t avail;
+
+ if (SPA_UNLIKELY(duration != this->prev_duration)) {
+ this->prev_duration = duration;
+ spa_bt_decode_buffer_recover(this);
+ }
+
+ if (SPA_UNLIKELY(this->buffering)) {
+ int32_t size = (this->write_index - this->read_index) / this->frame_size;
+
+ this->corr = 1.0;
+
+ spa_log_trace(this->log, "%p buffering size:%d", this, (int)size);
+
+ if (this->received &&
+ packet_size > 0 &&
+ size >= SPA_MAX(3*packet_size, (int32_t)duration))
+ this->buffering = false;
+ else
+ return;
+
+ spa_bt_decode_buffer_recover(this);
+ }
+
+ spa_bt_decode_buffer_get_read(this, &avail);
+
+ if (this->received) {
+ const uint32_t avg_period = (uint64_t)this->rate * BUFFERING_SHORT_MSEC / 1000;
+ int32_t level, target;
+
+ /* Track buffer level */
+ level = (int32_t)(this->prev_avail/this->frame_size) - (int32_t)this->prev_consumed;
+ level = SPA_MAX(level, -max_level);
+ this->prev_consumed = SPA_MIN(this->prev_consumed, avg_period);
+
+ spa_bt_ptp_update(&this->spike, this->ctl.avg - level, this->prev_consumed);
+
+ /* Update target level */
+ target = BUFFERING_TARGET(this->spike.max, packet_size);
+
+ if (level > SPA_MAX(4 * target, 2*(int32_t)duration) &&
+ avail > data_size) {
+ /* Lagging too much: drop data */
+ uint32_t size = SPA_MIN(avail - data_size,
+ (level - target*5/2) * this->frame_size);
+
+ spa_bt_decode_buffer_read(this, size);
+ spa_log_trace(this->log, "%p overrun samples:%d level:%d target:%d",
+ this, (int)size/this->frame_size,
+ (int)level, (int)target);
+
+ spa_bt_decode_buffer_recover(this);
+ }
+
+ this->pos += this->prev_consumed;
+ if (this->pos > this->rate) {
+ spa_log_debug(this->log,
+ "%p avg:%d target:%d level:%d buffer:%d spike:%d corr:%f",
+ this,
+ (int)this->ctl.avg,
+ (int)target,
+ (int)level,
+ (int)(avail / this->frame_size),
+ (int)this->spike.max,
+ (double)this->corr);
+ this->pos = 0;
+ }
+
+ this->corr = spa_bt_rate_control_update(&this->ctl,
+ level, target, this->prev_consumed, avg_period);
+
+ spa_bt_decode_buffer_get_read(this, &avail);
+
+ this->prev_consumed = 0;
+ this->prev_avail = avail;
+ this->underrun = 0;
+ this->received = false;
+ }
+
+ if (avail < data_size) {
+ spa_log_trace(this->log, "%p underrun samples:%d", this,
+ (data_size - avail) / this->frame_size);
+ this->underrun += samples;
+ if (this->underrun >= SPA_MIN((uint32_t)max_level, this->buffer_size / this->frame_size)) {
+ this->buffering = true;
+ spa_log_debug(this->log, "%p underrun too much: start buffering", this);
+ }
+ }
+
+ this->prev_consumed += samples;
+}
+
+#endif