summaryrefslogtreecommitdiffstats
path: root/spa/plugins/audioconvert/fmt-ops-sse2.c
diff options
context:
space:
mode:
Diffstat (limited to 'spa/plugins/audioconvert/fmt-ops-sse2.c')
-rw-r--r--spa/plugins/audioconvert/fmt-ops-sse2.c1438
1 files changed, 1438 insertions, 0 deletions
diff --git a/spa/plugins/audioconvert/fmt-ops-sse2.c b/spa/plugins/audioconvert/fmt-ops-sse2.c
new file mode 100644
index 0000000..4e2fce7
--- /dev/null
+++ b/spa/plugins/audioconvert/fmt-ops-sse2.c
@@ -0,0 +1,1438 @@
+/* Spa
+ *
+ * Copyright © 2018 Wim Taymans
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "fmt-ops.h"
+
+#include <emmintrin.h>
+
+#define _MM_CLAMP_PS(r,min,max) \
+ _mm_min_ps(_mm_max_ps(r, min), max)
+
+#define _MM_CLAMP_SS(r,min,max) \
+ _mm_min_ss(_mm_max_ss(r, min), max)
+
+static void
+conv_s16_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int16_t *s = src;
+ float *d0 = dst[0];
+ uint32_t n, unrolled;
+ __m128i in = _mm_setzero_si128();
+ __m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
+
+ if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16)))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in = _mm_insert_epi16(in, s[0*n_channels], 1);
+ in = _mm_insert_epi16(in, s[1*n_channels], 3);
+ in = _mm_insert_epi16(in, s[2*n_channels], 5);
+ in = _mm_insert_epi16(in, s[3*n_channels], 7);
+ in = _mm_srai_epi32(in, 16);
+ out = _mm_cvtepi32_ps(in);
+ out = _mm_mul_ps(out, factor);
+ _mm_store_ps(&d0[n], out);
+ s += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out = _mm_cvtsi32_ss(factor, s[0]);
+ out = _mm_mul_ss(out, factor);
+ _mm_store_ss(&d0[n], out);
+ s += n_channels;
+ }
+}
+
+void
+conv_s16_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const int16_t *s = src[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i < n_channels; i++)
+ conv_s16_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+}
+
+void
+conv_s16_to_f32d_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const int16_t *s = src[0];
+ float *d0 = dst[0], *d1 = dst[1];
+ uint32_t n, unrolled;
+ __m128i in[2], t[4];
+ __m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE);
+
+ if (SPA_IS_ALIGNED(s, 16) &&
+ SPA_IS_ALIGNED(d0, 16) &&
+ SPA_IS_ALIGNED(d1, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_load_si128((__m128i*)(s + 0));
+ in[1] = _mm_load_si128((__m128i*)(s + 8));
+
+ t[0] = _mm_slli_epi32(in[0], 16);
+ t[0] = _mm_srai_epi32(t[0], 16);
+ out[0] = _mm_cvtepi32_ps(t[0]);
+ out[0] = _mm_mul_ps(out[0], factor);
+
+ t[1] = _mm_srai_epi32(in[0], 16);
+ out[1] = _mm_cvtepi32_ps(t[1]);
+ out[1] = _mm_mul_ps(out[1], factor);
+
+ t[2] = _mm_slli_epi32(in[1], 16);
+ t[2] = _mm_srai_epi32(t[2], 16);
+ out[2] = _mm_cvtepi32_ps(t[2]);
+ out[2] = _mm_mul_ps(out[2], factor);
+
+ t[3] = _mm_srai_epi32(in[1], 16);
+ out[3] = _mm_cvtepi32_ps(t[3]);
+ out[3] = _mm_mul_ps(out[3], factor);
+
+ _mm_store_ps(&d0[n + 0], out[0]);
+ _mm_store_ps(&d1[n + 0], out[1]);
+ _mm_store_ps(&d0[n + 4], out[2]);
+ _mm_store_ps(&d1[n + 4], out[3]);
+
+ s += 16;
+ }
+ for(; n < n_samples; n++) {
+ out[0] = _mm_cvtsi32_ss(factor, s[0]);
+ out[0] = _mm_mul_ss(out[0], factor);
+ out[1] = _mm_cvtsi32_ss(factor, s[1]);
+ out[1] = _mm_mul_ss(out[1], factor);
+ _mm_store_ss(&d0[n], out[0]);
+ _mm_store_ss(&d1[n], out[1]);
+ s += 2;
+ }
+}
+
+void
+conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int24_t *s = src;
+ float *d0 = dst[0];
+ uint32_t n, unrolled;
+ __m128i in;
+ __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
+
+ if (SPA_IS_ALIGNED(d0, 16) && n_samples > 0) {
+ unrolled = n_samples & ~3;
+ if ((n_samples & 3) == 0)
+ unrolled -= 4;
+ }
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in = _mm_setr_epi32(
+ *((uint32_t*)&s[0 * n_channels]),
+ *((uint32_t*)&s[1 * n_channels]),
+ *((uint32_t*)&s[2 * n_channels]),
+ *((uint32_t*)&s[3 * n_channels]));
+ in = _mm_slli_epi32(in, 8);
+ in = _mm_srai_epi32(in, 8);
+ out = _mm_cvtepi32_ps(in);
+ out = _mm_mul_ps(out, factor);
+ _mm_store_ps(&d0[n], out);
+ s += 4 * n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
+ out = _mm_mul_ss(out, factor);
+ _mm_store_ss(&d0[n], out);
+ s += n_channels;
+ }
+}
+
+static void
+conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int24_t *s = src;
+ float *d0 = dst[0], *d1 = dst[1];
+ uint32_t n, unrolled;
+ __m128i in[2];
+ __m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE);
+
+ if (SPA_IS_ALIGNED(d0, 16) &&
+ SPA_IS_ALIGNED(d1, 16) &&
+ n_samples > 0) {
+ unrolled = n_samples & ~3;
+ if ((n_samples & 3) == 0)
+ unrolled -= 4;
+ }
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_setr_epi32(
+ *((uint32_t*)&s[0 + 0*n_channels]),
+ *((uint32_t*)&s[0 + 1*n_channels]),
+ *((uint32_t*)&s[0 + 2*n_channels]),
+ *((uint32_t*)&s[0 + 3*n_channels]));
+ in[1] = _mm_setr_epi32(
+ *((uint32_t*)&s[1 + 0*n_channels]),
+ *((uint32_t*)&s[1 + 1*n_channels]),
+ *((uint32_t*)&s[1 + 2*n_channels]),
+ *((uint32_t*)&s[1 + 3*n_channels]));
+
+ in[0] = _mm_slli_epi32(in[0], 8);
+ in[1] = _mm_slli_epi32(in[1], 8);
+
+ in[0] = _mm_srai_epi32(in[0], 8);
+ in[1] = _mm_srai_epi32(in[1], 8);
+
+ out[0] = _mm_cvtepi32_ps(in[0]);
+ out[1] = _mm_cvtepi32_ps(in[1]);
+
+ out[0] = _mm_mul_ps(out[0], factor);
+ out[1] = _mm_mul_ps(out[1], factor);
+
+ _mm_store_ps(&d0[n], out[0]);
+ _mm_store_ps(&d1[n], out[1]);
+
+ s += 4 * n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
+ out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
+ out[0] = _mm_mul_ss(out[0], factor);
+ out[1] = _mm_mul_ss(out[1], factor);
+ _mm_store_ss(&d0[n], out[0]);
+ _mm_store_ss(&d1[n], out[1]);
+ s += n_channels;
+ }
+}
+static void
+conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int24_t *s = src;
+ float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
+ uint32_t n, unrolled;
+ __m128i in[4];
+ __m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
+
+ if (SPA_IS_ALIGNED(d0, 16) &&
+ SPA_IS_ALIGNED(d1, 16) &&
+ SPA_IS_ALIGNED(d2, 16) &&
+ SPA_IS_ALIGNED(d3, 16) &&
+ n_samples > 0) {
+ unrolled = n_samples & ~3;
+ if ((n_samples & 3) == 0)
+ unrolled -= 4;
+ }
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_setr_epi32(
+ *((uint32_t*)&s[0 + 0*n_channels]),
+ *((uint32_t*)&s[0 + 1*n_channels]),
+ *((uint32_t*)&s[0 + 2*n_channels]),
+ *((uint32_t*)&s[0 + 3*n_channels]));
+ in[1] = _mm_setr_epi32(
+ *((uint32_t*)&s[1 + 0*n_channels]),
+ *((uint32_t*)&s[1 + 1*n_channels]),
+ *((uint32_t*)&s[1 + 2*n_channels]),
+ *((uint32_t*)&s[1 + 3*n_channels]));
+ in[2] = _mm_setr_epi32(
+ *((uint32_t*)&s[2 + 0*n_channels]),
+ *((uint32_t*)&s[2 + 1*n_channels]),
+ *((uint32_t*)&s[2 + 2*n_channels]),
+ *((uint32_t*)&s[2 + 3*n_channels]));
+ in[3] = _mm_setr_epi32(
+ *((uint32_t*)&s[3 + 0*n_channels]),
+ *((uint32_t*)&s[3 + 1*n_channels]),
+ *((uint32_t*)&s[3 + 2*n_channels]),
+ *((uint32_t*)&s[3 + 3*n_channels]));
+
+ in[0] = _mm_slli_epi32(in[0], 8);
+ in[1] = _mm_slli_epi32(in[1], 8);
+ in[2] = _mm_slli_epi32(in[2], 8);
+ in[3] = _mm_slli_epi32(in[3], 8);
+
+ in[0] = _mm_srai_epi32(in[0], 8);
+ in[1] = _mm_srai_epi32(in[1], 8);
+ in[2] = _mm_srai_epi32(in[2], 8);
+ in[3] = _mm_srai_epi32(in[3], 8);
+
+ out[0] = _mm_cvtepi32_ps(in[0]);
+ out[1] = _mm_cvtepi32_ps(in[1]);
+ out[2] = _mm_cvtepi32_ps(in[2]);
+ out[3] = _mm_cvtepi32_ps(in[3]);
+
+ out[0] = _mm_mul_ps(out[0], factor);
+ out[1] = _mm_mul_ps(out[1], factor);
+ out[2] = _mm_mul_ps(out[2], factor);
+ out[3] = _mm_mul_ps(out[3], factor);
+
+ _mm_store_ps(&d0[n], out[0]);
+ _mm_store_ps(&d1[n], out[1]);
+ _mm_store_ps(&d2[n], out[2]);
+ _mm_store_ps(&d3[n], out[3]);
+
+ s += 4 * n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
+ out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
+ out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2)));
+ out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3)));
+ out[0] = _mm_mul_ss(out[0], factor);
+ out[1] = _mm_mul_ss(out[1], factor);
+ out[2] = _mm_mul_ss(out[2], factor);
+ out[3] = _mm_mul_ss(out[3], factor);
+ _mm_store_ss(&d0[n], out[0]);
+ _mm_store_ss(&d1[n], out[1]);
+ _mm_store_ss(&d2[n], out[2]);
+ _mm_store_ss(&d3[n], out[3]);
+ s += n_channels;
+ }
+}
+
+void
+conv_s24_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const int8_t *s = src[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_s24_to_f32d_4s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
+ for(; i + 1 < n_channels; i += 2)
+ conv_s24_to_f32d_2s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
+}
+
+
+void
+conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int32_t *s = src;
+ float *d0 = dst[0];
+ uint32_t n, unrolled;
+ __m128i in;
+ __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
+
+ if (SPA_IS_ALIGNED(d0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in = _mm_setr_epi32(s[0*n_channels],
+ s[1*n_channels],
+ s[2*n_channels],
+ s[3*n_channels]);
+ in = _mm_srai_epi32(in, 8);
+ out = _mm_cvtepi32_ps(in);
+ out = _mm_mul_ps(out, factor);
+ _mm_store_ps(&d0[n], out);
+ s += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out = _mm_cvtsi32_ss(factor, s[0]>>8);
+ out = _mm_mul_ss(out, factor);
+ _mm_store_ss(&d0[n], out);
+ s += n_channels;
+ }
+}
+
+void
+conv_s32_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const int32_t *s = src[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i < n_channels; i++)
+ conv_s32_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+}
+
+static void
+conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0];
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[1];
+ __m128i out[4];
+ __m128 scale = _mm_set1_ps(S24_SCALE);
+ __m128 int_min = _mm_set1_ps(S24_MIN);
+ __m128 int_max = _mm_set1_ps(S24_MAX);
+
+ if (SPA_IS_ALIGNED(s0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
+ out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
+ out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
+
+ d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
+ d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
+ d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
+ d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_load_ss(&s0[n]);
+ in[0] = _mm_mul_ss(in[0], scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ *d = _mm_cvtss_si32(in[0]) << 8;
+ d += n_channels;
+ }
+}
+
+static void
+conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1];
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[2], t[2];
+ __m128 scale = _mm_set1_ps(S24_SCALE);
+ __m128 int_min = _mm_set1_ps(S24_MIN);
+ __m128 int_max = _mm_set1_ps(S24_MAX);
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
+
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ in[1] = _MM_CLAMP_PS(in[1], int_min, int_max);
+
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ out[1] = _mm_slli_epi32(out[1], 8);
+
+ t[0] = _mm_unpacklo_epi32(out[0], out[1]);
+ t[1] = _mm_unpackhi_epi32(out[0], out[1]);
+
+ _mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]);
+ _mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]);
+ _mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]);
+ _mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_load_ss(&s0[n]);
+ in[1] = _mm_load_ss(&s1[n]);
+
+ in[0] = _mm_unpacklo_ps(in[0], in[1]);
+
+ in[0] = _mm_mul_ps(in[0], scale);
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ _mm_storel_epi64((__m128i*)d, out[0]);
+ d += n_channels;
+ }
+}
+
+static void
+conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[4];
+ __m128i out[4];
+ __m128 scale = _mm_set1_ps(S24_SCALE);
+ __m128 int_min = _mm_set1_ps(S24_MIN);
+ __m128 int_max = _mm_set1_ps(S24_MAX);
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16) &&
+ SPA_IS_ALIGNED(s2, 16) &&
+ SPA_IS_ALIGNED(s3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
+ in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale);
+ in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale);
+
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ in[1] = _MM_CLAMP_PS(in[1], int_min, int_max);
+ in[2] = _MM_CLAMP_PS(in[2], int_min, int_max);
+ in[3] = _MM_CLAMP_PS(in[3], int_min, int_max);
+
+ _MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]);
+
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[2] = _mm_cvtps_epi32(in[2]);
+ out[3] = _mm_cvtps_epi32(in[3]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ out[1] = _mm_slli_epi32(out[1], 8);
+ out[2] = _mm_slli_epi32(out[2], 8);
+ out[3] = _mm_slli_epi32(out[3], 8);
+
+ _mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]);
+ _mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]);
+ _mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]);
+ _mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_load_ss(&s0[n]);
+ in[1] = _mm_load_ss(&s1[n]);
+ in[2] = _mm_load_ss(&s2[n]);
+ in[3] = _mm_load_ss(&s3[n]);
+
+ in[0] = _mm_unpacklo_ps(in[0], in[2]);
+ in[1] = _mm_unpacklo_ps(in[1], in[3]);
+ in[0] = _mm_unpacklo_ps(in[0], in[1]);
+
+ in[0] = _mm_mul_ps(in[0], scale);
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ _mm_storeu_si128((__m128i*)d, out[0]);
+ d += n_channels;
+ }
+}
+
+void
+conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int32_t *d = dst[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_f32d_to_s32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i + 1 < n_channels; i += 2)
+ conv_f32d_to_s32_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+}
+
+/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
+#define _MM_XORSHIFT_EPI32(r) \
+({ \
+ __m128i i, t; \
+ i = _mm_load_si128((__m128i*)r); \
+ t = _mm_slli_epi32(i, 13); \
+ i = _mm_xor_si128(i, t); \
+ t = _mm_srli_epi32(i, 17); \
+ i = _mm_xor_si128(i, t); \
+ t = _mm_slli_epi32(i, 5); \
+ i = _mm_xor_si128(i, t); \
+ _mm_store_si128((__m128i*)r, i); \
+ i; \
+})
+
+void conv_noise_rect_sse2(struct convert *conv, float *noise, uint32_t n_samples)
+{
+ uint32_t n;
+ const uint32_t *r = conv->random;
+ __m128 scale = _mm_set1_ps(conv->scale);
+ __m128i in[1];
+ __m128 out[1];
+
+ for (n = 0; n < n_samples; n += 4) {
+ in[0] = _MM_XORSHIFT_EPI32(r);
+ out[0] = _mm_cvtepi32_ps(in[0]);
+ out[0] = _mm_mul_ps(out[0], scale);
+ _mm_store_ps(&noise[n], out[0]);
+ }
+}
+
+void conv_noise_tri_sse2(struct convert *conv, float *noise, uint32_t n_samples)
+{
+ uint32_t n;
+ const uint32_t *r = conv->random;
+ __m128 scale = _mm_set1_ps(conv->scale);
+ __m128i in[1];
+ __m128 out[1];
+
+ for (n = 0; n < n_samples; n += 4) {
+ in[0] = _mm_sub_epi32( _MM_XORSHIFT_EPI32(r), _MM_XORSHIFT_EPI32(r));
+ out[0] = _mm_cvtepi32_ps(in[0]);
+ out[0] = _mm_mul_ps(out[0], scale);
+ _mm_store_ps(&noise[n], out[0]);
+ }
+}
+
+void conv_noise_tri_hf_sse2(struct convert *conv, float *noise, uint32_t n_samples)
+{
+ uint32_t n;
+ int32_t *p = conv->prev;
+ const uint32_t *r = conv->random;
+ __m128 scale = _mm_set1_ps(conv->scale);
+ __m128i in[1], old[1], new[1];
+ __m128 out[1];
+
+ old[0] = _mm_load_si128((__m128i*)p);
+ for (n = 0; n < n_samples; n += 4) {
+ new[0] = _MM_XORSHIFT_EPI32(r);
+ in[0] = _mm_sub_epi32(old[0], new[0]);
+ old[0] = new[0];
+ out[0] = _mm_cvtepi32_ps(in[0]);
+ out[0] = _mm_mul_ps(out[0], scale);
+ _mm_store_ps(&noise[n], out[0]);
+ }
+ _mm_store_si128((__m128i*)p, old[0]);
+}
+
+static void
+conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
+ float *noise, uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s = src;
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[1];
+ __m128i out[4];
+ __m128 scale = _mm_set1_ps(S24_SCALE);
+ __m128 int_min = _mm_set1_ps(S24_MIN);
+ __m128 int_max = _mm_set1_ps(S24_MAX);
+
+ if (SPA_IS_ALIGNED(s, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), scale);
+ in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
+ in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[0] = _mm_slli_epi32(out[0], 8);
+ out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
+ out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
+ out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
+
+ d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
+ d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
+ d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
+ d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_load_ss(&s[n]);
+ in[0] = _mm_mul_ss(in[0], scale);
+ in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ *d = _mm_cvtss_si32(in[0]) << 8;
+ d += n_channels;
+ }
+}
+
+void
+conv_f32d_to_s32_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int32_t *d = dst[0];
+ uint32_t i, k, chunk, n_channels = conv->n_channels;
+ float *noise = conv->noise;
+
+ convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
+
+ for(i = 0; i < n_channels; i++) {
+ const float *s = src[i];
+ for(k = 0; k < n_samples; k += chunk) {
+ chunk = SPA_MIN(n_samples - k, conv->noise_size);
+ conv_f32d_to_s32_1s_noise_sse2(conv, &d[i + k*n_channels],
+ &s[k], noise, n_channels, chunk);
+ }
+ }
+}
+
+static void
+conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int32_t *s0 = src[0];
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128i out[4];
+
+ if (SPA_IS_ALIGNED(s0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_load_si128((__m128i*)&s0[n]);
+ out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
+ out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
+ out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
+
+ d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
+ d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
+ d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
+ d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ *d = s0[n];
+ d += n_channels;
+ }
+}
+static void
+conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
+ float *d = dst;
+ uint32_t n, unrolled;
+ __m128 out[4];
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16) &&
+ SPA_IS_ALIGNED(s2, 16) &&
+ SPA_IS_ALIGNED(s3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_load_ps(&s0[n]);
+ out[1] = _mm_load_ps(&s1[n]);
+ out[2] = _mm_load_ps(&s2[n]);
+ out[3] = _mm_load_ps(&s3[n]);
+
+ _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
+
+ _mm_storeu_ps((d + 0*n_channels), out[0]);
+ _mm_storeu_ps((d + 1*n_channels), out[1]);
+ _mm_storeu_ps((d + 2*n_channels), out[2]);
+ _mm_storeu_ps((d + 3*n_channels), out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
+ _mm_storeu_ps(d, out[0]);
+ d += n_channels;
+ }
+}
+
+void
+conv_32d_to_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int32_t *d = dst[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+}
+
+#define _MM_BSWAP_EPI32(x) \
+({ \
+ __m128i a = _mm_or_si128( \
+ _mm_slli_epi16(x, 8), \
+ _mm_srli_epi16(x, 8)); \
+ a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
+ a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
+})
+
+static void
+conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const int32_t *s0 = src[0];
+ int32_t *d = dst;
+ uint32_t n, unrolled;
+ __m128i out[4];
+
+ if (SPA_IS_ALIGNED(s0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_load_si128((__m128i*)&s0[n]);
+ out[0] = _MM_BSWAP_EPI32(out[0]);
+ out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
+ out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
+ out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
+
+ d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
+ d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
+ d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
+ d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ *d = bswap_32(s0[n]);
+ d += n_channels;
+ }
+}
+static void
+conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
+ float *d = dst;
+ uint32_t n, unrolled;
+ __m128 out[4];
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16) &&
+ SPA_IS_ALIGNED(s2, 16) &&
+ SPA_IS_ALIGNED(s3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_load_ps(&s0[n]);
+ out[1] = _mm_load_ps(&s1[n]);
+ out[2] = _mm_load_ps(&s2[n]);
+ out[3] = _mm_load_ps(&s3[n]);
+
+ _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
+
+ out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
+ out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
+ out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
+ out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
+
+ _mm_storeu_ps(&d[0*n_channels], out[0]);
+ _mm_storeu_ps(&d[1*n_channels], out[1]);
+ _mm_storeu_ps(&d[2*n_channels], out[2]);
+ _mm_storeu_ps(&d[3*n_channels], out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
+ out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
+ _mm_storeu_ps(d, out[0]);
+ d += n_channels;
+ }
+}
+
+void
+conv_32d_to_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int32_t *d = dst[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+}
+
+static void
+conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s = src;
+ float *d0 = dst[0];
+ uint32_t n, unrolled;
+ __m128 out;
+
+ if (SPA_IS_ALIGNED(d0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out = _mm_setr_ps(s[0*n_channels],
+ s[1*n_channels],
+ s[2*n_channels],
+ s[3*n_channels]);
+ _mm_store_ps(&d0[n], out);
+ s += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ d0[n] = *s;
+ s += n_channels;
+ }
+}
+
+static void
+conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s = src;
+ float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
+ uint32_t n, unrolled;
+ __m128 out[4];
+
+ if (SPA_IS_ALIGNED(d0, 16) &&
+ SPA_IS_ALIGNED(d1, 16) &&
+ SPA_IS_ALIGNED(d2, 16) &&
+ SPA_IS_ALIGNED(d3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_loadu_ps(&s[0 * n_channels]);
+ out[1] = _mm_loadu_ps(&s[1 * n_channels]);
+ out[2] = _mm_loadu_ps(&s[2 * n_channels]);
+ out[3] = _mm_loadu_ps(&s[3 * n_channels]);
+
+ _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
+
+ _mm_store_ps(&d0[n], out[0]);
+ _mm_store_ps(&d1[n], out[1]);
+ _mm_store_ps(&d2[n], out[2]);
+ _mm_store_ps(&d3[n], out[3]);
+ s += 4 * n_channels;
+ }
+ for(; n < n_samples; n++) {
+ d0[n] = s[0];
+ d1[n] = s[1];
+ d2[n] = s[2];
+ d3[n] = s[3];
+ s += n_channels;
+ }
+}
+
+void
+conv_32_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const float *s = src[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+}
+
+static void
+conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s = src;
+ float *d0 = dst[0];
+ uint32_t n, unrolled;
+ __m128 out;
+
+ if (SPA_IS_ALIGNED(d0, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out = _mm_setr_ps(s[0*n_channels],
+ s[1*n_channels],
+ s[2*n_channels],
+ s[3*n_channels]);
+ out = (__m128) _MM_BSWAP_EPI32((__m128i)out);
+ _mm_store_ps(&d0[n], out);
+ s += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ d0[n] = bswap_32(*s);
+ s += n_channels;
+ }
+}
+
+static void
+conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s = src;
+ float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
+ uint32_t n, unrolled;
+ __m128 out[4];
+
+ if (SPA_IS_ALIGNED(d0, 16) &&
+ SPA_IS_ALIGNED(d1, 16) &&
+ SPA_IS_ALIGNED(d2, 16) &&
+ SPA_IS_ALIGNED(d3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ out[0] = _mm_loadu_ps(&s[0 * n_channels]);
+ out[1] = _mm_loadu_ps(&s[1 * n_channels]);
+ out[2] = _mm_loadu_ps(&s[2 * n_channels]);
+ out[3] = _mm_loadu_ps(&s[3 * n_channels]);
+
+ _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
+
+ out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
+ out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
+ out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
+ out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
+
+ _mm_store_ps(&d0[n], out[0]);
+ _mm_store_ps(&d1[n], out[1]);
+ _mm_store_ps(&d2[n], out[2]);
+ _mm_store_ps(&d3[n], out[3]);
+ s += 4 * n_channels;
+ }
+ for(; n < n_samples; n++) {
+ d0[n] = bswap_32(s[0]);
+ d1[n] = bswap_32(s[1]);
+ d2[n] = bswap_32(s[2]);
+ d3[n] = bswap_32(s[3]);
+ s += n_channels;
+ }
+}
+
+void
+conv_32s_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const float *s = src[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
+}
+
+static void
+conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
+ uint32_t n_samples)
+{
+ const float *s = src;
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[2];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[0] = _mm_packs_epi32(out[0], out[1]);
+ _mm_storeu_si128((__m128i*)(d+0), out[0]);
+ d += 8;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ *d++ = _mm_cvtss_si32(in[0]);
+ }
+}
+
+void
+conv_f32d_to_s16d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ uint32_t i, n_channels = conv->n_channels;
+ for(i = 0; i < n_channels; i++)
+ conv_f32_to_s16_1_sse2(conv, dst[i], src[i], n_samples);
+}
+
+void
+conv_f32_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ conv_f32_to_s16_1_sse2(conv, dst[0], src[0], n_samples * conv->n_channels);
+}
+
+static void
+conv_f32d_to_s16_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0];
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[2];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s0, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[0] = _mm_packs_epi32(out[0], out[1]);
+
+ d[0*n_channels] = _mm_extract_epi16(out[0], 0);
+ d[1*n_channels] = _mm_extract_epi16(out[0], 1);
+ d[2*n_channels] = _mm_extract_epi16(out[0], 2);
+ d[3*n_channels] = _mm_extract_epi16(out[0], 3);
+ d[4*n_channels] = _mm_extract_epi16(out[0], 4);
+ d[5*n_channels] = _mm_extract_epi16(out[0], 5);
+ d[6*n_channels] = _mm_extract_epi16(out[0], 6);
+ d[7*n_channels] = _mm_extract_epi16(out[0], 7);
+ d += 8*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ *d = _mm_cvtss_si32(in[0]);
+ d += n_channels;
+ }
+}
+
+static void
+conv_f32d_to_s16_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1];
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[4], t[2];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale);
+
+ t[0] = _mm_cvtps_epi32(in[0]);
+ t[1] = _mm_cvtps_epi32(in[1]);
+
+ t[0] = _mm_packs_epi32(t[0], t[0]);
+ t[1] = _mm_packs_epi32(t[1], t[1]);
+
+ out[0] = _mm_unpacklo_epi16(t[0], t[1]);
+ out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
+ out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
+ out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
+
+ *((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]);
+ *((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]);
+ *((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]);
+ *((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]);
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
+ in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
+ d[0] = _mm_cvtss_si32(in[0]);
+ d[1] = _mm_cvtss_si32(in[1]);
+ d += n_channels;
+ }
+}
+
+static void
+conv_f32d_to_s16_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
+ uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[4];
+ __m128i out[4], t[4];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16) &&
+ SPA_IS_ALIGNED(s2, 16) &&
+ SPA_IS_ALIGNED(s3, 16))
+ unrolled = n_samples & ~3;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 4) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale);
+ in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_scale);
+ in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_scale);
+
+ t[0] = _mm_cvtps_epi32(in[0]);
+ t[1] = _mm_cvtps_epi32(in[1]);
+ t[2] = _mm_cvtps_epi32(in[2]);
+ t[3] = _mm_cvtps_epi32(in[3]);
+
+ t[0] = _mm_packs_epi32(t[0], t[2]);
+ t[1] = _mm_packs_epi32(t[1], t[3]);
+
+ out[0] = _mm_unpacklo_epi16(t[0], t[1]);
+ out[1] = _mm_unpackhi_epi16(t[0], t[1]);
+ out[2] = _mm_unpacklo_epi32(out[0], out[1]);
+ out[3] = _mm_unpackhi_epi32(out[0], out[1]);
+
+ _mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]);
+ _mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]);
+ _mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]);
+ _mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]);
+
+ d += 4*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
+ in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
+ in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_scale);
+ in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
+ in[2] = _MM_CLAMP_SS(in[2], int_min, int_max);
+ in[3] = _MM_CLAMP_SS(in[3], int_min, int_max);
+ d[0] = _mm_cvtss_si32(in[0]);
+ d[1] = _mm_cvtss_si32(in[1]);
+ d[2] = _mm_cvtss_si32(in[2]);
+ d[3] = _mm_cvtss_si32(in[3]);
+ d += n_channels;
+ }
+}
+
+void
+conv_f32d_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int16_t *d = dst[0];
+ uint32_t i = 0, n_channels = conv->n_channels;
+
+ for(; i + 3 < n_channels; i += 4)
+ conv_f32d_to_s16_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i + 1 < n_channels; i += 2)
+ conv_f32d_to_s16_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+ for(; i < n_channels; i++)
+ conv_f32d_to_s16_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
+}
+
+static void
+conv_f32d_to_s16_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
+ const float *noise, uint32_t n_channels, uint32_t n_samples)
+{
+ const float *s0 = src;
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[2];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s0, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
+ in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
+ in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4]));
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[0] = _mm_packs_epi32(out[0], out[1]);
+
+ d[0*n_channels] = _mm_extract_epi16(out[0], 0);
+ d[1*n_channels] = _mm_extract_epi16(out[0], 1);
+ d[2*n_channels] = _mm_extract_epi16(out[0], 2);
+ d[3*n_channels] = _mm_extract_epi16(out[0], 3);
+ d[4*n_channels] = _mm_extract_epi16(out[0], 4);
+ d[5*n_channels] = _mm_extract_epi16(out[0], 5);
+ d[6*n_channels] = _mm_extract_epi16(out[0], 6);
+ d[7*n_channels] = _mm_extract_epi16(out[0], 7);
+ d += 8*n_channels;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
+ in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ *d = _mm_cvtss_si32(in[0]);
+ d += n_channels;
+ }
+}
+
+void
+conv_f32d_to_s16_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ int16_t *d = dst[0];
+ uint32_t i, k, chunk, n_channels = conv->n_channels;
+ float *noise = conv->noise;
+
+ convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
+
+ for(i = 0; i < n_channels; i++) {
+ const float *s = src[i];
+ for(k = 0; k < n_samples; k += chunk) {
+ chunk = SPA_MIN(n_samples - k, conv->noise_size);
+ conv_f32d_to_s16_1s_noise_sse2(conv, &d[i + k*n_channels],
+ &s[k], noise, n_channels, chunk);
+ }
+ }
+}
+
+static void
+conv_f32_to_s16_1_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
+ const float *noise, uint32_t n_samples)
+{
+ const float *s = src;
+ int16_t *d = dst;
+ uint32_t n, unrolled;
+ __m128 in[2];
+ __m128i out[2];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale);
+ in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
+ in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4]));
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[0] = _mm_packs_epi32(out[0], out[1]);
+ _mm_storeu_si128((__m128i*)(&d[n]), out[0]);
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale);
+ in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ d[n] = _mm_cvtss_si32(in[0]);
+ }
+}
+
+void
+conv_f32d_to_s16d_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ uint32_t i, k, chunk, n_channels = conv->n_channels;
+ float *noise = conv->noise;
+
+ convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
+
+ for(i = 0; i < n_channels; i++) {
+ const float *s = src[i];
+ int16_t *d = dst[i];
+ for(k = 0; k < n_samples; k += chunk) {
+ chunk = SPA_MIN(n_samples - k, conv->noise_size);
+ conv_f32_to_s16_1_noise_sse2(conv, &d[k], &s[k], noise, chunk);
+ }
+ }
+}
+
+void
+conv_f32d_to_s16_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
+ uint32_t n_samples)
+{
+ const float *s0 = src[0], *s1 = src[1];
+ int16_t *d = dst[0];
+ uint32_t n, unrolled;
+ __m128 in[4];
+ __m128i out[4];
+ __m128 int_scale = _mm_set1_ps(S16_SCALE);
+ __m128 int_max = _mm_set1_ps(S16_MAX);
+ __m128 int_min = _mm_set1_ps(S16_MIN);
+
+ if (SPA_IS_ALIGNED(s0, 16) &&
+ SPA_IS_ALIGNED(s1, 16))
+ unrolled = n_samples & ~7;
+ else
+ unrolled = 0;
+
+ for(n = 0; n < unrolled; n += 8) {
+ in[0] = _mm_mul_ps(_mm_load_ps(&s0[n+0]), int_scale);
+ in[1] = _mm_mul_ps(_mm_load_ps(&s1[n+0]), int_scale);
+ in[2] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
+ in[3] = _mm_mul_ps(_mm_load_ps(&s1[n+4]), int_scale);
+
+ out[0] = _mm_cvtps_epi32(in[0]);
+ out[1] = _mm_cvtps_epi32(in[1]);
+ out[2] = _mm_cvtps_epi32(in[2]);
+ out[3] = _mm_cvtps_epi32(in[3]);
+
+ out[0] = _mm_packs_epi32(out[0], out[2]);
+ out[1] = _mm_packs_epi32(out[1], out[3]);
+
+ out[2] = _mm_unpacklo_epi16(out[0], out[1]);
+ out[3] = _mm_unpackhi_epi16(out[0], out[1]);
+
+ _mm_storeu_si128((__m128i*)(d+0), out[2]);
+ _mm_storeu_si128((__m128i*)(d+8), out[3]);
+
+ d += 16;
+ }
+ for(; n < n_samples; n++) {
+ in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
+ in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
+ in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
+ in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
+ d[0] = _mm_cvtss_si32(in[0]);
+ d[1] = _mm_cvtss_si32(in[1]);
+ d += 2;
+ }
+}