#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alsa-pcm.h" static struct spa_list cards = SPA_LIST_INIT(&cards); static struct card *find_card(uint32_t index) { struct card *c; spa_list_for_each(c, &cards, link) { if (c->index == index) { c->ref++; return c; } } return NULL; } static struct card *ensure_card(uint32_t index, bool ucm) { struct card *c; char card_name[64]; const char *alibpref = NULL; int err; if ((c = find_card(index)) != NULL) return c; c = calloc(1, sizeof(*c)); c->ref = 1; c->index = index; if (ucm) { snprintf(card_name, sizeof(card_name), "hw:%i", index); err = snd_use_case_mgr_open(&c->ucm, card_name); if (err < 0) { char *name; err = snd_card_get_name(index, &name); if (err < 0) goto error; snprintf(card_name, sizeof(card_name), "%s", name); free(name); err = snd_use_case_mgr_open(&c->ucm, card_name); if (err < 0) goto error; } if ((snd_use_case_get(c->ucm, "_alibpref", &alibpref) != 0)) alibpref = NULL; c->ucm_prefix = (char*)alibpref; } spa_list_append(&cards, &c->link); return c; error: free(c); errno = -err; return NULL; } static void release_card(struct card *c) { spa_assert(c->ref > 0); if (--c->ref > 0) return; spa_list_remove(&c->link); if (c->ucm) { free(c->ucm_prefix); snd_use_case_mgr_close(c->ucm); } free(c); } static int alsa_set_param(struct state *state, const char *k, const char *s) { int fmt_change = 0; if (spa_streq(k, SPA_KEY_AUDIO_CHANNELS)) { state->default_channels = atoi(s); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_RATE)) { state->default_rate = atoi(s); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_FORMAT)) { state->default_format = spa_alsa_format_from_name(s, strlen(s)); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) { spa_alsa_parse_position(&state->default_pos, s, strlen(s)); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_ALLOWED_RATES)) { state->n_allowed_rates = spa_alsa_parse_rates(state->allowed_rates, MAX_RATES, s, strlen(s)); fmt_change++; } else if (spa_streq(k, "iec958.codecs")) { spa_alsa_parse_iec958_codecs(&state->iec958_codecs, s, strlen(s)); fmt_change++; } else if (spa_streq(k, "api.alsa.period-size")) { state->default_period_size = atoi(s); } else if (spa_streq(k, "api.alsa.period-num")) { state->default_period_num = atoi(s); } else if (spa_streq(k, "api.alsa.headroom")) { state->default_headroom = atoi(s); } else if (spa_streq(k, "api.alsa.start-delay")) { state->default_start_delay = atoi(s); } else if (spa_streq(k, "api.alsa.disable-mmap")) { state->disable_mmap = spa_atob(s); } else if (spa_streq(k, "api.alsa.disable-batch")) { state->disable_batch = spa_atob(s); } else if (spa_streq(k, "api.alsa.use-chmap")) { state->props.use_chmap = spa_atob(s); } else if (spa_streq(k, "api.alsa.multi-rate")) { state->multi_rate = spa_atob(s); } else if (spa_streq(k, "latency.internal.rate")) { state->process_latency.rate = atoi(s); } else if (spa_streq(k, "latency.internal.ns")) { state->process_latency.ns = atoi(s); } else if (spa_streq(k, "clock.name")) { spa_scnprintf(state->clock_name, sizeof(state->clock_name), "%s", s); } else return 0; if (fmt_change > 0) { state->port_info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; state->port_params[PORT_EnumFormat].user++; } return 1; } static int position_to_string(struct channel_map *map, char *val, size_t len) { uint32_t i, o = 0; int r; o += snprintf(val, len, "[ "); for (i = 0; i < map->channels; i++) { r = snprintf(val+o, len-o, "%s%s", i == 0 ? "" : ", ", spa_debug_type_find_short_name(spa_type_audio_channel, map->pos[i])); if (r < 0 || o + r >= len) return -ENOSPC; o += r; } if (len > o) o += snprintf(val+o, len-o, " ]"); return 0; } static int uint32_array_to_string(uint32_t *vals, uint32_t n_vals, char *val, size_t len) { uint32_t i, o = 0; int r; o += snprintf(val, len, "[ "); for (i = 0; i < n_vals; i++) { r = snprintf(val+o, len-o, "%s%d", i == 0 ? "" : ", ", vals[i]); if (r < 0 || o + r >= len) return -ENOSPC; o += r; } if (len > o) o += snprintf(val+o, len-o, " ]"); return 0; } struct spa_pod *spa_alsa_enum_propinfo(struct state *state, uint32_t idx, struct spa_pod_builder *b) { struct spa_pod *param; switch (idx) { case 0: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_CHANNELS), SPA_PROP_INFO_description, SPA_POD_String("Audio Channels"), SPA_PROP_INFO_type, SPA_POD_Int(state->default_channels), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 1: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_RATE), SPA_PROP_INFO_description, SPA_POD_String("Audio Rate"), SPA_PROP_INFO_type, SPA_POD_Int(state->default_rate), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 2: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_FORMAT), SPA_PROP_INFO_description, SPA_POD_String("Audio Format"), SPA_PROP_INFO_type, SPA_POD_String( spa_debug_type_find_short_name(spa_type_audio_format, state->default_format)), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 3: { char buf[1024]; position_to_string(&state->default_pos, buf, sizeof(buf)); param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_POSITION), SPA_PROP_INFO_description, SPA_POD_String("Audio Position"), SPA_PROP_INFO_type, SPA_POD_String(buf), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; } case 4: { char buf[1024]; uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf)); param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_ALLOWED_RATES), SPA_PROP_INFO_description, SPA_POD_String("Audio Allowed Rates"), SPA_PROP_INFO_type, SPA_POD_String(buf), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; } case 5: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-size"), SPA_PROP_INFO_description, SPA_POD_String("Period Size"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_size, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 6: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-num"), SPA_PROP_INFO_description, SPA_POD_String("Number of Periods"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_num, 0, 1024), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 7: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.headroom"), SPA_PROP_INFO_description, SPA_POD_String("Headroom"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_headroom, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 8: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.start-delay"), SPA_PROP_INFO_description, SPA_POD_String("Start Delay"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_start_delay, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 9: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-mmap"), SPA_PROP_INFO_description, SPA_POD_String("Disable MMAP"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_mmap), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 10: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-batch"), SPA_PROP_INFO_description, SPA_POD_String("Disable Batch"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_batch), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 11: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.use-chmap"), SPA_PROP_INFO_description, SPA_POD_String("Use the driver channelmap"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->props.use_chmap), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 12: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.multi-rate"), SPA_PROP_INFO_description, SPA_POD_String("Support multiple rates"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->multi_rate), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 13: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("latency.internal.rate"), SPA_PROP_INFO_description, SPA_POD_String("Internal latency in samples"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->process_latency.rate, 0, 65536), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 14: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("latency.internal.ns"), SPA_PROP_INFO_description, SPA_POD_String("Internal latency in nanoseconds"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(state->process_latency.ns, 0LL, 2 * SPA_NSEC_PER_SEC), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 15: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("clock.name"), SPA_PROP_INFO_description, SPA_POD_String("The name of the clock"), SPA_PROP_INFO_type, SPA_POD_String(state->clock_name), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; default: return NULL; } return param; } int spa_alsa_add_prop_params(struct state *state, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; char buf[1024]; spa_pod_builder_prop(b, SPA_PROP_params, 0); spa_pod_builder_push_struct(b, &f[0]); spa_pod_builder_string(b, SPA_KEY_AUDIO_CHANNELS); spa_pod_builder_int(b, state->default_channels); spa_pod_builder_string(b, SPA_KEY_AUDIO_RATE); spa_pod_builder_int(b, state->default_rate); spa_pod_builder_string(b, SPA_KEY_AUDIO_FORMAT); spa_pod_builder_string(b, spa_debug_type_find_short_name(spa_type_audio_format, state->default_format)); position_to_string(&state->default_pos, buf, sizeof(buf)); spa_pod_builder_string(b, SPA_KEY_AUDIO_POSITION); spa_pod_builder_string(b, buf); uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf)); spa_pod_builder_string(b, SPA_KEY_AUDIO_ALLOWED_RATES); spa_pod_builder_string(b, buf); spa_pod_builder_string(b, "api.alsa.period-size"); spa_pod_builder_int(b, state->default_period_size); spa_pod_builder_string(b, "api.alsa.period-num"); spa_pod_builder_int(b, state->default_period_num); spa_pod_builder_string(b, "api.alsa.headroom"); spa_pod_builder_int(b, state->default_headroom); spa_pod_builder_string(b, "api.alsa.start-delay"); spa_pod_builder_int(b, state->default_start_delay); spa_pod_builder_string(b, "api.alsa.disable-mmap"); spa_pod_builder_bool(b, state->disable_mmap); spa_pod_builder_string(b, "api.alsa.disable-batch"); spa_pod_builder_bool(b, state->disable_batch); spa_pod_builder_string(b, "api.alsa.use-chmap"); spa_pod_builder_bool(b, state->props.use_chmap); spa_pod_builder_string(b, "api.alsa.multi-rate"); spa_pod_builder_bool(b, state->multi_rate); spa_pod_builder_string(b, "latency.internal.rate"); spa_pod_builder_int(b, state->process_latency.rate); spa_pod_builder_string(b, "latency.internal.ns"); spa_pod_builder_long(b, state->process_latency.ns); spa_pod_builder_string(b, "clock.name"); spa_pod_builder_string(b, state->clock_name); spa_pod_builder_pop(b, &f[0]); return 0; } int spa_alsa_parse_prop_params(struct state *state, struct spa_pod *params) { struct spa_pod_parser prs; struct spa_pod_frame f; int changed = 0; if (params == NULL) return 0; spa_pod_parser_pod(&prs, params); if (spa_pod_parser_push_struct(&prs, &f) < 0) return 0; while (true) { const char *name; struct spa_pod *pod; char value[512]; if (spa_pod_parser_get_string(&prs, &name) < 0) break; if (spa_pod_parser_get_pod(&prs, &pod) < 0) break; if (spa_pod_is_string(pod)) { spa_pod_copy_string(pod, sizeof(value), value); } else if (spa_pod_is_int(pod)) { snprintf(value, sizeof(value), "%d", SPA_POD_VALUE(struct spa_pod_int, pod)); } else if (spa_pod_is_long(pod)) { snprintf(value, sizeof(value), "%"PRIi64, SPA_POD_VALUE(struct spa_pod_long, pod)); } else if (spa_pod_is_bool(pod)) { snprintf(value, sizeof(value), "%s", SPA_POD_VALUE(struct spa_pod_bool, pod) ? "true" : "false"); } else continue; spa_log_info(state->log, "key:'%s' val:'%s'", name, value); alsa_set_param(state, name, value); changed++; } if (changed > 0) { state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; state->params[NODE_Props].user++; } return changed; } #define CHECK(s,msg,...) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", ##__VA_ARGS__, snd_strerror(err)); return err; } static ssize_t log_write(void *cookie, const char *buf, size_t size) { struct state *state = cookie; int len; while (size > 0) { len = strcspn(buf, "\n"); if (len > 0) spa_log_debug(state->log, "%.*s", (int)len, buf); buf += len + 1; size -= len + 1; } return size; } static cookie_io_functions_t io_funcs = { .write = log_write, }; int spa_alsa_init(struct state *state, const struct spa_dict *info) { uint32_t i; int err; snd_config_update_free_global(); state->multi_rate = true; for (i = 0; info && i < info->n_items; i++) { const char *k = info->items[i].key; const char *s = info->items[i].value; if (spa_streq(k, SPA_KEY_API_ALSA_PATH)) { snprintf(state->props.device, 63, "%s", s); } else if (spa_streq(k, SPA_KEY_API_ALSA_PCM_CARD)) { state->card_index = atoi(s); } else if (spa_streq(k, SPA_KEY_API_ALSA_OPEN_UCM)) { state->open_ucm = spa_atob(s); } else if (spa_streq(k, "clock.quantum-limit")) { spa_atou32(s, &state->quantum_limit, 0); } else { alsa_set_param(state, k, s); } } if (state->clock_name[0] == '\0') snprintf(state->clock_name, sizeof(state->clock_name), "api.alsa.%s-%u", state->stream == SND_PCM_STREAM_PLAYBACK ? "p" : "c", state->card_index); if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->is_iec958 = spa_strstartswith(state->props.device, "iec958"); state->is_hdmi = spa_strstartswith(state->props.device, "hdmi"); state->iec958_codecs |= 1ULL << SPA_AUDIO_IEC958_CODEC_PCM; } state->card = ensure_card(state->card_index, state->open_ucm); if (state->card == NULL) { spa_log_error(state->log, "can't create card %u", state->card_index); return -errno; } state->log_file = fopencookie(state, "w", io_funcs); if (state->log_file == NULL) { spa_log_error(state->log, "can't create log file"); return -errno; } CHECK(snd_output_stdio_attach(&state->output, state->log_file, 0), "attach failed"); state->rate_limit.interval = 2 * SPA_NSEC_PER_SEC; state->rate_limit.burst = 1; return 0; } int spa_alsa_clear(struct state *state) { int err; release_card(state->card); state->card = NULL; state->card_index = SPA_ID_INVALID; if ((err = snd_output_close(state->output)) < 0) spa_log_warn(state->log, "output close failed: %s", snd_strerror(err)); fclose(state->log_file); return err; } int spa_alsa_open(struct state *state, const char *params) { int err; struct props *props = &state->props; char device_name[256]; if (state->opened) return 0; spa_scnprintf(device_name, sizeof(device_name), "%s%s%s", state->card->ucm_prefix ? state->card->ucm_prefix : "", props->device, params ? params : ""); spa_log_info(state->log, "%p: ALSA device open '%s' %s", state, device_name, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); CHECK(snd_pcm_open(&state->hndl, device_name, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "'%s': %s open failed", device_name, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); if ((err = spa_system_timerfd_create(state->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_close; state->timerfd = err; if (state->clock) spa_scnprintf(state->clock->name, sizeof(state->clock->name), "%s", state->clock_name); state->opened = true; state->sample_count = 0; state->sample_time = 0; return 0; error_exit_close: spa_log_info(state->log, "%p: Device '%s' closing: %s", state, state->props.device, spa_strerror(err)); snd_pcm_close(state->hndl); return err; } int spa_alsa_close(struct state *state) { int err = 0; if (!state->opened) return 0; spa_alsa_pause(state); spa_log_info(state->log, "%p: Device '%s' closing", state, state->props.device); if ((err = snd_pcm_close(state->hndl)) < 0) spa_log_warn(state->log, "%s: close failed: %s", state->props.device, snd_strerror(err)); spa_system_close(state->data_system, state->timerfd); if (state->have_format) state->card->format_ref--; state->have_format = false; state->opened = false; return err; } struct format_info { uint32_t spa_format; uint32_t spa_pformat; snd_pcm_format_t format; }; static const struct format_info format_info[] = { { SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN}, { SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE}, { SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE}, { SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE}, { SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE}, { SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE}, { SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE}, { SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE}, { SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE}, { SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE}, { SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE}, { SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8}, { SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8}, { SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE}, { SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE}, { SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE}, { SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE}, { SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE}, { SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE}, { SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE}, { SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE}, { SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE}, { SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE}, }; static snd_pcm_format_t spa_format_to_alsa(uint32_t format, bool *planar) { SPA_FOR_EACH_ELEMENT_VAR(format_info, i) { *planar = i->spa_pformat == format; if (i->spa_format == format || *planar) return i->format; } return SND_PCM_FORMAT_UNKNOWN; } struct chmap_info { enum snd_pcm_chmap_position pos; enum spa_audio_channel channel; }; static const struct chmap_info chmap_info[] = { [SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN }, [SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA }, [SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO }, [SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL }, [SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR }, [SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL }, [SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR }, [SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC }, [SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE }, [SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL }, [SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR }, [SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC }, [SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC }, [SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC }, [SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC }, [SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC }, [SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW }, [SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW }, [SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH }, [SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH }, [SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH }, [SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC }, [SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL }, [SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR }, [SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC }, [SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL }, [SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR }, [SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC }, [SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC }, [SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC }, [SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL }, [SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR }, [SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE }, [SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE }, [SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC }, [SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC }, [SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC }, }; #define _M(ch) (1LL << SND_CHMAP_ ##ch) struct def_mask { int channels; uint64_t mask; }; static const struct def_mask default_layouts[] = { { 0, 0 }, { 1, _M(MONO) }, { 2, _M(FL) | _M(FR) }, { 3, _M(FL) | _M(FR) | _M(LFE) }, { 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) }, { 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) }, { 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) }, { 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) }, { 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) }, }; #define _C(ch) (SPA_AUDIO_CHANNEL_ ##ch) static const struct channel_map default_map[] = { { 0, { 0, } } , { 1, { _C(MONO), } }, { 2, { _C(FL), _C(FR), } }, { 3, { _C(FL), _C(FR), _C(LFE) } }, { 4, { _C(FL), _C(FR), _C(RL), _C(RR), } }, { 5, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC) } }, { 6, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), } }, { 7, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(SL), _C(SR), } }, { 8, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), _C(SL), _C(SR), } }, }; static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos) { return chmap_info[pos].channel; } static void sanitize_map(snd_pcm_chmap_t* map) { uint64_t mask = 0, p, dup = 0; const struct def_mask *def; uint32_t i, j, pos; for (i = 0; i < map->channels; i++) { if (map->pos[i] > SND_CHMAP_LAST) map->pos[i] = SND_CHMAP_UNKNOWN; p = 1LL << map->pos[i]; if (mask & p) { /* duplicate channel */ for (j = 0; j <= i; j++) if (map->pos[j] == map->pos[i]) map->pos[j] = SND_CHMAP_UNKNOWN; dup |= p; p = 1LL << SND_CHMAP_UNKNOWN; } mask |= p; } if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0) return; def = &default_layouts[map->channels]; /* remove duplicates */ mask &= ~dup; /* keep unassigned channels */ mask = def->mask & ~mask; pos = 0; for (i = 0; i < map->channels; i++) { if (map->pos[i] == SND_CHMAP_UNKNOWN) { do { mask >>= 1; pos++; } while (mask != 0 && (mask & 1) == 0); map->pos[i] = mask ? pos : 0; } } } static bool uint32_array_contains(uint32_t *vals, uint32_t n_vals, uint32_t val) { uint32_t i; for (i = 0; i < n_vals; i++) if (vals[i] == val) return true; return false; } static int add_rate(struct state *state, uint32_t scale, uint32_t interleave, bool all, uint32_t index, uint32_t *next, uint32_t min_allowed_rate, snd_pcm_hw_params_t *params, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; int err, dir; unsigned int min, max; struct spa_pod_choice *choice; uint32_t rate; CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max"); spa_log_debug(state->log, "min:%u max:%u min-allowed:%u scale:%u interleave:%u all:%d", min, max, min_allowed_rate, scale, interleave, all); min = SPA_MAX(min_allowed_rate * scale / interleave, min) * interleave / scale; max = max * interleave / scale; if (max < min) return 0; if (!state->multi_rate && state->card->format_ref > 0) rate = state->card->rate; else rate = state->default_rate; if (rate < min || rate > max) rate = 0; if (rate != 0 && !all) min = max = rate; if (rate == 0) rate = state->position ? state->position->clock.rate.denom : DEFAULT_RATE; rate = SPA_CLAMP(rate, min, max); spa_log_debug(state->log, "rate:%u multi:%d card:%d def:%d", rate, state->multi_rate, state->card->rate, state->default_rate); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_rate, 0); spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]); if (state->n_allowed_rates > 0) { uint32_t i, v, last = 0, count = 0; if (uint32_array_contains(state->allowed_rates, state->n_allowed_rates, rate)) { spa_pod_builder_int(b, rate * scale); count++; } for (i = 0; i < state->n_allowed_rates; i++) { v = SPA_CLAMP(state->allowed_rates[i], min, max); if (v != last && uint32_array_contains(state->allowed_rates, state->n_allowed_rates, v)) { spa_pod_builder_int(b, v * scale); if (count == 0) spa_pod_builder_int(b, v * scale); count++; } last = v; } if (count > 1) choice->body.type = SPA_CHOICE_Enum; } else { spa_pod_builder_int(b, rate * scale); if (min != max) { spa_pod_builder_int(b, min * scale); spa_pod_builder_int(b, max * scale); choice->body.type = SPA_CHOICE_Range; } } spa_pod_builder_pop(b, &f[0]); return 1; } static int add_channels(struct state *state, bool all, uint32_t index, uint32_t *next, snd_pcm_hw_params_t *params, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; size_t i; int err; snd_pcm_t *hndl = state->hndl; snd_pcm_chmap_query_t **maps; unsigned int min, max; CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max"); spa_log_debug(state->log, "channels (%d %d) default:%d all:%d", min, max, state->default_channels, all); if (state->default_channels != 0 && !all) { if (min < state->default_channels) min = state->default_channels; if (max > state->default_channels) max = state->default_channels; } min = SPA_MIN(min, SPA_AUDIO_MAX_CHANNELS); max = SPA_MIN(max, SPA_AUDIO_MAX_CHANNELS); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_channels, 0); if (state->props.use_chmap && (maps = snd_pcm_query_chmaps(hndl)) != NULL) { uint32_t channel; snd_pcm_chmap_t* map; skip_channels: if (maps[index] == NULL) { snd_pcm_free_chmaps(maps); return 0; } map = &maps[index]->map; spa_log_debug(state->log, "map %d channels (%d %d)", map->channels, min, max); if (map->channels < min || map->channels > max) { index = (*next)++; goto skip_channels; } sanitize_map(map); spa_pod_builder_int(b, map->channels); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(b, &f[0]); for (i = 0; i < map->channels; i++) { spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]); channel = chmap_position_to_channel(map->pos[i]); spa_pod_builder_id(b, channel); } spa_pod_builder_pop(b, &f[0]); snd_pcm_free_chmaps(maps); } else { const struct channel_map *map = NULL; struct spa_pod_choice *choice; if (index > 0) return 0; spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]); spa_pod_builder_int(b, max); if (min != max) { spa_pod_builder_int(b, min); spa_pod_builder_int(b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(b, &f[0]); if (min == max) { if (state->default_pos.channels == min) map = &state->default_pos; else if (min == max && min <= 8) map = &default_map[min]; } if (map) { spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(b, &f[0]); for (i = 0; i < map->channels; i++) { spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]); spa_pod_builder_id(b, map->pos[i]); } spa_pod_builder_pop(b, &f[0]); } } return 1; } static void debug_hw_params(struct state *state, const char *prefix, snd_pcm_hw_params_t *params) { if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) { spa_log_debug(state->log, "%s:", prefix); snd_pcm_hw_params_dump(params, state->output); fflush(state->log_file); } } static int enum_pcm_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err; size_t j; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; struct spa_pod_frame f[2]; snd_pcm_format_mask_t *fmask; snd_pcm_access_mask_t *amask; unsigned int rrate, rchannels; struct spa_pod_choice *choice; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); if (state->default_channels != 0) { rchannels = state->default_channels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels"); if (state->default_channels != rchannels) { spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)", state->props.device, state->default_channels, rchannels); } } if (state->default_rate != 0) { rrate = state->default_rate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near"); if (state->default_rate != rrate) { spa_log_warn(state->log, "%s: Rate doesn't match (requested %u, got %u)", state->props.device, state->default_rate, rrate); } } spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw), 0); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_format, 0); spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[1]); j = 0; SPA_FOR_EACH_ELEMENT_VAR(format_info, fi) { if (fi->format == SND_PCM_FORMAT_UNKNOWN) continue; if (snd_pcm_format_mask_test(fmask, fi->format)) { if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_NONINTERLEAVED)) && fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN && (state->default_format == 0 || state->default_format == fi->spa_pformat)) { if (j++ == 0) spa_pod_builder_id(b, fi->spa_pformat); spa_pod_builder_id(b, fi->spa_pformat); } if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_INTERLEAVED)) && (state->default_format == 0 || state->default_format == fi->spa_format)) { if (j++ == 0) spa_pod_builder_id(b, fi->spa_format); spa_pod_builder_id(b, fi->spa_format); } } } if (j == 0) { char buf[1024]; int i, r, offs; for (i = 0, offs = 0; i <= SND_PCM_FORMAT_LAST; i++) { if (snd_pcm_format_mask_test(fmask, (snd_pcm_format_t)i)) { r = snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_format_name((snd_pcm_format_t)i)); if (r < 0 || r + offs >= (int)sizeof(buf)) return -ENOSPC; offs += r; } } spa_log_warn(state->log, "%s: no format found (def:%d) formats:%s", state->props.device, state->default_format, buf); for (i = 0, offs = 0; i <= SND_PCM_ACCESS_LAST; i++) { if (snd_pcm_access_mask_test(amask, (snd_pcm_access_t)i)) { r = snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_access_name((snd_pcm_access_t)i)); if (r < 0 || r + offs >= (int)sizeof(buf)) return -ENOSPC; offs += r; } } spa_log_warn(state->log, "%s: access:%s", state->props.device, buf); return -ENOTSUP; } if (j > 1) choice->body.type = SPA_CHOICE_Enum; spa_pod_builder_pop(b, &f[1]); if ((res = add_rate(state, 1, 1, false, index & 0xffff, next, 0, params, b)) != 1) return res; if ((res = add_channels(state, false, index & 0xffff, next, params, b)) != 1) return res; *result = spa_pod_builder_pop(b, &f[0]); return 1; } static bool codec_supported(uint32_t codec, unsigned int chmax, unsigned int rmax) { switch (codec) { case SPA_AUDIO_IEC958_CODEC_PCM: case SPA_AUDIO_IEC958_CODEC_DTS: case SPA_AUDIO_IEC958_CODEC_AC3: case SPA_AUDIO_IEC958_CODEC_MPEG: case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC: if (chmax >= 2) return true; break; case SPA_AUDIO_IEC958_CODEC_EAC3: if (rmax >= 48000 * 4 && chmax >= 2) return true; break; case SPA_AUDIO_IEC958_CODEC_TRUEHD: case SPA_AUDIO_IEC958_CODEC_DTSHD: if (chmax >= 8) return true; break; } return false; } static int enum_iec958_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err, dir; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; struct spa_pod_frame f[2]; unsigned int rmin, rmax; unsigned int chmin, chmax; uint32_t i, c, codecs[16], n_codecs; if ((index & 0xffff) > 0) return 0; if (!(state->is_iec958 || state->is_hdmi)) return 0; if (state->iec958_codecs == 0) return 0; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_iec958), 0); CHECK(snd_pcm_hw_params_get_channels_min(params, &chmin), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &chmax), "get_channels_max"); spa_log_debug(state->log, "channels (%d %d)", chmin, chmax); CHECK(snd_pcm_hw_params_get_rate_min(params, &rmin, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &rmax, &dir), "get_rate_max"); spa_log_debug(state->log, "rate (%d %d)", rmin, rmax); if (state->default_rate != 0) { if (rmin < state->default_rate) rmin = state->default_rate; if (rmax > state->default_rate) rmax = state->default_rate; } spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_iec958Codec, 0); spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_Enum, 0); n_codecs = spa_alsa_get_iec958_codecs(state, codecs, SPA_N_ELEMENTS(codecs)); for (i = 0, c = 0; i < n_codecs; i++) { if (!codec_supported(codecs[i], chmax, rmax)) continue; if (c++ == 0) spa_pod_builder_id(b, codecs[i]); spa_pod_builder_id(b, codecs[i]); } spa_pod_builder_pop(b, &f[1]); if ((res = add_rate(state, 1, 1, true, index & 0xffff, next, 0, params, b)) != 1) return res; (*next)++; *result = spa_pod_builder_pop(b, &f[0]); return 1; } static int enum_dsd_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; snd_pcm_format_mask_t *fmask; struct spa_pod_frame f[2]; int32_t interleave; if ((index & 0xffff) > 0) return 0; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_BE)) interleave = 4; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_LE)) interleave = -4; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_BE)) interleave = 2; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_LE)) interleave = -2; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U8)) interleave = 1; else return 0; CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_dsd), 0); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_bitorder, 0); spa_pod_builder_id(b, SPA_PARAM_BITORDER_msb); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_interleave, 0); spa_pod_builder_int(b, interleave); /* Use a lower rate limit of 352800 (= 44100 * 64 / 8). This is because in * PipeWire, DSD rates are given in bytes, not bits, so 352800 corresponds * to the bit rate of DSD64. (The "64" in DSD64 means "64 times the rate * of 44.1 kHz".) Some hardware may report rates lower than that, for example * 176400. This would correspond to "DSD32" (which does not exist). Trying * to use such a rate with DSD hardware does not work and may cause undefined * behavior in said hardware. */ if ((res = add_rate(state, 8, SPA_ABS(interleave), true, index & 0xffff, next, 44100, params, b)) != 1) return res; if ((res = add_channels(state, true, index & 0xffff, next, params, b)) != 1) return res; *result = spa_pod_builder_pop(b, &f[0]); return 1; } int spa_alsa_enum_format(struct state *state, int seq, uint32_t start, uint32_t num, const struct spa_pod *filter) { uint8_t buffer[4096]; struct spa_pod_builder b = { 0 }; struct spa_pod *fmt; int err, res; bool opened; struct spa_result_node_params result; uint32_t count = 0; spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened, state->have_format, state->started); opened = state->opened; if (!state->started && state->have_format) spa_alsa_close(state); if ((err = spa_alsa_open(state, NULL)) < 0) return err; result.id = SPA_PARAM_EnumFormat; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); if (result.index < 0x10000) { if ((res = enum_pcm_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x10000; goto next; } } else if (result.index < 0x20000) { if ((res = enum_iec958_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x20000; goto next; } } else if (result.index < 0x30000) { if ((res = enum_dsd_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x30000; goto next; } } else goto enum_end; if (spa_pod_filter(&b, &result.param, fmt, filter) < 0) goto next; spa_node_emit_result(&state->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; enum_end: res = 0; if (!opened) spa_alsa_close(state); return res; } int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags) { unsigned int rrate, rchannels, val, rscale = 1; snd_pcm_uframes_t period_size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t rformat; snd_pcm_access_mask_t *amask; snd_pcm_t *hndl; unsigned int periods; bool match = true, planar = false, is_batch; char spdif_params[128] = ""; spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened, state->have_format, state->started); state->use_mmap = !state->disable_mmap; switch (fmt->media_subtype) { case SPA_MEDIA_SUBTYPE_raw: { struct spa_audio_info_raw *f = &fmt->info.raw; rrate = f->rate; rchannels = f->channels; rformat = spa_format_to_alsa(f->format, &planar); break; } case SPA_MEDIA_SUBTYPE_iec958: { struct spa_audio_info_iec958 *f = &fmt->info.iec958; unsigned aes3; spa_log_info(state->log, "using IEC958 Codec:%s rate:%d", spa_debug_type_find_short_name(spa_type_audio_iec958_codec, f->codec), f->rate); rformat = SND_PCM_FORMAT_S16_LE; rchannels = 2; rrate = f->rate; switch (f->codec) { case SPA_AUDIO_IEC958_CODEC_PCM: case SPA_AUDIO_IEC958_CODEC_DTS: case SPA_AUDIO_IEC958_CODEC_AC3: case SPA_AUDIO_IEC958_CODEC_MPEG: case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC: break; case SPA_AUDIO_IEC958_CODEC_EAC3: /* EAC3 has 3 rates, 32, 44.1 and 48KHz. We need to * open the device in 4x that rate. Some clients * already multiply (mpv,..) others don't (vlc). */ if (rrate <= 48000) rrate *= 4; break; case SPA_AUDIO_IEC958_CODEC_TRUEHD: case SPA_AUDIO_IEC958_CODEC_DTSHD: rchannels = 8; break; default: return -ENOTSUP; } switch (rrate) { case 22050: aes3 = IEC958_AES3_CON_FS_22050; break; case 24000: aes3 = IEC958_AES3_CON_FS_24000; break; case 32000: aes3 = IEC958_AES3_CON_FS_32000; break; case 44100: aes3 = IEC958_AES3_CON_FS_44100; break; case 48000: aes3 = IEC958_AES3_CON_FS_48000; break; case 88200: aes3 = IEC958_AES3_CON_FS_88200; break; case 96000: aes3 = IEC958_AES3_CON_FS_96000; break; case 176400: aes3 = IEC958_AES3_CON_FS_176400; break; case 192000: aes3 = IEC958_AES3_CON_FS_192000; break; case 768000: aes3 = IEC958_AES3_CON_FS_768000; break; default: aes3 = IEC958_AES3_CON_FS_NOTID; break; } spa_scnprintf(spdif_params, sizeof(spdif_params), ",AES0=0x%x,AES1=0x%x,AES2=0x%x,AES3=0x%x", IEC958_AES0_CON_EMPHASIS_NONE | IEC958_AES0_NONAUDIO, IEC958_AES1_CON_ORIGINAL | IEC958_AES1_CON_PCM_CODER, 0, aes3); break; } case SPA_MEDIA_SUBTYPE_dsd: { struct spa_audio_info_dsd *f = &fmt->info.dsd; rrate = f->rate; rchannels = f->channels; switch (f->interleave) { case 4: rformat = SND_PCM_FORMAT_DSD_U32_BE; rrate /= 4; rscale = 4; break; case -4: rformat = SND_PCM_FORMAT_DSD_U32_LE; rrate /= 4; rscale = 4; break; case 2: rformat = SND_PCM_FORMAT_DSD_U16_BE; rrate /= 2; rscale = 2; break; case -2: rformat = SND_PCM_FORMAT_DSD_U16_LE; rrate /= 2; rscale = 2; break; case 1: rformat = SND_PCM_FORMAT_DSD_U8; rscale = 1; break; default: return -ENOTSUP; } break; } default: return -ENOTSUP; } if (rformat == SND_PCM_FORMAT_UNKNOWN) { spa_log_warn(state->log, "%s: unknown format", state->props.device); return -EINVAL; } if (!state->started && state->have_format) spa_alsa_close(state); if ((err = spa_alsa_open(state, spdif_params)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); /* choose all parameters */ CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available"); debug_hw_params(state, __func__, params); /* set hardware resampling, no resample */ CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); /* set the interleaved/planar read/write format */ snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); if (state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_MMAP_NONINTERLEAVED : SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0) { spa_log_debug(state->log, "%p: MMAP not possible: %s", state, snd_strerror(err)); state->use_mmap = false; } } if (!state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_RW_NONINTERLEAVED : SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) { spa_log_error(state->log, "%s: RW not possible: %s", state->props.device, snd_strerror(err)); return err; } } /* set the sample format */ spa_log_debug(state->log, "%p: Stream parameters are %iHz fmt:%s access:%s-%s channels:%i", state, rrate, snd_pcm_format_name(rformat), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", rchannels); CHECK(snd_pcm_hw_params_set_format(hndl, params, rformat), "set_format"); /* set the count of channels */ val = rchannels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &val), "set_channels"); if (rchannels != val) { spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)", state->props.device, rchannels, val); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; rchannels = val; fmt->info.raw.channels = rchannels; match = false; } if (!state->multi_rate && state->card->format_ref > 0 && state->card->rate != rrate) { spa_log_error(state->log, "%p: card already opened at rate:%i", state, state->card->rate); return -EINVAL; } /* set the stream rate */ val = rrate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &val, 0), "set_rate_near"); if (rrate != val) { spa_log_warn(state->log, "%s: Rate doesn't match (requested %iHz, got %iHz)", state->props.device, rrate, val); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; rrate = val; fmt->info.raw.rate = rrate; match = false; } if (rchannels == 0 || rrate == 0) { spa_log_error(state->log, "%s: invalid channels:%d or rate:%d", state->props.device, rchannels, rrate); return -EIO; } state->format = rformat; state->channels = rchannels; state->rate = rrate; state->frame_size = snd_pcm_format_physical_width(rformat) / 8; state->frame_scale = rscale; state->planar = planar; state->blocks = 1; if (planar) state->blocks *= rchannels; else state->frame_size *= rchannels; state->have_format = true; if (state->card->format_ref++ == 0) state->card->rate = rrate; dir = 0; period_size = state->default_period_size; is_batch = snd_pcm_hw_params_is_batch(params) && !state->disable_batch; if (is_batch) { if (period_size == 0) period_size = state->position ? state->position->clock.duration : DEFAULT_PERIOD; if (period_size == 0) period_size = DEFAULT_PERIOD; /* batch devices get their hw pointers updated every period. Make * the period smaller and add one period of headroom. Limit the * period size to our default so that we don't create too much * headroom. */ period_size = SPA_MIN(period_size, DEFAULT_PERIOD) / 2; spa_log_info(state->log, "%s: batch mode, period_size:%ld", state->props.device, period_size); } else { if (period_size == 0) period_size = DEFAULT_PERIOD; /* disable ALSA wakeups, we use a timer */ if (snd_pcm_hw_params_can_disable_period_wakeup(params)) CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup"); } CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near"); if (period_size == 0) { spa_log_error(state->log, "%s: invalid period_size 0 (driver error?)", state->props.device); return -EIO; } state->period_frames = period_size; if (state->default_period_num != 0) { periods = state->default_period_num; CHECK(snd_pcm_hw_params_set_periods_near(hndl, params, &periods, &dir), "set_periods"); state->buffer_frames = period_size * periods; } else { CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max"); state->buffer_frames = SPA_MIN(state->buffer_frames, state->quantum_limit * 4)* state->frame_scale; CHECK(snd_pcm_hw_params_set_buffer_size_min(hndl, params, &state->buffer_frames), "set_buffer_size_min"); CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near"); periods = state->buffer_frames / period_size; } if (state->buffer_frames == 0) { spa_log_error(state->log, "%s: invalid buffer_frames 0 (driver error?)", state->props.device); return -EIO; } state->headroom = state->default_headroom; if (is_batch) state->headroom += period_size; if (spa_strstartswith(state->props.device, "a52") || spa_strstartswith(state->props.device, "dca")) state->min_delay = SPA_MIN(2048u, state->buffer_frames); else state->min_delay = 0; state->headroom = SPA_MIN(state->headroom, state->buffer_frames); state->start_delay = state->default_start_delay; state->latency[state->port_direction].min_rate = state->latency[state->port_direction].max_rate = SPA_MAX(state->min_delay, state->headroom); spa_log_info(state->log, "%s (%s): format:%s access:%s-%s rate:%d channels:%d " "buffer frames %lu, period frames %lu, periods %u, frame_size %zd " "headroom %u start-delay:%u", state->props.device, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback", snd_pcm_format_name(state->format), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", state->rate, state->channels, state->buffer_frames, state->period_frames, periods, state->frame_size, state->headroom, state->start_delay); /* write the parameters to device */ CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params"); return match ? 0 : 1; } static int set_swparams(struct state *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_sw_params_alloca(¶ms); /* get the current params */ CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current"); CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); CHECK(snd_pcm_sw_params_set_tstamp_type(hndl, params, SND_PCM_TSTAMP_TYPE_MONOTONIC), "sw_params_set_tstamp_type"); #if 0 snd_pcm_uframes_t boundary; CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary"); CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold"); #endif /* start the transfer */ CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold"); CHECK(snd_pcm_sw_params_set_period_event(hndl, params, 0), "set_period_event"); /* write the parameters to the playback device */ CHECK(snd_pcm_sw_params(hndl, params), "sw_params"); if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) { spa_log_debug(state->log, "state after sw_params:"); snd_pcm_dump(hndl, state->output); fflush(state->log_file); } return 0; } static int set_timeout(struct state *state, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(state->data_system, state->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); return 0; } int spa_alsa_silence(struct state *state, snd_pcm_uframes_t silence) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t frames, offset; int i, res; if (state->use_mmap) { frames = state->buffer_frames; if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } silence = SPA_MIN(silence, frames); spa_log_trace_fp(state->log, "%p: frames:%ld offset:%ld silence %ld", state, frames, offset, silence); snd_pcm_areas_silence(my_areas, offset, state->channels, silence, state->format); if (SPA_UNLIKELY((res = snd_pcm_mmap_commit(hndl, offset, silence)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s", state->props.device, snd_strerror(res)); return res; } } else { uint8_t buffer[silence * state->frame_size]; memset(buffer, 0, silence * state->frame_size); if (state->planar) { void *bufs[state->channels]; for (i = 0; i < state->channels; i++) bufs[i] = buffer; snd_pcm_writen(hndl, bufs, silence); } else { snd_pcm_writei(hndl, buffer, silence); } } return 0; } static inline int do_start(struct state *state) { int res; if (SPA_UNLIKELY(!state->alsa_started)) { spa_log_trace(state->log, "%p: snd_pcm_start", state); if ((res = snd_pcm_start(state->hndl)) < 0) { spa_log_error(state->log, "%s: snd_pcm_start: %s", state->props.device, snd_strerror(res)); return res; } state->alsa_started = true; } return 0; } static int alsa_recover(struct state *state, int err) { int res, st; snd_pcm_status_t *status; snd_pcm_status_alloca(&status); if (SPA_UNLIKELY((res = snd_pcm_status(state->hndl, status)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_status error: %s", state->props.device, snd_strerror(res)); goto recover; } st = snd_pcm_status_get_state(status); switch (st) { case SND_PCM_STATE_XRUN: { struct timeval now, trigger, diff; uint64_t delay, missing; snd_pcm_status_get_tstamp (status, &now); snd_pcm_status_get_trigger_tstamp (status, &trigger); timersub(&now, &trigger, &diff); delay = SPA_TIMEVAL_TO_USEC(&diff); missing = delay * state->rate / SPA_USEC_PER_SEC; spa_log_trace(state->log, "%p: xrun of %"PRIu64" usec %"PRIu64, state, delay, missing); spa_node_call_xrun(&state->callbacks, SPA_TIMEVAL_TO_USEC(&trigger), delay, NULL); state->sample_count += missing ? missing : state->threshold; break; } case SND_PCM_STATE_SUSPENDED: spa_log_info(state->log, "%s: recover from state %s", state->props.device, snd_pcm_state_name(st)); res = snd_pcm_resume(state->hndl); if (res >= 0) return res; err = -ESTRPIPE; break; default: spa_log_error(state->log, "%s: recover from error state %s", state->props.device, snd_pcm_state_name(st)); break; } recover: if (SPA_UNLIKELY((res = snd_pcm_recover(state->hndl, err, true)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_recover error: %s", state->props.device, snd_strerror(res)); return res; } spa_dll_init(&state->dll); state->alsa_recovering = true; state->alsa_started = false; if (state->stream == SND_PCM_STREAM_PLAYBACK) spa_alsa_silence(state, state->start_delay + state->threshold + state->headroom); return do_start(state); } static int get_avail(struct state *state, uint64_t current_time) { int res, missed; snd_pcm_sframes_t avail; if (SPA_UNLIKELY((avail = snd_pcm_avail(state->hndl)) < 0)) { if ((res = alsa_recover(state, avail)) < 0) return res; if ((avail = snd_pcm_avail(state->hndl)) < 0) { if ((missed = ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_warn(state->log, "%s: (%d missed) snd_pcm_avail after recover: %s", state->props.device, missed, snd_strerror(avail)); } avail = state->threshold * 2; } } else { state->alsa_recovering = false; } return avail; } #if 0 static int get_avail_htimestamp(struct state *state, uint64_t current_time) { int res, missed; snd_pcm_uframes_t avail; snd_htimestamp_t tstamp; uint64_t then; if ((res = snd_pcm_htimestamp(state->hndl, &avail, &tstamp)) < 0) { if ((res = alsa_recover(state, avail)) < 0) return res; if ((res = snd_pcm_htimestamp(state->hndl, &avail, &tstamp)) < 0) { if ((missed = ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_warn(state->log, "%s: (%d missed) snd_pcm_htimestamp error: %s", state->props.device, missed, snd_strerror(res)); } avail = state->threshold * 2; } } else { state->alsa_recovering = false; } if ((then = SPA_TIMESPEC_TO_NSEC(&tstamp)) != 0) { if (then < current_time) avail += (current_time - then) * state->rate / SPA_NSEC_PER_SEC; else avail -= (then - current_time) * state->rate / SPA_NSEC_PER_SEC; } return SPA_MIN(avail, state->buffer_frames); } #endif static int get_status(struct state *state, uint64_t current_time, snd_pcm_uframes_t *delay, snd_pcm_uframes_t *target) { int avail; if ((avail = get_avail(state, current_time)) < 0) return avail; avail = SPA_MIN(avail, (int)state->buffer_frames); *target = state->threshold + state->headroom; if (state->resample && state->rate_match) { state->delay = state->rate_match->delay; state->read_size = state->rate_match->size; } else { state->delay = 0; state->read_size = state->threshold; } if (state->stream == SND_PCM_STREAM_PLAYBACK) { *delay = state->buffer_frames - avail; } else { *delay = avail; *target = SPA_MAX(*target, state->read_size); } *target = SPA_CLAMP(*target, state->min_delay, state->buffer_frames); return 0; } static int update_time(struct state *state, uint64_t current_time, snd_pcm_sframes_t delay, snd_pcm_sframes_t target, bool follower) { double err, corr; int32_t diff; if (state->stream == SND_PCM_STREAM_PLAYBACK) err = delay - target; else err = target - delay; if (SPA_UNLIKELY(state->dll.bw == 0.0)) { spa_dll_set_bw(&state->dll, SPA_DLL_BW_MAX, state->threshold, state->rate); state->next_time = current_time; state->base_time = current_time; } diff = (int32_t) (state->last_threshold - state->threshold); if (SPA_UNLIKELY(diff != 0)) { err -= diff; spa_log_trace(state->log, "%p: follower:%d quantum change %d -> %d (%d) %f", state, follower, state->last_threshold, state->threshold, diff, err); state->last_threshold = state->threshold; state->alsa_sync = true; state->alsa_sync_warning = false; } if (err > state->max_error) { err = state->max_error; state->alsa_sync = true; } else if (err < -state->max_error) { err = -state->max_error; state->alsa_sync = true; } if (!follower || state->matching) corr = spa_dll_update(&state->dll, err); else corr = 1.0; if (diff < 0) state->next_time += diff / corr * 1e9 / state->rate; if (SPA_UNLIKELY((state->next_time - state->base_time) > BW_PERIOD)) { state->base_time = state->next_time; spa_log_debug(state->log, "%s: follower:%d match:%d rate:%f " "bw:%f thr:%u del:%ld target:%ld err:%f max:%f", state->props.device, follower, state->matching, corr, state->dll.bw, state->threshold, delay, target, err, state->max_error); } if (state->rate_match) { if (state->stream == SND_PCM_STREAM_PLAYBACK) state->rate_match->rate = corr; else state->rate_match->rate = 1.0/corr; SPA_FLAG_UPDATE(state->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, state->matching); } state->next_time += state->threshold / corr * 1e9 / state->rate; if (SPA_LIKELY(!follower && state->clock)) { state->clock->nsec = current_time; state->clock->position += state->duration; state->clock->duration = state->duration; state->clock->delay = delay + state->delay; state->clock->rate_diff = corr; state->clock->next_nsec = state->next_time; } spa_log_trace_fp(state->log, "%p: follower:%d %"PRIu64" %f %ld %f %f %u", state, follower, current_time, corr, delay, err, state->threshold * corr, state->threshold); return 0; } static inline bool is_following(struct state *state) { return state->position && state->clock && state->position->clock.id != state->clock->id; } static int setup_matching(struct state *state) { state->matching = state->following; if (state->position == NULL) return -ENOTSUP; spa_log_debug(state->log, "driver clock:'%s' our clock:'%s'", state->position->clock.name, state->clock_name); if (spa_streq(state->position->clock.name, state->clock_name)) state->matching = false; state->resample = ((uint32_t)state->rate != state->rate_denom) || state->matching; spa_log_info(state->log, "driver clock:'%s'@%d our clock:'%s'@%d matching:%d resample:%d", state->position->clock.name, state->rate_denom, state->clock_name, state->rate, state->matching, state->resample); return 0; } static inline void check_position_config(struct state *state) { if (SPA_UNLIKELY(state->position == NULL)) return; if (SPA_UNLIKELY((state->duration != state->position->clock.duration) || (state->rate_denom != state->position->clock.rate.denom))) { state->duration = state->position->clock.duration; state->rate_denom = state->position->clock.rate.denom; state->threshold = SPA_SCALE32_UP(state->duration, state->rate, state->rate_denom); state->max_error = SPA_MAX(256.0f, state->threshold / 2.0f); state->resample = ((uint32_t)state->rate != state->rate_denom) || state->matching; state->alsa_sync = true; } } int spa_alsa_write(struct state *state) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t written, frames, offset, off, to_write, total_written, max_write; snd_pcm_sframes_t commitres; int res = 0, missed; size_t frame_size = state->frame_size; check_position_config(state); max_write = state->buffer_frames; if (state->following && state->alsa_started) { uint64_t current_time; snd_pcm_uframes_t delay, target; current_time = state->position->clock.nsec; if (SPA_UNLIKELY((res = get_status(state, current_time, &delay, &target)) < 0)) return res; if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, true)) < 0)) return res; if (SPA_UNLIKELY(state->alsa_sync)) { enum spa_log_level lev; if (SPA_UNLIKELY(state->alsa_sync_warning)) lev = SPA_LOG_LEVEL_WARN; else lev = SPA_LOG_LEVEL_INFO; if ((missed = ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_lev(state->log, lev, "%s: follower delay:%ld target:%ld thr:%u, " "resync (%d missed)", state->props.device, delay, target, state->threshold, missed); } if (delay > target) snd_pcm_rewind(state->hndl, delay - target); else if (delay < target) spa_alsa_silence(state, target - delay); delay = target; state->alsa_sync = false; } else state->alsa_sync_warning = true; } total_written = 0; again: frames = max_write; if (state->use_mmap && frames > 0) { if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } spa_log_trace_fp(state->log, "%p: begin %ld %ld %d", state, offset, frames, state->threshold); off = offset; } else { off = 0; } to_write = frames; written = 0; while (!spa_list_is_empty(&state->ready) && to_write > 0) { size_t n_bytes, n_frames; struct buffer *b; struct spa_data *d; uint32_t i, offs, size, last_offset; b = spa_list_first(&state->ready, struct buffer, link); d = b->buf->datas; offs = d[0].chunk->offset + state->ready_offset; last_offset = d[0].chunk->size; size = last_offset - state->ready_offset; offs = SPA_MIN(offs, d[0].maxsize); size = SPA_MIN(d[0].maxsize - offs, size); n_frames = SPA_MIN(size / frame_size, to_write); n_bytes = n_frames * frame_size; if (SPA_LIKELY(state->use_mmap)) { for (i = 0; i < b->buf->n_datas; i++) { spa_memcpy(SPA_PTROFF(my_areas[i].addr, off * frame_size, void), SPA_PTROFF(d[i].data, offs, void), n_bytes); } } else { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) bufs[i] = SPA_PTROFF(d[i].data, offs, void); if (state->planar) snd_pcm_writen(hndl, bufs, n_frames); else snd_pcm_writei(hndl, bufs[0], n_frames); } state->ready_offset += n_bytes; if (state->ready_offset >= last_offset) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); state->io->buffer_id = b->id; spa_log_trace_fp(state->log, "%p: reuse buffer %u", state, b->id); spa_node_call_reuse_buffer(&state->callbacks, 0, b->id); state->ready_offset = 0; } written += n_frames; off += n_frames; to_write -= n_frames; } spa_log_trace_fp(state->log, "%p: commit %ld %ld %"PRIi64, state, offset, written, state->sample_count); total_written += written; if (state->use_mmap && written > 0) { if (SPA_UNLIKELY((commitres = snd_pcm_mmap_commit(hndl, offset, written)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s", state->props.device, snd_strerror(commitres)); if (commitres != -EPIPE && commitres != -ESTRPIPE) return res; } if (commitres > 0 && written != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, "%s: mmap_commit wrote %ld instead of %ld", state->props.device, commitres, written); } } if (!spa_list_is_empty(&state->ready) && written > 0) goto again; state->sample_count += total_written; if (SPA_UNLIKELY(!state->alsa_started && (total_written > 0 || frames == 0))) do_start(state); return 0; } void spa_alsa_recycle_buffer(struct state *this, uint32_t buffer_id) { struct buffer *b = &this->buffers[buffer_id]; if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) { spa_log_trace_fp(this->log, "%p: recycle buffer %u", this, buffer_id); spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } static snd_pcm_uframes_t push_frames(struct state *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0; if (spa_list_is_empty(&state->free)) { spa_log_warn(state->log, "%s: no more buffers", state->props.device); total_frames = frames; } else { size_t n_bytes, left, frame_size = state->frame_size; struct buffer *b; struct spa_data *d; uint32_t i, avail, l0, l1; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); if (b->h) { b->h->seq = state->sample_count; b->h->pts = state->next_time; b->h->dts_offset = 0; } d = b->buf->datas; avail = d[0].maxsize / frame_size; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * frame_size; if (my_areas) { left = state->buffer_frames - offset; l0 = SPA_MIN(n_bytes, left * frame_size); l1 = n_bytes - l0; for (i = 0; i < b->buf->n_datas; i++) { spa_memcpy(d[i].data, SPA_PTROFF(my_areas[i].addr, offset * frame_size, void), l0); if (SPA_UNLIKELY(l1 > 0)) spa_memcpy(SPA_PTROFF(d[i].data, l0, void), my_areas[i].addr, l1); d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = frame_size; } } else { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) { bufs[i] = d[i].data; d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = frame_size; } if (state->planar) { snd_pcm_readn(state->hndl, bufs, total_frames); } else { snd_pcm_readi(state->hndl, bufs[0], total_frames); } } spa_log_trace_fp(state->log, "%p: wrote %ld frames into buffer %d", state, total_frames, b->id); spa_list_append(&state->ready, &b->link); } return total_frames; } int spa_alsa_read(struct state *state) { snd_pcm_t *hndl = state->hndl; snd_pcm_uframes_t total_read = 0, to_read, max_read; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t read, frames, offset; snd_pcm_sframes_t commitres; int res = 0, missed; check_position_config(state); max_read = state->buffer_frames; if (state->following && state->alsa_started) { uint64_t current_time; snd_pcm_uframes_t avail, delay, target; current_time = state->position->clock.nsec; if ((res = get_status(state, current_time, &delay, &target)) < 0) return res; avail = delay; if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, true)) < 0)) return res; if (state->alsa_sync) { enum spa_log_level lev; if (SPA_UNLIKELY(state->alsa_sync_warning)) lev = SPA_LOG_LEVEL_WARN; else lev = SPA_LOG_LEVEL_INFO; if ((missed = ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_lev(state->log, lev, "%s: follower delay:%ld target:%ld thr:%u, " "resync (%d missed)", state->props.device, delay, target, state->threshold, missed); } if (delay < target) max_read = target - delay; else if (delay > target) snd_pcm_forward(state->hndl, delay - target); delay = target; state->alsa_sync = false; } else state->alsa_sync_warning = true; if (avail < state->read_size) max_read = 0; } frames = SPA_MIN(max_read, state->read_size); if (state->use_mmap) { to_read = state->buffer_frames; if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &to_read)) < 0) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->props.device, snd_strerror(res)); return res; } spa_log_trace_fp(state->log, "%p: begin offs:%ld frames:%ld to_read:%ld thres:%d", state, offset, frames, to_read, state->threshold); } else { my_areas = NULL; offset = 0; } if (frames > 0) { read = push_frames(state, my_areas, offset, frames); total_read += read; } else { spa_alsa_skip(state); total_read += state->read_size; read = 0; } if (state->use_mmap && read > 0) { spa_log_trace_fp(state->log, "%p: commit offs:%ld read:%ld count:%"PRIi64, state, offset, read, state->sample_count); if ((commitres = snd_pcm_mmap_commit(hndl, offset, read)) < 0) { spa_log_error(state->log, "%s: snd_pcm_mmap_commit error %lu %lu: %s", state->props.device, frames, read, snd_strerror(commitres)); if (commitres != -EPIPE && commitres != -ESTRPIPE) return res; } if (commitres > 0 && read != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, "%s: mmap_commit read %ld instead of %ld", state->props.device, commitres, read); } } state->sample_count += total_read; return 0; } int spa_alsa_skip(struct state *state) { struct buffer *b; struct spa_data *d; uint32_t i, avail, total_frames, n_bytes, frames; if (spa_list_is_empty(&state->free)) { spa_log_warn(state->log, "%s: no more buffers", state->props.device); return -EPIPE; } frames = state->read_size; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); d = b->buf->datas; avail = d[0].maxsize / state->frame_size; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * state->frame_size; for (i = 0; i < b->buf->n_datas; i++) { memset(d[i].data, 0, n_bytes); d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = state->frame_size; } spa_list_append(&state->ready, &b->link); return 0; } static int handle_play(struct state *state, uint64_t current_time, snd_pcm_uframes_t delay, snd_pcm_uframes_t target) { int res; if (state->alsa_started && SPA_UNLIKELY(delay > target + state->max_error)) { spa_log_trace(state->log, "%p: early wakeup %lu %lu", state, delay, target); if (delay > target * 3) delay = target * 3; state->next_time = current_time + (delay - target) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, false)) < 0)) return res; if (spa_list_is_empty(&state->ready)) { struct spa_io_buffers *io = state->io; spa_log_trace_fp(state->log, "%p: %d", state, io->status); io->status = SPA_STATUS_NEED_DATA; res = spa_node_call_ready(&state->callbacks, SPA_STATUS_NEED_DATA); } else { res = spa_alsa_write(state); } return res; } static int handle_capture(struct state *state, uint64_t current_time, snd_pcm_uframes_t delay, snd_pcm_uframes_t target) { int res; struct spa_io_buffers *io; if (SPA_UNLIKELY(delay < target)) { spa_log_trace(state->log, "%p: early wakeup %ld %ld", state, delay, target); state->next_time = current_time + (target - delay) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY(res = update_time(state, current_time, delay, target, false)) < 0) return res; if ((res = spa_alsa_read(state)) < 0) return res; if (spa_list_is_empty(&state->ready)) return 0; io = state->io; if (io != NULL && (io->status != SPA_STATUS_HAVE_DATA || state->rate_match != NULL)) { struct buffer *b; if (io->buffer_id < state->n_buffers) spa_alsa_recycle_buffer(state, io->buffer_id); b = spa_list_first(&state->ready, struct buffer, link); spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); io->buffer_id = b->id; io->status = SPA_STATUS_HAVE_DATA; spa_log_trace_fp(state->log, "%p: output buffer:%d", state, b->id); } spa_node_call_ready(&state->callbacks, SPA_STATUS_HAVE_DATA); return 0; } static void alsa_on_timeout_event(struct spa_source *source) { struct state *state = source->data; snd_pcm_uframes_t delay, target; uint64_t expire, current_time; int res; if (SPA_LIKELY(state->started)) { if (SPA_UNLIKELY((res = spa_system_timerfd_read(state->data_system, state->timerfd, &expire)) < 0)) { /* we can get here when the timer is changed since the last * timerfd wakeup, for example by do_reassign_follower() executed * in the same epoll wakeup cycle */ if (res != -EAGAIN) spa_log_warn(state->log, "%p: error reading timerfd: %s", state, spa_strerror(res)); return; } } check_position_config(state); current_time = state->next_time; if (SPA_UNLIKELY(get_status(state, current_time, &delay, &target) < 0)) { spa_log_error(state->log, "get_status error"); state->next_time += state->threshold * 1e9 / state->rate; goto done; } #ifndef FASTPATH if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_TRACE))) { struct timespec now; uint64_t nsec; if (spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now) < 0) return; nsec = SPA_TIMESPEC_TO_NSEC(&now); spa_log_trace_fp(state->log, "%p: timeout %lu %lu %"PRIu64" %"PRIu64" %"PRIi64 " %d %"PRIi64, state, delay, target, nsec, nsec, nsec - current_time, state->threshold, state->sample_count); } #endif if (state->stream == SND_PCM_STREAM_PLAYBACK) handle_play(state, current_time, delay, target); else handle_capture(state, current_time, delay, target); done: if (state->next_time > current_time + SPA_NSEC_PER_SEC || current_time > state->next_time + SPA_NSEC_PER_SEC) { spa_log_error(state->log, "%s: impossible timeout %lu %lu %"PRIu64" %"PRIu64" %"PRIi64 " %d %"PRIi64, state->props.device, delay, target, current_time, state->next_time, state->next_time - current_time, state->threshold, state->sample_count); state->next_time = current_time + state->threshold * 1e9 / state->rate; } set_timeout(state, state->next_time); } static void reset_buffers(struct state *this) { uint32_t i; spa_list_init(&this->free); spa_list_init(&this->ready); for (i = 0; i < this->n_buffers; i++) { struct buffer *b = &this->buffers[i]; if (this->stream == SND_PCM_STREAM_PLAYBACK) { SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); } else { spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } } static int set_timers(struct state *state) { struct timespec now; int res; if ((res = spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now)) < 0) return res; state->next_time = SPA_TIMESPEC_TO_NSEC(&now); if (state->following) { set_timeout(state, 0); } else { set_timeout(state, state->next_time); } return 0; } int spa_alsa_start(struct state *state) { int err; if (state->started) return 0; if (state->position) { state->duration = state->position->clock.duration; state->rate_denom = state->position->clock.rate.denom; } else { spa_log_warn(state->log, "%s: no position set, using defaults", state->props.device); state->duration = 1024; state->rate_denom = state->rate; } if (state->rate_denom == 0) { spa_log_error(state->log, "%s: unset rate_denom", state->props.device); return -EIO; } if (state->duration == 0) { spa_log_error(state->log, "%s: unset duration", state->props.device); return -EIO; } state->following = is_following(state); setup_matching(state); spa_dll_init(&state->dll); state->threshold = SPA_SCALE32_UP(state->duration, state->rate, state->rate_denom); state->last_threshold = state->threshold; state->max_error = SPA_MAX(256.0f, state->threshold / 2.0f); spa_log_debug(state->log, "%p: start %d duration:%d rate:%d follower:%d match:%d resample:%d", state, state->threshold, state->duration, state->rate_denom, state->following, state->matching, state->resample); CHECK(set_swparams(state), "swparams"); if ((err = snd_pcm_prepare(state->hndl)) < 0 && err != -EBUSY) { spa_log_error(state->log, "%s: snd_pcm_prepare error: %s", state->props.device, snd_strerror(err)); return err; } state->source.func = alsa_on_timeout_event; state->source.data = state; state->source.fd = state->timerfd; state->source.mask = SPA_IO_IN; state->source.rmask = 0; spa_loop_add_source(state->data_loop, &state->source); reset_buffers(state); state->alsa_sync = true; state->alsa_sync_warning = false; state->alsa_recovering = false; state->alsa_started = false; /* start capture now, playback will start after first write */ if (state->stream == SND_PCM_STREAM_PLAYBACK) spa_alsa_silence(state, state->start_delay + state->threshold + state->headroom); else if ((err = do_start(state)) < 0) return err; set_timers(state); state->started = true; return 0; } static int do_reassign_follower(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; set_timers(state); spa_dll_init(&state->dll); return 0; } int spa_alsa_reassign_follower(struct state *state) { bool following, freewheel; if (!state->started) return 0; following = is_following(state); if (following != state->following) { spa_log_debug(state->log, "%p: reassign follower %d->%d", state, state->following, following); state->following = following; spa_loop_invoke(state->data_loop, do_reassign_follower, 0, NULL, 0, true, state); } setup_matching(state); freewheel = state->position && SPA_FLAG_IS_SET(state->position->clock.flags, SPA_IO_CLOCK_FLAG_FREEWHEEL); if (state->freewheel != freewheel) { spa_log_debug(state->log, "%p: freewheel %d->%d", state, state->freewheel, freewheel); state->freewheel = freewheel; if (freewheel) snd_pcm_pause(state->hndl, 1); else snd_pcm_pause(state->hndl, 0); } state->alsa_sync_warning = false; return 0; } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; struct itimerspec ts; spa_loop_remove_source(state->data_loop, &state->source); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(state->data_system, state->timerfd, 0, &ts, NULL); return 0; } int spa_alsa_pause(struct state *state) { int err; if (!state->started) return 0; spa_log_debug(state->log, "%p: pause", state); spa_loop_invoke(state->data_loop, do_remove_source, 0, NULL, 0, true, state); if ((err = snd_pcm_drop(state->hndl)) < 0) spa_log_error(state->log, "%s: snd_pcm_drop %s", state->props.device, snd_strerror(err)); state->started = false; return 0; }