/* Spa * * Copyright © 2020 Wim Taymans * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #define DEFAULT_DEVICE "hw:0" #define M_PI_M2 (M_PI + M_PI) #define BW_PERIOD (SPA_NSEC_PER_SEC * 3) struct state { const char *device; unsigned int format; unsigned int rate; unsigned int channels; snd_pcm_uframes_t period; snd_pcm_uframes_t buffer_frames; snd_pcm_t *hndl; int timerfd; double max_error; float accumulator; uint64_t next_time; uint64_t prev_time; struct spa_dll dll; }; static int set_timeout(struct state *state, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; return timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL); } #define CHECK(s,msg,...) { \ int __err; \ if ((__err = (s)) < 0) { \ fprintf(stderr, msg ": %s\n", ##__VA_ARGS__, snd_strerror(__err)); \ return __err; \ } \ } #define LOOP(type,areas,scale) { \ uint32_t i, j; \ type *samples, v; \ samples = (type*)((uint8_t*)areas[0].addr + (areas[0].first + offset*areas[0].step) / 8); \ for (i = 0; i < frames; i++) { \ state->accumulator += M_PI_M2 * 440 / state->rate; \ if (state->accumulator >= M_PI_M2) \ state->accumulator -= M_PI_M2; \ v = sin(state->accumulator) * scale; \ for (j = 0; j < state->channels; j++) \ *samples++ = v; \ } \ } static int write_period(struct state *state) { snd_pcm_uframes_t frames = state->period; snd_pcm_uframes_t offset; const snd_pcm_channel_area_t* areas; snd_pcm_mmap_begin(state->hndl, &areas, &offset, &frames); switch (state->format) { case SND_PCM_FORMAT_S32_LE: LOOP(int32_t, areas, 0x7fffffff); break; case SND_PCM_FORMAT_S16_LE: LOOP(int16_t, areas, 0x7fff); break; default: break; } snd_pcm_mmap_commit(state->hndl, offset, frames) ; return 0; } static int on_timer_wakeup(struct state *state) { snd_pcm_sframes_t delay; double error, corr; #if 1 snd_pcm_sframes_t avail; CHECK(snd_pcm_avail_delay(state->hndl, &avail, &delay), "delay"); #else snd_pcm_uframes_t avail; snd_htimestamp_t tstamp; uint64_t then; CHECK(snd_pcm_htimestamp(state->hndl, &avail, &tstamp), "htimestamp"); delay = state->buffer_frames - avail; then = SPA_TIMESPEC_TO_NSEC(&tstamp); if (then != 0) { if (then < state->next_time) { delay -= (state->next_time - then) * state->rate / SPA_NSEC_PER_SEC; } else { delay += (then - state->next_time) * state->rate / SPA_NSEC_PER_SEC; } } #endif /* calculate the error, we want to have exactly 1 period of * samples remaining in the device when we wakeup. */ error = (double)delay - (double)state->period; if (error > state->max_error) error = state->max_error; else if (error < -state->max_error) error = -state->max_error; /* update the dll with the error, this gives a rate correction */ corr = spa_dll_update(&state->dll, error); /* set our new adjusted timeout. alternatively, this value can * instead be used to drive a resampler if this device is * slaved. */ state->next_time += state->period / corr * 1e9 / state->rate; set_timeout(state, state->next_time); if (state->next_time - state->prev_time > BW_PERIOD) { state->prev_time = state->next_time; fprintf(stdout, "corr:%f error:%f bw:%f\n", corr, error, state->dll.bw); } /* pull in new samples write a new period */ write_period(state); return 0; } static unsigned int format_from_string(const char *str) { if (strcmp(str, "S32_LE") == 0) return SND_PCM_FORMAT_S32_LE; else if (strcmp(str, "S32_BE") == 0) return SND_PCM_FORMAT_S32_BE; else if (strcmp(str, "S24_LE") == 0) return SND_PCM_FORMAT_S24_LE; else if (strcmp(str, "S24_BE") == 0) return SND_PCM_FORMAT_S24_BE; else if (strcmp(str, "S24_3LE") == 0) return SND_PCM_FORMAT_S24_3LE; else if (strcmp(str, "S24_3_BE") == 0) return SND_PCM_FORMAT_S24_3BE; else if (strcmp(str, "S16_LE") == 0) return SND_PCM_FORMAT_S16_LE; else if (strcmp(str, "S16_BE") == 0) return SND_PCM_FORMAT_S16_BE; return 0; } static void show_help(const char *name, bool error) { fprintf(error ? stderr : stdout, "%s [options]\n" " -h, --help Show this help\n" " -D, --device device name (default %s)\n", name, DEFAULT_DEVICE); } int main(int argc, char *argv[]) { struct state state = { 0, }; snd_pcm_hw_params_t *hparams; snd_pcm_sw_params_t *sparams; struct timespec now; int c; static const struct option long_options[] = { { "help", no_argument, NULL, 'h' }, { "device", required_argument, NULL, 'D' }, { "format", required_argument, NULL, 'f' }, { "rate", required_argument, NULL, 'r' }, { "channels", required_argument, NULL, 'c' }, { NULL, 0, NULL, 0} }; state.device = DEFAULT_DEVICE; state.format = SND_PCM_FORMAT_S16_LE; state.rate = 44100; state.channels = 2; state.period = 1024; while ((c = getopt_long(argc, argv, "hD:f:r:c:", long_options, NULL)) != -1) { switch (c) { case 'h': show_help(argv[0], false); return 0; case 'D': state.device = optarg; break; case 'f': state.format = format_from_string(optarg); break; case 'r': state.rate = atoi(optarg); break; case 'c': state.channels = atoi(optarg); break; default: show_help(argv[0], true); return -1; } } CHECK(snd_pcm_open(&state.hndl, state.device, SND_PCM_STREAM_PLAYBACK, 0), "open %s failed", state.device); /* hw params */ snd_pcm_hw_params_alloca(&hparams); snd_pcm_hw_params_any(state.hndl, hparams); CHECK(snd_pcm_hw_params_set_access(state.hndl, hparams, SND_PCM_ACCESS_MMAP_INTERLEAVED), "set interleaved"); CHECK(snd_pcm_hw_params_set_format(state.hndl, hparams, state.format), "set format"); CHECK(snd_pcm_hw_params_set_channels_near(state.hndl, hparams, &state.channels), "set channels"); CHECK(snd_pcm_hw_params_set_rate_near(state.hndl, hparams, &state.rate, 0), "set rate"); CHECK(snd_pcm_hw_params(state.hndl, hparams), "hw_params"); CHECK(snd_pcm_hw_params_get_buffer_size(hparams, &state.buffer_frames), "get_buffer_size_max"); fprintf(stdout, "opened format:%s rate:%u channels:%u\n", snd_pcm_format_name(state.format), state.rate, state.channels); snd_pcm_sw_params_alloca(&sparams); #if 0 CHECK(snd_pcm_sw_params_current(state.hndl, sparams), "sw_params_current"); CHECK(snd_pcm_sw_params_set_tstamp_mode(state.hndl, sparams, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_type"); CHECK(snd_pcm_sw_params_set_tstamp_type(state.hndl, sparams, SND_PCM_TSTAMP_TYPE_MONOTONIC), "sw_params_set_tstamp_type"); CHECK(snd_pcm_sw_params(state.hndl, sparams), "sw_params"); #endif spa_dll_init(&state.dll); spa_dll_set_bw(&state.dll, SPA_DLL_BW_MAX, state.period, state.rate); state.max_error = SPA_MAX(256.0, state.period / 2.0f); if ((state.timerfd = timerfd_create(CLOCK_MONOTONIC, 0)) < 0) perror("timerfd"); CHECK(snd_pcm_prepare(state.hndl), "prepare"); /* before we start, write one period */ write_period(&state); /* set our first timeout for now */ clock_gettime(CLOCK_MONOTONIC, &now); state.prev_time = state.next_time = SPA_TIMESPEC_TO_NSEC(&now); set_timeout(&state, state.next_time); /* and start playback */ CHECK(snd_pcm_start(state.hndl), "start"); /* wait for timer to expire and call the wakeup function, * this can be done in a poll loop as well */ while (true) { uint64_t expirations; CHECK(read(state.timerfd, &expirations, sizeof(expirations)), "read"); on_timer_wakeup(&state); } snd_pcm_drain(state.hndl); snd_pcm_close(state.hndl); close(state.timerfd); return EXIT_SUCCESS; }