/* Spa * * Copyright © 2019 Wim Taymans * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include "test-helper.h" #include "fmt-ops.h" static uint32_t cpu_flags; typedef void (*convert_func_t) (struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples); struct stats { uint32_t n_samples; uint32_t n_channels; uint64_t perf; const char *name; const char *impl; }; #define MAX_SAMPLES 4096 #define MAX_CHANNELS 11 #define MAX_COUNT 100 static uint8_t samp_in[MAX_SAMPLES * MAX_CHANNELS * 4]; static uint8_t samp_out[MAX_SAMPLES * MAX_CHANNELS * 4]; static const int sample_sizes[] = { 0, 1, 128, 513, 4096 }; static const int channel_counts[] = { 1, 2, 4, 6, 8, 11 }; #define MAX_RESULTS SPA_N_ELEMENTS(sample_sizes) * SPA_N_ELEMENTS(channel_counts) * 70 static uint32_t n_results = 0; static struct stats results[MAX_RESULTS]; static void run_test1(const char *name, const char *impl, bool in_packed, bool out_packed, convert_func_t func, int n_channels, int n_samples) { int i, j; const void *ip[n_channels]; void *op[n_channels]; struct timespec ts; uint64_t count, t1, t2; struct convert conv; conv.n_channels = n_channels; for (j = 0; j < n_channels; j++) { ip[j] = &samp_in[j * n_samples * 4]; op[j] = &samp_out[j * n_samples * 4]; } clock_gettime(CLOCK_MONOTONIC, &ts); t1 = SPA_TIMESPEC_TO_NSEC(&ts); count = 0; for (i = 0; i < MAX_COUNT; i++) { func(&conv, op, ip, n_samples); count++; } clock_gettime(CLOCK_MONOTONIC, &ts); t2 = SPA_TIMESPEC_TO_NSEC(&ts); spa_assert(n_results < MAX_RESULTS); results[n_results++] = (struct stats) { .n_samples = n_samples, .n_channels = n_channels, .perf = count * (uint64_t)SPA_NSEC_PER_SEC / (t2 - t1), .name = name, .impl = impl }; } static void run_testc(const char *name, const char *impl, bool in_packed, bool out_packed, convert_func_t func, int channel_count) { SPA_FOR_EACH_ELEMENT_VAR(sample_sizes, s) { run_test1(name, impl, in_packed, out_packed, func, channel_count, (*s + (channel_count -1)) / channel_count); } } static void run_test(const char *name, const char *impl, bool in_packed, bool out_packed, convert_func_t func) { SPA_FOR_EACH_ELEMENT_VAR(sample_sizes, s) { SPA_FOR_EACH_ELEMENT_VAR(channel_counts, c) { run_test1(name, impl, in_packed, out_packed, func, *c, (*s + (*c -1)) / *c); } } } static void test_f32_u8(void) { run_test("test_f32_u8", "c", true, true, conv_f32_to_u8_c); run_test("test_f32d_u8", "c", false, true, conv_f32d_to_u8_c); run_test("test_f32_u8d", "c", true, false, conv_f32_to_u8d_c); run_test("test_f32d_u8d", "c", false, false, conv_f32d_to_u8d_c); } static void test_u8_f32(void) { run_test("test_u8_f32", "c", true, true, conv_u8_to_f32_c); run_test("test_u8d_f32", "c", false, true, conv_u8d_to_f32_c); run_test("test_u8_f32d", "c", true, false, conv_u8_to_f32d_c); run_test("test_u8d_f32d", "c", false, false, conv_u8d_to_f32d_c); } static void test_f32_s16(void) { run_test("test_f32_s16", "c", true, true, conv_f32_to_s16_c); run_test("test_f32d_s16", "c", false, true, conv_f32d_to_s16_c); #if defined (HAVE_SSE2) if (cpu_flags & SPA_CPU_FLAG_SSE2) { run_test("test_f32d_s16", "sse2", false, true, conv_f32d_to_s16_sse2); run_testc("test_f32d_s16_2", "sse2", false, true, conv_f32d_to_s16_2_sse2, 2); } #endif #if defined (HAVE_AVX2) if (cpu_flags & SPA_CPU_FLAG_AVX2) { run_test("test_f32d_s16", "avx2", false, true, conv_f32d_to_s16_avx2); run_testc("test_f32d_s16_2", "avx2", false, true, conv_f32d_to_s16_2_avx2, 2); run_testc("test_f32d_s16_4", "avx2", false, true, conv_f32d_to_s16_4_avx2, 4); } #endif run_test("test_f32_s16d", "c", true, false, conv_f32_to_s16d_c); run_test("test_f32d_s16d", "c", false, false, conv_f32d_to_s16d_c); } static void test_s16_f32(void) { run_test("test_s16_f32", "c", true, true, conv_s16_to_f32_c); run_test("test_s16d_f32", "c", false, true, conv_s16d_to_f32_c); run_test("test_s16_f32d", "c", true, false, conv_s16_to_f32d_c); #if defined (HAVE_SSE2) if (cpu_flags & SPA_CPU_FLAG_SSE2) { run_test("test_s16_f32d", "sse2", true, false, conv_s16_to_f32d_sse2); run_testc("test_s16_f32d_2", "sse2", true, false, conv_s16_to_f32d_2_sse2, 2); } #endif #if defined (HAVE_AVX2) if (cpu_flags & SPA_CPU_FLAG_AVX2) { run_test("test_s16_f32d", "avx2", true, false, conv_s16_to_f32d_avx2); run_testc("test_s16_f32d_2", "avx2", true, false, conv_s16_to_f32d_2_avx2, 2); } #endif run_test("test_s16d_f32d", "c", false, false, conv_s16d_to_f32d_c); } static void test_f32_s32(void) { run_test("test_f32_s32", "c", true, true, conv_f32_to_s32_c); run_test("test_f32d_s32", "c", false, true, conv_f32d_to_s32_c); #if defined (HAVE_SSE2) if (cpu_flags & SPA_CPU_FLAG_SSE2) { run_test("test_f32d_s32", "sse2", false, true, conv_f32d_to_s32_sse2); } #endif #if defined (HAVE_AVX2) if (cpu_flags & SPA_CPU_FLAG_AVX2) { run_test("test_f32d_s32", "avx2", false, true, conv_f32d_to_s32_avx2); } #endif run_test("test_f32_s32d", "c", true, false, conv_f32_to_s32d_c); run_test("test_f32d_s32d", "c", false, false, conv_f32d_to_s32d_c); } static void test_s32_f32(void) { run_test("test_s32_f32", "c", true, true, conv_s32_to_f32_c); run_test("test_s32d_f32", "c", false, true, conv_s32d_to_f32_c); #if defined (HAVE_SSE2) if (cpu_flags & SPA_CPU_FLAG_SSE2) { run_test("test_s32_f32d", "sse2", true, false, conv_s32_to_f32d_sse2); } #endif #if defined (HAVE_AVX2) if (cpu_flags & SPA_CPU_FLAG_AVX2) { run_test("test_s32_f32d", "avx2", true, false, conv_s32_to_f32d_avx2); } #endif run_test("test_s32_f32d", "c", true, false, conv_s32_to_f32d_c); run_test("test_s32d_f32d", "c", false, false, conv_s32d_to_f32d_c); } static void test_f32_s24(void) { run_test("test_f32_s24", "c", true, true, conv_f32_to_s24_c); run_test("test_f32d_s24", "c", false, true, conv_f32d_to_s24_c); run_test("test_f32_s24d", "c", true, false, conv_f32_to_s24d_c); run_test("test_f32d_s24d", "c", false, false, conv_f32d_to_s24d_c); } static void test_s24_f32(void) { run_test("test_s24_f32", "c", true, true, conv_s24_to_f32_c); run_test("test_s24d_f32", "c", false, true, conv_s24d_to_f32_c); run_test("test_s24_f32d", "c", true, false, conv_s24_to_f32d_c); #if defined (HAVE_SSE2) if (cpu_flags & SPA_CPU_FLAG_SSE2) { run_test("test_s24_f32d", "sse2", true, false, conv_s24_to_f32d_sse2); } #endif #if defined (HAVE_AVX2) if (cpu_flags & SPA_CPU_FLAG_AVX2) { run_test("test_s24_f32d", "avx2", true, false, conv_s24_to_f32d_avx2); } #endif #if defined (HAVE_SSSE3) if (cpu_flags & SPA_CPU_FLAG_SSSE3) { run_test("test_s24_f32d", "ssse3", true, false, conv_s24_to_f32d_ssse3); } #endif #if defined (HAVE_SSE41) if (cpu_flags & SPA_CPU_FLAG_SSE41) { run_test("test_s24_f32d", "sse41", true, false, conv_s24_to_f32d_sse41); } #endif run_test("test_s24d_f32d", "c", false, false, conv_s24d_to_f32d_c); } static void test_f32_s24_32(void) { run_test("test_f32_s24_32", "c", true, true, conv_f32_to_s24_32_c); run_test("test_f32d_s24_32", "c", false, true, conv_f32d_to_s24_32_c); run_test("test_f32_s24_32d", "c", true, false, conv_f32_to_s24_32d_c); run_test("test_f32d_s24_32d", "c", false, false, conv_f32d_to_s24_32d_c); } static void test_s24_32_f32(void) { run_test("test_s24_32_f32", "c", true, true, conv_s24_32_to_f32_c); run_test("test_s24_32d_f32", "c", false, true, conv_s24_32d_to_f32_c); run_test("test_s24_32_f32d", "c", true, false, conv_s24_32_to_f32d_c); run_test("test_s24_32d_f32d", "c", false, false, conv_s24_32d_to_f32d_c); } static void test_interleave(void) { run_test("test_8d_to_8", "c", false, true, conv_8d_to_8_c); run_test("test_16d_to_16", "c", false, true, conv_16d_to_16_c); run_test("test_24d_to_24", "c", false, true, conv_24d_to_24_c); run_test("test_32d_to_32", "c", false, true, conv_32d_to_32_c); } static void test_deinterleave(void) { run_test("test_8_to_8d", "c", true, false, conv_8_to_8d_c); run_test("test_16_to_16d", "c", true, false, conv_16_to_16d_c); run_test("test_24_to_24d", "c", true, false, conv_24_to_24d_c); run_test("test_32_to_32d", "c", true, false, conv_32_to_32d_c); } static int compare_func(const void *_a, const void *_b) { const struct stats *a = _a, *b = _b; int diff; if ((diff = strcmp(a->name, b->name)) != 0) return diff; if ((diff = a->n_samples - b->n_samples) != 0) return diff; if ((diff = a->n_channels - b->n_channels) != 0) return diff; if ((diff = b->perf - a->perf) != 0) return diff; return 0; } int main(int argc, char *argv[]) { uint32_t i; cpu_flags = get_cpu_flags(); printf("got get CPU flags %d\n", cpu_flags); test_f32_u8(); test_u8_f32(); test_f32_s16(); test_s16_f32(); test_f32_s32(); test_s32_f32(); test_f32_s24(); test_s24_f32(); test_f32_s24_32(); test_s24_32_f32(); test_interleave(); test_deinterleave(); qsort(results, n_results, sizeof(struct stats), compare_func); for (i = 0; i < n_results; i++) { struct stats *s = &results[i]; fprintf(stderr, "%-12."PRIu64" \t%-32.32s %s \t samples %d, channels %d\n", s->perf, s->name, s->impl, s->n_samples, s->n_channels); } return 0; }