/* Spa * * Copyright © 2018 Wim Taymans * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "fmt-ops.h" #include #define _MM_CLAMP_PS(r,min,max) \ _mm_min_ps(_mm_max_ps(r, min), max) #define _MM_CLAMP_SS(r,min,max) \ _mm_min_ss(_mm_max_ss(r, min), max) static void conv_s16_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int16_t *s = src; float *d0 = dst[0]; uint32_t n, unrolled; __m128i in = _mm_setzero_si128(); __m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE); if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16))) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in = _mm_insert_epi16(in, s[0*n_channels], 1); in = _mm_insert_epi16(in, s[1*n_channels], 3); in = _mm_insert_epi16(in, s[2*n_channels], 5); in = _mm_insert_epi16(in, s[3*n_channels], 7); in = _mm_srai_epi32(in, 16); out = _mm_cvtepi32_ps(in); out = _mm_mul_ps(out, factor); _mm_store_ps(&d0[n], out); s += 4*n_channels; } for(; n < n_samples; n++) { out = _mm_cvtsi32_ss(factor, s[0]); out = _mm_mul_ss(out, factor); _mm_store_ss(&d0[n], out); s += n_channels; } } void conv_s16_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const int16_t *s = src[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i < n_channels; i++) conv_s16_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); } void conv_s16_to_f32d_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const int16_t *s = src[0]; float *d0 = dst[0], *d1 = dst[1]; uint32_t n, unrolled; __m128i in[2], t[4]; __m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE); if (SPA_IS_ALIGNED(s, 16) && SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_load_si128((__m128i*)(s + 0)); in[1] = _mm_load_si128((__m128i*)(s + 8)); t[0] = _mm_slli_epi32(in[0], 16); t[0] = _mm_srai_epi32(t[0], 16); out[0] = _mm_cvtepi32_ps(t[0]); out[0] = _mm_mul_ps(out[0], factor); t[1] = _mm_srai_epi32(in[0], 16); out[1] = _mm_cvtepi32_ps(t[1]); out[1] = _mm_mul_ps(out[1], factor); t[2] = _mm_slli_epi32(in[1], 16); t[2] = _mm_srai_epi32(t[2], 16); out[2] = _mm_cvtepi32_ps(t[2]); out[2] = _mm_mul_ps(out[2], factor); t[3] = _mm_srai_epi32(in[1], 16); out[3] = _mm_cvtepi32_ps(t[3]); out[3] = _mm_mul_ps(out[3], factor); _mm_store_ps(&d0[n + 0], out[0]); _mm_store_ps(&d1[n + 0], out[1]); _mm_store_ps(&d0[n + 4], out[2]); _mm_store_ps(&d1[n + 4], out[3]); s += 16; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(factor, s[0]); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_cvtsi32_ss(factor, s[1]); out[1] = _mm_mul_ss(out[1], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); s += 2; } } void conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int24_t *s = src; float *d0 = dst[0]; uint32_t n, unrolled; __m128i in; __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16) && n_samples > 0) { unrolled = n_samples & ~3; if ((n_samples & 3) == 0) unrolled -= 4; } else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in = _mm_setr_epi32( *((uint32_t*)&s[0 * n_channels]), *((uint32_t*)&s[1 * n_channels]), *((uint32_t*)&s[2 * n_channels]), *((uint32_t*)&s[3 * n_channels])); in = _mm_slli_epi32(in, 8); in = _mm_srai_epi32(in, 8); out = _mm_cvtepi32_ps(in); out = _mm_mul_ps(out, factor); _mm_store_ps(&d0[n], out); s += 4 * n_channels; } for(; n < n_samples; n++) { out = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); out = _mm_mul_ss(out, factor); _mm_store_ss(&d0[n], out); s += n_channels; } } static void conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int24_t *s = src; float *d0 = dst[0], *d1 = dst[1]; uint32_t n, unrolled; __m128i in[2]; __m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16) && n_samples > 0) { unrolled = n_samples & ~3; if ((n_samples & 3) == 0) unrolled -= 4; } else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_setr_epi32( *((uint32_t*)&s[0 + 0*n_channels]), *((uint32_t*)&s[0 + 1*n_channels]), *((uint32_t*)&s[0 + 2*n_channels]), *((uint32_t*)&s[0 + 3*n_channels])); in[1] = _mm_setr_epi32( *((uint32_t*)&s[1 + 0*n_channels]), *((uint32_t*)&s[1 + 1*n_channels]), *((uint32_t*)&s[1 + 2*n_channels]), *((uint32_t*)&s[1 + 3*n_channels])); in[0] = _mm_slli_epi32(in[0], 8); in[1] = _mm_slli_epi32(in[1], 8); in[0] = _mm_srai_epi32(in[0], 8); in[1] = _mm_srai_epi32(in[1], 8); out[0] = _mm_cvtepi32_ps(in[0]); out[1] = _mm_cvtepi32_ps(in[1]); out[0] = _mm_mul_ps(out[0], factor); out[1] = _mm_mul_ps(out[1], factor); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); s += 4 * n_channels; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1))); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_mul_ss(out[1], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); s += n_channels; } } static void conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int24_t *s = src; float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; uint32_t n, unrolled; __m128i in[4]; __m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16) && SPA_IS_ALIGNED(d2, 16) && SPA_IS_ALIGNED(d3, 16) && n_samples > 0) { unrolled = n_samples & ~3; if ((n_samples & 3) == 0) unrolled -= 4; } else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_setr_epi32( *((uint32_t*)&s[0 + 0*n_channels]), *((uint32_t*)&s[0 + 1*n_channels]), *((uint32_t*)&s[0 + 2*n_channels]), *((uint32_t*)&s[0 + 3*n_channels])); in[1] = _mm_setr_epi32( *((uint32_t*)&s[1 + 0*n_channels]), *((uint32_t*)&s[1 + 1*n_channels]), *((uint32_t*)&s[1 + 2*n_channels]), *((uint32_t*)&s[1 + 3*n_channels])); in[2] = _mm_setr_epi32( *((uint32_t*)&s[2 + 0*n_channels]), *((uint32_t*)&s[2 + 1*n_channels]), *((uint32_t*)&s[2 + 2*n_channels]), *((uint32_t*)&s[2 + 3*n_channels])); in[3] = _mm_setr_epi32( *((uint32_t*)&s[3 + 0*n_channels]), *((uint32_t*)&s[3 + 1*n_channels]), *((uint32_t*)&s[3 + 2*n_channels]), *((uint32_t*)&s[3 + 3*n_channels])); in[0] = _mm_slli_epi32(in[0], 8); in[1] = _mm_slli_epi32(in[1], 8); in[2] = _mm_slli_epi32(in[2], 8); in[3] = _mm_slli_epi32(in[3], 8); in[0] = _mm_srai_epi32(in[0], 8); in[1] = _mm_srai_epi32(in[1], 8); in[2] = _mm_srai_epi32(in[2], 8); in[3] = _mm_srai_epi32(in[3], 8); out[0] = _mm_cvtepi32_ps(in[0]); out[1] = _mm_cvtepi32_ps(in[1]); out[2] = _mm_cvtepi32_ps(in[2]); out[3] = _mm_cvtepi32_ps(in[3]); out[0] = _mm_mul_ps(out[0], factor); out[1] = _mm_mul_ps(out[1], factor); out[2] = _mm_mul_ps(out[2], factor); out[3] = _mm_mul_ps(out[3], factor); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); _mm_store_ps(&d2[n], out[2]); _mm_store_ps(&d3[n], out[3]); s += 4 * n_channels; } for(; n < n_samples; n++) { out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s)); out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1))); out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2))); out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3))); out[0] = _mm_mul_ss(out[0], factor); out[1] = _mm_mul_ss(out[1], factor); out[2] = _mm_mul_ss(out[2], factor); out[3] = _mm_mul_ss(out[3], factor); _mm_store_ss(&d0[n], out[0]); _mm_store_ss(&d1[n], out[1]); _mm_store_ss(&d2[n], out[2]); _mm_store_ss(&d3[n], out[3]); s += n_channels; } } void conv_s24_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const int8_t *s = src[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_s24_to_f32d_4s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_s24_to_f32d_2s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); for(; i < n_channels; i++) conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples); } void conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const int32_t *s = src; float *d0 = dst[0]; uint32_t n, unrolled; __m128i in; __m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); if (SPA_IS_ALIGNED(d0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in = _mm_setr_epi32(s[0*n_channels], s[1*n_channels], s[2*n_channels], s[3*n_channels]); in = _mm_srai_epi32(in, 8); out = _mm_cvtepi32_ps(in); out = _mm_mul_ps(out, factor); _mm_store_ps(&d0[n], out); s += 4*n_channels; } for(; n < n_samples; n++) { out = _mm_cvtsi32_ss(factor, s[0]>>8); out = _mm_mul_ss(out, factor); _mm_store_ss(&d0[n], out); s += n_channels; } } void conv_s32_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const int32_t *s = src[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i < n_channels; i++) conv_s32_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); } static void conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[1]; __m128i out[4]; __m128 scale = _mm_set1_ps(S24_SCALE); __m128 int_min = _mm_set1_ps(S24_MIN); __m128 int_max = _mm_set1_ps(S24_MAX); if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); out[0] = _mm_cvtps_epi32(in[0]); out[0] = _mm_slli_epi32(out[0], 8); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); d[0*n_channels] = _mm_cvtsi128_si32(out[0]); d[1*n_channels] = _mm_cvtsi128_si32(out[1]); d[2*n_channels] = _mm_cvtsi128_si32(out[2]); d[3*n_channels] = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[0] = _mm_mul_ss(in[0], scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); *d = _mm_cvtss_si32(in[0]) << 8; d += n_channels; } } static void conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2], t[2]; __m128 scale = _mm_set1_ps(S24_SCALE); __m128 int_min = _mm_set1_ps(S24_MIN); __m128 int_max = _mm_set1_ps(S24_MAX); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); in[1] = _MM_CLAMP_PS(in[1], int_min, int_max); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_slli_epi32(out[0], 8); out[1] = _mm_slli_epi32(out[1], 8); t[0] = _mm_unpacklo_epi32(out[0], out[1]); t[1] = _mm_unpackhi_epi32(out[0], out[1]); _mm_storel_pd((double*)(d + 0*n_channels), (__m128d)t[0]); _mm_storeh_pd((double*)(d + 1*n_channels), (__m128d)t[0]); _mm_storel_pd((double*)(d + 2*n_channels), (__m128d)t[1]); _mm_storeh_pd((double*)(d + 3*n_channels), (__m128d)t[1]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[1] = _mm_load_ss(&s1[n]); in[0] = _mm_unpacklo_ps(in[0], in[1]); in[0] = _mm_mul_ps(in[0], scale); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); out[0] = _mm_cvtps_epi32(in[0]); out[0] = _mm_slli_epi32(out[0], 8); _mm_storel_epi64((__m128i*)d, out[0]); d += n_channels; } } static void conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; int32_t *d = dst; uint32_t n, unrolled; __m128 in[4]; __m128i out[4]; __m128 scale = _mm_set1_ps(S24_SCALE); __m128 int_min = _mm_set1_ps(S24_MIN); __m128 int_max = _mm_set1_ps(S24_MAX); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale); in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale); in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); in[1] = _MM_CLAMP_PS(in[1], int_min, int_max); in[2] = _MM_CLAMP_PS(in[2], int_min, int_max); in[3] = _MM_CLAMP_PS(in[3], int_min, int_max); _MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[2] = _mm_cvtps_epi32(in[2]); out[3] = _mm_cvtps_epi32(in[3]); out[0] = _mm_slli_epi32(out[0], 8); out[1] = _mm_slli_epi32(out[1], 8); out[2] = _mm_slli_epi32(out[2], 8); out[3] = _mm_slli_epi32(out[3], 8); _mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]); _mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]); _mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]); _mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s0[n]); in[1] = _mm_load_ss(&s1[n]); in[2] = _mm_load_ss(&s2[n]); in[3] = _mm_load_ss(&s3[n]); in[0] = _mm_unpacklo_ps(in[0], in[2]); in[1] = _mm_unpacklo_ps(in[1], in[3]); in[0] = _mm_unpacklo_ps(in[0], in[1]); in[0] = _mm_mul_ps(in[0], scale); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); out[0] = _mm_cvtps_epi32(in[0]); out[0] = _mm_slli_epi32(out[0], 8); _mm_storeu_si128((__m128i*)d, out[0]); d += n_channels; } } void conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int32_t *d = dst[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_f32d_to_s32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_f32d_to_s32_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); } /* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */ #define _MM_XORSHIFT_EPI32(r) \ ({ \ __m128i i, t; \ i = _mm_load_si128((__m128i*)r); \ t = _mm_slli_epi32(i, 13); \ i = _mm_xor_si128(i, t); \ t = _mm_srli_epi32(i, 17); \ i = _mm_xor_si128(i, t); \ t = _mm_slli_epi32(i, 5); \ i = _mm_xor_si128(i, t); \ _mm_store_si128((__m128i*)r, i); \ i; \ }) void conv_noise_rect_sse2(struct convert *conv, float *noise, uint32_t n_samples) { uint32_t n; const uint32_t *r = conv->random; __m128 scale = _mm_set1_ps(conv->scale); __m128i in[1]; __m128 out[1]; for (n = 0; n < n_samples; n += 4) { in[0] = _MM_XORSHIFT_EPI32(r); out[0] = _mm_cvtepi32_ps(in[0]); out[0] = _mm_mul_ps(out[0], scale); _mm_store_ps(&noise[n], out[0]); } } void conv_noise_tri_sse2(struct convert *conv, float *noise, uint32_t n_samples) { uint32_t n; const uint32_t *r = conv->random; __m128 scale = _mm_set1_ps(conv->scale); __m128i in[1]; __m128 out[1]; for (n = 0; n < n_samples; n += 4) { in[0] = _mm_sub_epi32( _MM_XORSHIFT_EPI32(r), _MM_XORSHIFT_EPI32(r)); out[0] = _mm_cvtepi32_ps(in[0]); out[0] = _mm_mul_ps(out[0], scale); _mm_store_ps(&noise[n], out[0]); } } void conv_noise_tri_hf_sse2(struct convert *conv, float *noise, uint32_t n_samples) { uint32_t n; int32_t *p = conv->prev; const uint32_t *r = conv->random; __m128 scale = _mm_set1_ps(conv->scale); __m128i in[1], old[1], new[1]; __m128 out[1]; old[0] = _mm_load_si128((__m128i*)p); for (n = 0; n < n_samples; n += 4) { new[0] = _MM_XORSHIFT_EPI32(r); in[0] = _mm_sub_epi32(old[0], new[0]); old[0] = new[0]; out[0] = _mm_cvtepi32_ps(in[0]); out[0] = _mm_mul_ps(out[0], scale); _mm_store_ps(&noise[n], out[0]); } _mm_store_si128((__m128i*)p, old[0]); } static void conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, float *noise, uint32_t n_channels, uint32_t n_samples) { const float *s = src; int32_t *d = dst; uint32_t n, unrolled; __m128 in[1]; __m128i out[4]; __m128 scale = _mm_set1_ps(S24_SCALE); __m128 int_min = _mm_set1_ps(S24_MIN); __m128 int_max = _mm_set1_ps(S24_MAX); if (SPA_IS_ALIGNED(s, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), scale); in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); in[0] = _MM_CLAMP_PS(in[0], int_min, int_max); out[0] = _mm_cvtps_epi32(in[0]); out[0] = _mm_slli_epi32(out[0], 8); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); d[0*n_channels] = _mm_cvtsi128_si32(out[0]); d[1*n_channels] = _mm_cvtsi128_si32(out[1]); d[2*n_channels] = _mm_cvtsi128_si32(out[2]); d[3*n_channels] = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_load_ss(&s[n]); in[0] = _mm_mul_ss(in[0], scale); in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); *d = _mm_cvtss_si32(in[0]) << 8; d += n_channels; } } void conv_f32d_to_s32_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int32_t *d = dst[0]; uint32_t i, k, chunk, n_channels = conv->n_channels; float *noise = conv->noise; convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); for(i = 0; i < n_channels; i++) { const float *s = src[i]; for(k = 0; k < n_samples; k += chunk) { chunk = SPA_MIN(n_samples - k, conv->noise_size); conv_f32d_to_s32_1s_noise_sse2(conv, &d[i + k*n_channels], &s[k], noise, n_channels, chunk); } } } static void conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const int32_t *s0 = src[0]; int32_t *d = dst; uint32_t n, unrolled; __m128i out[4]; if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_load_si128((__m128i*)&s0[n]); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); d[0*n_channels] = _mm_cvtsi128_si32(out[0]); d[1*n_channels] = _mm_cvtsi128_si32(out[1]); d[2*n_channels] = _mm_cvtsi128_si32(out[2]); d[3*n_channels] = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { *d = s0[n]; d += n_channels; } } static void conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; float *d = dst; uint32_t n, unrolled; __m128 out[4]; if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_load_ps(&s0[n]); out[1] = _mm_load_ps(&s1[n]); out[2] = _mm_load_ps(&s2[n]); out[3] = _mm_load_ps(&s3[n]); _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); _mm_storeu_ps((d + 0*n_channels), out[0]); _mm_storeu_ps((d + 1*n_channels), out[1]); _mm_storeu_ps((d + 2*n_channels), out[2]); _mm_storeu_ps((d + 3*n_channels), out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]); _mm_storeu_ps(d, out[0]); d += n_channels; } } void conv_32d_to_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int32_t *d = dst[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); } #define _MM_BSWAP_EPI32(x) \ ({ \ __m128i a = _mm_or_si128( \ _mm_slli_epi16(x, 8), \ _mm_srli_epi16(x, 8)); \ a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \ a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \ }) static void conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const int32_t *s0 = src[0]; int32_t *d = dst; uint32_t n, unrolled; __m128i out[4]; if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_load_si128((__m128i*)&s0[n]); out[0] = _MM_BSWAP_EPI32(out[0]); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); d[0*n_channels] = _mm_cvtsi128_si32(out[0]); d[1*n_channels] = _mm_cvtsi128_si32(out[1]); d[2*n_channels] = _mm_cvtsi128_si32(out[2]); d[3*n_channels] = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { *d = bswap_32(s0[n]); d += n_channels; } } static void conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; float *d = dst; uint32_t n, unrolled; __m128 out[4]; if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_load_ps(&s0[n]); out[1] = _mm_load_ps(&s1[n]); out[2] = _mm_load_ps(&s2[n]); out[3] = _mm_load_ps(&s3[n]); _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]); out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]); out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]); _mm_storeu_ps(&d[0*n_channels], out[0]); _mm_storeu_ps(&d[1*n_channels], out[1]); _mm_storeu_ps(&d[2*n_channels], out[2]); _mm_storeu_ps(&d[3*n_channels], out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]); out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); _mm_storeu_ps(d, out[0]); d += n_channels; } } void conv_32d_to_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int32_t *d = dst[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); } static void conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const float *s = src; float *d0 = dst[0]; uint32_t n, unrolled; __m128 out; if (SPA_IS_ALIGNED(d0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out = _mm_setr_ps(s[0*n_channels], s[1*n_channels], s[2*n_channels], s[3*n_channels]); _mm_store_ps(&d0[n], out); s += 4*n_channels; } for(; n < n_samples; n++) { d0[n] = *s; s += n_channels; } } static void conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const float *s = src; float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; uint32_t n, unrolled; __m128 out[4]; if (SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16) && SPA_IS_ALIGNED(d2, 16) && SPA_IS_ALIGNED(d3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_loadu_ps(&s[0 * n_channels]); out[1] = _mm_loadu_ps(&s[1 * n_channels]); out[2] = _mm_loadu_ps(&s[2 * n_channels]); out[3] = _mm_loadu_ps(&s[3 * n_channels]); _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); _mm_store_ps(&d2[n], out[2]); _mm_store_ps(&d3[n], out[3]); s += 4 * n_channels; } for(; n < n_samples; n++) { d0[n] = s[0]; d1[n] = s[1]; d2[n] = s[2]; d3[n] = s[3]; s += n_channels; } } void conv_32_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const float *s = src[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); for(; i < n_channels; i++) conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); } static void conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const float *s = src; float *d0 = dst[0]; uint32_t n, unrolled; __m128 out; if (SPA_IS_ALIGNED(d0, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out = _mm_setr_ps(s[0*n_channels], s[1*n_channels], s[2*n_channels], s[3*n_channels]); out = (__m128) _MM_BSWAP_EPI32((__m128i)out); _mm_store_ps(&d0[n], out); s += 4*n_channels; } for(; n < n_samples; n++) { d0[n] = bswap_32(*s); s += n_channels; } } static void conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, uint32_t n_channels, uint32_t n_samples) { const float *s = src; float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3]; uint32_t n, unrolled; __m128 out[4]; if (SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d1, 16) && SPA_IS_ALIGNED(d2, 16) && SPA_IS_ALIGNED(d3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { out[0] = _mm_loadu_ps(&s[0 * n_channels]); out[1] = _mm_loadu_ps(&s[1 * n_channels]); out[2] = _mm_loadu_ps(&s[2 * n_channels]); out[3] = _mm_loadu_ps(&s[3 * n_channels]); _MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]); out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]); out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]); out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]); out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]); _mm_store_ps(&d0[n], out[0]); _mm_store_ps(&d1[n], out[1]); _mm_store_ps(&d2[n], out[2]); _mm_store_ps(&d3[n], out[3]); s += 4 * n_channels; } for(; n < n_samples; n++) { d0[n] = bswap_32(s[0]); d1[n] = bswap_32(s[1]); d2[n] = bswap_32(s[2]); d3[n] = bswap_32(s[3]); s += n_channels; } } void conv_32s_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const float *s = src[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); for(; i < n_channels; i++) conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples); } static void conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, uint32_t n_samples) { const float *s = src; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_packs_epi32(out[0], out[1]); _mm_storeu_si128((__m128i*)(d+0), out[0]); d += 8; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); *d++ = _mm_cvtss_si32(in[0]); } } void conv_f32d_to_s16d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { uint32_t i, n_channels = conv->n_channels; for(i = 0; i < n_channels; i++) conv_f32_to_s16_1_sse2(conv, dst[i], src[i], n_samples); } void conv_f32_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { conv_f32_to_s16_1_sse2(conv, dst[0], src[0], n_samples * conv->n_channels); } static void conv_f32d_to_s16_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_packs_epi32(out[0], out[1]); d[0*n_channels] = _mm_extract_epi16(out[0], 0); d[1*n_channels] = _mm_extract_epi16(out[0], 1); d[2*n_channels] = _mm_extract_epi16(out[0], 2); d[3*n_channels] = _mm_extract_epi16(out[0], 3); d[4*n_channels] = _mm_extract_epi16(out[0], 4); d[5*n_channels] = _mm_extract_epi16(out[0], 5); d[6*n_channels] = _mm_extract_epi16(out[0], 6); d[7*n_channels] = _mm_extract_epi16(out[0], 7); d += 8*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); *d = _mm_cvtss_si32(in[0]); d += n_channels; } } static void conv_f32d_to_s16_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[4], t[2]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale); t[0] = _mm_cvtps_epi32(in[0]); t[1] = _mm_cvtps_epi32(in[1]); t[0] = _mm_packs_epi32(t[0], t[0]); t[1] = _mm_packs_epi32(t[1], t[1]); out[0] = _mm_unpacklo_epi16(t[0], t[1]); out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1)); out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2)); out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3)); *((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]); *((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]); *((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]); *((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); d[0] = _mm_cvtss_si32(in[0]); d[1] = _mm_cvtss_si32(in[1]); d += n_channels; } } static void conv_f32d_to_s16_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[], uint32_t n_channels, uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3]; int16_t *d = dst; uint32_t n, unrolled; __m128 in[4]; __m128i out[4], t[4]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16) && SPA_IS_ALIGNED(s2, 16) && SPA_IS_ALIGNED(s3, 16)) unrolled = n_samples & ~3; else unrolled = 0; for(n = 0; n < unrolled; n += 4) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale); in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_scale); in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_scale); t[0] = _mm_cvtps_epi32(in[0]); t[1] = _mm_cvtps_epi32(in[1]); t[2] = _mm_cvtps_epi32(in[2]); t[3] = _mm_cvtps_epi32(in[3]); t[0] = _mm_packs_epi32(t[0], t[2]); t[1] = _mm_packs_epi32(t[1], t[3]); out[0] = _mm_unpacklo_epi16(t[0], t[1]); out[1] = _mm_unpackhi_epi16(t[0], t[1]); out[2] = _mm_unpacklo_epi32(out[0], out[1]); out[3] = _mm_unpackhi_epi32(out[0], out[1]); _mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]); _mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]); _mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]); _mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]); d += 4*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_scale); in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); in[2] = _MM_CLAMP_SS(in[2], int_min, int_max); in[3] = _MM_CLAMP_SS(in[3], int_min, int_max); d[0] = _mm_cvtss_si32(in[0]); d[1] = _mm_cvtss_si32(in[1]); d[2] = _mm_cvtss_si32(in[2]); d[3] = _mm_cvtss_si32(in[3]); d += n_channels; } } void conv_f32d_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int16_t *d = dst[0]; uint32_t i = 0, n_channels = conv->n_channels; for(; i + 3 < n_channels; i += 4) conv_f32d_to_s16_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i + 1 < n_channels; i += 2) conv_f32d_to_s16_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples); for(; i < n_channels; i++) conv_f32d_to_s16_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples); } static void conv_f32d_to_s16_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, const float *noise, uint32_t n_channels, uint32_t n_samples) { const float *s0 = src; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s0, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4])); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_packs_epi32(out[0], out[1]); d[0*n_channels] = _mm_extract_epi16(out[0], 0); d[1*n_channels] = _mm_extract_epi16(out[0], 1); d[2*n_channels] = _mm_extract_epi16(out[0], 2); d[3*n_channels] = _mm_extract_epi16(out[0], 3); d[4*n_channels] = _mm_extract_epi16(out[0], 4); d[5*n_channels] = _mm_extract_epi16(out[0], 5); d[6*n_channels] = _mm_extract_epi16(out[0], 6); d[7*n_channels] = _mm_extract_epi16(out[0], 7); d += 8*n_channels; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); *d = _mm_cvtss_si32(in[0]); d += n_channels; } } void conv_f32d_to_s16_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { int16_t *d = dst[0]; uint32_t i, k, chunk, n_channels = conv->n_channels; float *noise = conv->noise; convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); for(i = 0; i < n_channels; i++) { const float *s = src[i]; for(k = 0; k < n_samples; k += chunk) { chunk = SPA_MIN(n_samples - k, conv->noise_size); conv_f32d_to_s16_1s_noise_sse2(conv, &d[i + k*n_channels], &s[k], noise, n_channels, chunk); } } } static void conv_f32_to_s16_1_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src, const float *noise, uint32_t n_samples) { const float *s = src; int16_t *d = dst; uint32_t n, unrolled; __m128 in[2]; __m128i out[2]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale); in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n])); in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4])); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[0] = _mm_packs_epi32(out[0], out[1]); _mm_storeu_si128((__m128i*)(&d[n]), out[0]); } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale); in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n])); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); d[n] = _mm_cvtss_si32(in[0]); } } void conv_f32d_to_s16d_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { uint32_t i, k, chunk, n_channels = conv->n_channels; float *noise = conv->noise; convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size)); for(i = 0; i < n_channels; i++) { const float *s = src[i]; int16_t *d = dst[i]; for(k = 0; k < n_samples; k += chunk) { chunk = SPA_MIN(n_samples - k, conv->noise_size); conv_f32_to_s16_1_noise_sse2(conv, &d[k], &s[k], noise, chunk); } } } void conv_f32d_to_s16_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[], uint32_t n_samples) { const float *s0 = src[0], *s1 = src[1]; int16_t *d = dst[0]; uint32_t n, unrolled; __m128 in[4]; __m128i out[4]; __m128 int_scale = _mm_set1_ps(S16_SCALE); __m128 int_max = _mm_set1_ps(S16_MAX); __m128 int_min = _mm_set1_ps(S16_MIN); if (SPA_IS_ALIGNED(s0, 16) && SPA_IS_ALIGNED(s1, 16)) unrolled = n_samples & ~7; else unrolled = 0; for(n = 0; n < unrolled; n += 8) { in[0] = _mm_mul_ps(_mm_load_ps(&s0[n+0]), int_scale); in[1] = _mm_mul_ps(_mm_load_ps(&s1[n+0]), int_scale); in[2] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale); in[3] = _mm_mul_ps(_mm_load_ps(&s1[n+4]), int_scale); out[0] = _mm_cvtps_epi32(in[0]); out[1] = _mm_cvtps_epi32(in[1]); out[2] = _mm_cvtps_epi32(in[2]); out[3] = _mm_cvtps_epi32(in[3]); out[0] = _mm_packs_epi32(out[0], out[2]); out[1] = _mm_packs_epi32(out[1], out[3]); out[2] = _mm_unpacklo_epi16(out[0], out[1]); out[3] = _mm_unpackhi_epi16(out[0], out[1]); _mm_storeu_si128((__m128i*)(d+0), out[2]); _mm_storeu_si128((__m128i*)(d+8), out[3]); d += 16; } for(; n < n_samples; n++) { in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale); in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale); in[0] = _MM_CLAMP_SS(in[0], int_min, int_max); in[1] = _MM_CLAMP_SS(in[1], int_min, int_max); d[0] = _mm_cvtss_si32(in[0]); d[1] = _mm_cvtss_si32(in[1]); d += 2; } }