/* Spa HSP/HFP native backend * * Copyright © 2018 Wim Taymans * Copyright © 2021 Collabora * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #ifdef HAVE_LIBUSB #include #endif #include "modemmanager.h" #include "upower.h" static struct spa_log_topic log_topic = SPA_LOG_TOPIC(0, "spa.bluez5.native"); #undef SPA_LOG_TOPIC_DEFAULT #define SPA_LOG_TOPIC_DEFAULT &log_topic #define PROP_KEY_HEADSET_ROLES "bluez5.headset-roles" #define HFP_CODEC_SWITCH_INITIAL_TIMEOUT_MSEC 5000 #define HFP_CODEC_SWITCH_TIMEOUT_MSEC 20000 #define INTERNATIONAL_NUMBER 145 #define NATIONAL_NUMBER 129 #define MAX_HF_INDICATORS 16 enum { HFP_AG_INITIAL_CODEC_SETUP_NONE = 0, HFP_AG_INITIAL_CODEC_SETUP_SEND, HFP_AG_INITIAL_CODEC_SETUP_WAIT }; #define CIND_INDICATORS "(\"service\",(0-1)),(\"call\",(0-1)),(\"callsetup\",(0-3)),(\"callheld\",(0-2)),(\"signal\",(0-5)),(\"roam\",(0-1)),(\"battchg\",(0-5))" enum { CIND_SERVICE = 1, CIND_CALL, CIND_CALLSETUP, CIND_CALLHELD, CIND_SIGNAL, CIND_ROAM, CIND_BATTERY_LEVEL, CIND_MAX }; struct modem { bool network_has_service; unsigned int signal_strength; bool network_is_roaming; char *operator_name; char *own_number; bool active_call; unsigned int call_setup; }; struct impl { struct spa_bt_backend this; struct spa_bt_monitor *monitor; struct spa_log *log; struct spa_loop *main_loop; struct spa_system *main_system; struct spa_loop_utils *loop_utils; struct spa_dbus *dbus; DBusConnection *conn; #define DEFAULT_ENABLED_PROFILES (SPA_BT_PROFILE_HFP_HF | SPA_BT_PROFILE_HFP_AG) enum spa_bt_profile enabled_profiles; struct spa_source sco; const struct spa_bt_quirks *quirks; struct spa_list rfcomm_list; unsigned int defer_setup_enabled:1; struct modem modem; unsigned int battery_level; void *modemmanager; struct spa_source *ring_timer; void *upower; }; struct transport_data { struct rfcomm *rfcomm; struct spa_source sco; }; enum hfp_hf_state { hfp_hf_brsf, hfp_hf_bac, hfp_hf_cind1, hfp_hf_cind2, hfp_hf_cmer, hfp_hf_slc1, hfp_hf_slc2, hfp_hf_vgs, hfp_hf_vgm, hfp_hf_bcs }; enum hsp_hs_state { hsp_hs_init1, hsp_hs_init2, hsp_hs_vgs, hsp_hs_vgm, }; struct rfcomm_volume { bool active; int hw_volume; }; struct rfcomm { struct spa_list link; struct spa_source source; struct impl *backend; struct spa_bt_device *device; struct spa_hook device_listener; struct spa_bt_transport *transport; struct spa_hook transport_listener; enum spa_bt_profile profile; struct spa_source timer; struct spa_source *volume_sync_timer; char* path; bool has_volume; struct rfcomm_volume volumes[SPA_BT_VOLUME_ID_TERM]; unsigned int broken_mic_hw_volume:1; #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE unsigned int slc_configured:1; unsigned int codec_negotiation_supported:1; unsigned int msbc_supported_by_hfp:1; unsigned int hfp_ag_switching_codec:1; unsigned int hfp_ag_initial_codec_setup:2; unsigned int cind_call_active:1; unsigned int cind_call_notify:1; unsigned int extended_error_reporting:1; unsigned int clip_notify:1; enum hfp_hf_state hf_state; enum hsp_hs_state hs_state; unsigned int codec; uint32_t cind_enabled_indicators; char *hf_indicators[MAX_HF_INDICATORS]; #endif }; static DBusHandlerResult profile_release(DBusConnection *conn, DBusMessage *m, void *userdata) { DBusMessage *r; r = dbus_message_new_error(m, BLUEZ_PROFILE_INTERFACE ".Error.NotImplemented", "Method not implemented"); if (r == NULL) return DBUS_HANDLER_RESULT_NEED_MEMORY; if (!dbus_connection_send(conn, r, NULL)) return DBUS_HANDLER_RESULT_NEED_MEMORY; dbus_message_unref(r); return DBUS_HANDLER_RESULT_HANDLED; } static void transport_destroy(void *data) { struct rfcomm *rfcomm = data; struct impl *backend = rfcomm->backend; spa_log_debug(backend->log, "transport %p destroy", rfcomm->transport); rfcomm->transport = NULL; } static const struct spa_bt_transport_events transport_events = { SPA_VERSION_BT_TRANSPORT_EVENTS, .destroy = transport_destroy, }; static const struct spa_bt_transport_implementation sco_transport_impl; static struct spa_bt_transport *_transport_create(struct rfcomm *rfcomm) { struct impl *backend = rfcomm->backend; struct spa_bt_transport *t = NULL; struct transport_data *td; char* pathfd; if ((pathfd = spa_aprintf("%s/fd%d", rfcomm->path, rfcomm->source.fd)) == NULL) return NULL; t = spa_bt_transport_create(backend->monitor, pathfd, sizeof(struct transport_data)); if (t == NULL) goto finish; spa_bt_transport_set_implementation(t, &sco_transport_impl, t); t->device = rfcomm->device; spa_list_append(&t->device->transport_list, &t->device_link); t->profile = rfcomm->profile; t->backend = &backend->this; t->n_channels = 1; t->channels[0] = SPA_AUDIO_CHANNEL_MONO; td = t->user_data; td->rfcomm = rfcomm; if (t->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY) { t->volumes[SPA_BT_VOLUME_ID_RX].volume = DEFAULT_AG_VOLUME; t->volumes[SPA_BT_VOLUME_ID_TX].volume = DEFAULT_AG_VOLUME; } else { t->volumes[SPA_BT_VOLUME_ID_RX].volume = DEFAULT_RX_VOLUME; t->volumes[SPA_BT_VOLUME_ID_TX].volume = DEFAULT_TX_VOLUME; } for (int i = 0; i < SPA_BT_VOLUME_ID_TERM ; ++i) { t->volumes[i].active = rfcomm->volumes[i].active; t->volumes[i].hw_volume_max = SPA_BT_VOLUME_HS_MAX; if (rfcomm->volumes[i].active && rfcomm->volumes[i].hw_volume != SPA_BT_VOLUME_INVALID) t->volumes[i].volume = spa_bt_volume_hw_to_linear(rfcomm->volumes[i].hw_volume, t->volumes[i].hw_volume_max); } spa_bt_transport_add_listener(t, &rfcomm->transport_listener, &transport_events, rfcomm); finish: return t; } static int codec_switch_stop_timer(struct rfcomm *rfcomm); static void volume_sync_stop_timer(struct rfcomm *rfcomm); static void rfcomm_free(struct rfcomm *rfcomm) { codec_switch_stop_timer(rfcomm); for (int i = 0; i < MAX_HF_INDICATORS; i++) { if (rfcomm->hf_indicators[i]) { free(rfcomm->hf_indicators[i]); } } spa_list_remove(&rfcomm->link); if (rfcomm->path) free(rfcomm->path); if (rfcomm->transport) { spa_hook_remove(&rfcomm->transport_listener); spa_bt_transport_free(rfcomm->transport); } if (rfcomm->device) { spa_bt_device_report_battery_level(rfcomm->device, SPA_BT_NO_BATTERY); spa_hook_remove(&rfcomm->device_listener); rfcomm->device = NULL; } if (rfcomm->source.fd >= 0) { if (rfcomm->source.loop) spa_loop_remove_source(rfcomm->source.loop, &rfcomm->source); shutdown(rfcomm->source.fd, SHUT_RDWR); close (rfcomm->source.fd); rfcomm->source.fd = -1; } if (rfcomm->volume_sync_timer) spa_loop_utils_destroy_source(rfcomm->backend->loop_utils, rfcomm->volume_sync_timer); free(rfcomm); } #define RFCOMM_MESSAGE_MAX_LENGTH 256 /* from HF/HS to AG */ SPA_PRINTF_FUNC(2, 3) static ssize_t rfcomm_send_cmd(const struct rfcomm *rfcomm, const char *format, ...) { struct impl *backend = rfcomm->backend; char message[RFCOMM_MESSAGE_MAX_LENGTH + 1]; ssize_t len; va_list args; va_start(args, format); len = vsnprintf(message, RFCOMM_MESSAGE_MAX_LENGTH + 1, format, args); va_end(args); if (len < 0) return -EINVAL; if (len > RFCOMM_MESSAGE_MAX_LENGTH) return -E2BIG; spa_log_debug(backend->log, "RFCOMM >> %s", message); /* * The format of an AT command from the HF to the AG shall be: * - HFP 1.8, 4.34.1 * * The format for a command from the HS to the AG is thus: AT= * - HSP 1.2, 4.8.1 */ message[len] = '\r'; /* `message` is no longer null-terminated */ len = write(rfcomm->source.fd, message, len + 1); /* we ignore any errors, it's not critical and real errors should * be caught with the HANGUP and ERROR events handled above */ if (len < 0) { len = -errno; spa_log_error(backend->log, "RFCOMM write error: %s", strerror(errno)); } return len; } /* from AG to HF/HS */ SPA_PRINTF_FUNC(2, 3) static ssize_t rfcomm_send_reply(const struct rfcomm *rfcomm, const char *format, ...) { struct impl *backend = rfcomm->backend; char message[RFCOMM_MESSAGE_MAX_LENGTH + 4]; ssize_t len; va_list args; va_start(args, format); len = vsnprintf(&message[2], RFCOMM_MESSAGE_MAX_LENGTH + 1, format, args); va_end(args); if (len < 0) return -EINVAL; if (len > RFCOMM_MESSAGE_MAX_LENGTH) return -E2BIG; spa_log_debug(backend->log, "RFCOMM >> %s", &message[2]); /* * The format of the OK code from the AG to the HF shall be: OK * The format of the generic ERROR code from the AG to the HF shall be: ERROR * The format of an unsolicited result code from the AG to the HF shall be: * - HFP 1.8, 4.34.1 * * If the command is processed successfully, the resulting response from the AG to the HS is: OK * If the command is not processed successfully, or is not recognized, * the resulting response from the AG to the HS is: ERROR * The format for an unsolicited result code (such as RING) from the AG to the HS is: * - HSP 1.2, 4.8.1 */ message[0] = '\r'; message[1] = '\n'; message[len + 2] = '\r'; message[len + 3] = '\n'; /* `message` is no longer null-terminated */ len = write(rfcomm->source.fd, message, len + 4); /* we ignore any errors, it's not critical and real errors should * be caught with the HANGUP and ERROR events handled above */ if (len < 0) { len = -errno; spa_log_error(backend->log, "RFCOMM write error: %s", strerror(errno)); } return len; } static void rfcomm_send_error(const struct rfcomm *rfcomm, enum cmee_error error) { if (rfcomm->extended_error_reporting) rfcomm_send_reply(rfcomm, "+CME ERROR: %d", error); else rfcomm_send_reply(rfcomm, "ERROR"); } static bool rfcomm_volume_enabled(struct rfcomm *rfcomm) { return rfcomm->device != NULL && (rfcomm->device->hw_volume_profiles & rfcomm->profile); } static void rfcomm_emit_volume_changed(struct rfcomm *rfcomm, int id, int hw_volume) { struct spa_bt_transport_volume *t_volume; if (!rfcomm_volume_enabled(rfcomm)) return; if ((id == SPA_BT_VOLUME_ID_RX || id == SPA_BT_VOLUME_ID_TX) && hw_volume >= 0) { rfcomm->volumes[id].active = true; rfcomm->volumes[id].hw_volume = hw_volume; } spa_log_debug(rfcomm->backend->log, "volume changed %d", hw_volume); if (rfcomm->transport == NULL || !rfcomm->has_volume) return; for (int i = 0; i < SPA_BT_VOLUME_ID_TERM ; ++i) { t_volume = &rfcomm->transport->volumes[i]; t_volume->active = rfcomm->volumes[i].active; t_volume->volume = spa_bt_volume_hw_to_linear(rfcomm->volumes[i].hw_volume, t_volume->hw_volume_max); } spa_bt_transport_emit_volume_changed(rfcomm->transport); } #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE static bool rfcomm_hsp_ag(struct rfcomm *rfcomm, char* buf) { struct impl *backend = rfcomm->backend; unsigned int gain, dummy; /* There are only three HSP AT commands: * AT+VGS=value: value between 0 and 15, sent by the HS to AG to set the speaker gain. * AT+VGM=value: value between 0 and 15, sent by the HS to AG to set the microphone gain. * AT+CKPD=200: Sent by HS when headset button is pressed. */ if (sscanf(buf, "AT+VGS=%d", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_TX, gain); rfcomm_send_reply(rfcomm, "OK"); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGS gain: %s", buf); rfcomm_send_reply(rfcomm, "ERROR"); } } else if (sscanf(buf, "AT+VGM=%d", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { if (!rfcomm->broken_mic_hw_volume) rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_RX, gain); rfcomm_send_reply(rfcomm, "OK"); } else { rfcomm_send_reply(rfcomm, "ERROR"); spa_log_debug(backend->log, "RFCOMM receive unsupported VGM gain: %s", buf); } } else if (sscanf(buf, "AT+CKPD=%d", &dummy) == 1) { rfcomm_send_reply(rfcomm, "OK"); } else { return false; } return true; } static bool rfcomm_send_volume_cmd(struct rfcomm *rfcomm, int id) { struct spa_bt_transport_volume *t_volume; const char *format; int hw_volume; if (!rfcomm_volume_enabled(rfcomm)) return false; t_volume = rfcomm->transport ? &rfcomm->transport->volumes[id] : NULL; if (!(t_volume && t_volume->active)) return false; hw_volume = spa_bt_volume_linear_to_hw(t_volume->volume, t_volume->hw_volume_max); rfcomm->volumes[id].hw_volume = hw_volume; if (id == SPA_BT_VOLUME_ID_TX) format = "AT+VGM"; else if (id == SPA_BT_VOLUME_ID_RX) format = "AT+VGS"; else spa_assert_not_reached(); rfcomm_send_cmd(rfcomm, "%s=%d", format, hw_volume); return true; } static bool rfcomm_hsp_hs(struct rfcomm *rfcomm, char* buf) { struct impl *backend = rfcomm->backend; unsigned int gain; /* There are only three HSP AT result codes: * +VGS=value: value between 0 and 15, sent by AG to HS as a response to an AT+VGS command * or when the gain is changed on the AG side. * +VGM=value: value between 0 and 15, sent by AG to HS as a response to an AT+VGM command * or when the gain is changed on the AG side. * RING: Sent by AG to HS to notify of an incoming call. It can safely be ignored because * it does not expect a reply. */ if (sscanf(buf, "\r\n+VGS=%d\r\n", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_RX, gain); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGS gain: %s", buf); } } else if (sscanf(buf, "\r\n+VGM=%d\r\n", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_TX, gain); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGM gain: %s", buf); } } else if (spa_strstartswith(buf, "\r\nOK\r\n")) { if (rfcomm->hs_state == hsp_hs_init2) { if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_RX)) rfcomm->hs_state = hsp_hs_vgs; else rfcomm->hs_state = hsp_hs_init1; } else if (rfcomm->hs_state == hsp_hs_vgs) { if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_TX)) rfcomm->hs_state = hsp_hs_vgm; else rfcomm->hs_state = hsp_hs_init1; } } return true; } #endif #ifdef HAVE_LIBUSB static bool check_usb_altsetting_6(struct impl *backend, uint16_t vendor_id, uint16_t product_id) { libusb_context *ctx = NULL; struct libusb_config_descriptor *cfg = NULL; libusb_device **devices = NULL; ssize_t ndev, idev; int res; bool ok = false; if ((res = libusb_init(&ctx)) < 0) { ctx = NULL; goto fail; } if ((ndev = libusb_get_device_list(ctx, &devices)) < 0) { res = ndev; devices = NULL; goto fail; } for (idev = 0; idev < ndev; ++idev) { libusb_device *dev = devices[idev]; struct libusb_device_descriptor desc; int icfg; libusb_get_device_descriptor(dev, &desc); if (vendor_id != desc.idVendor || product_id != desc.idProduct) continue; /* Check the device has Bluetooth isoch. altsetting 6 interface */ for (icfg = 0; icfg < desc.bNumConfigurations; ++icfg) { int iiface; if ((res = libusb_get_config_descriptor(dev, icfg, &cfg)) != 0) { cfg = NULL; goto fail; } for (iiface = 0; iiface < cfg->bNumInterfaces; ++iiface) { const struct libusb_interface *iface = &cfg->interface[iiface]; int ialt; for (ialt = 0; ialt < iface->num_altsetting; ++ialt) { const struct libusb_interface_descriptor *idesc = &iface->altsetting[ialt]; int iep; if (idesc->bInterfaceClass != LIBUSB_CLASS_WIRELESS || idesc->bInterfaceSubClass != 1 /* RF */ || idesc->bInterfaceProtocol != 1 /* Bluetooth */ || idesc->bAlternateSetting != 6) continue; for (iep = 0; iep < idesc->bNumEndpoints; ++iep) { const struct libusb_endpoint_descriptor *ep = &idesc->endpoint[iep]; if ((ep->bmAttributes & 0x3) == 0x1 /* isochronous */) { ok = true; goto done; } } } } libusb_free_config_descriptor(cfg); cfg = NULL; } } done: if (cfg) libusb_free_config_descriptor(cfg); if (devices) libusb_free_device_list(devices, 0); if (ctx) libusb_exit(ctx); return ok; fail: spa_log_info(backend->log, "failed to acquire USB device info: %d (%s)", res, libusb_strerror(res)); ok = false; goto done; } #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE static bool device_supports_required_mSBC_transport_modes( struct impl *backend, struct spa_bt_device *device) { int res; bool msbc_ok, msbc_alt1_ok; uint32_t bt_features; if (device->adapter == NULL) return false; if (backend->quirks && spa_bt_quirks_get_features(backend->quirks, device->adapter, device, &bt_features) == 0) { msbc_ok = bt_features & SPA_BT_FEATURE_MSBC; msbc_alt1_ok = bt_features & (SPA_BT_FEATURE_MSBC_ALT1 | SPA_BT_FEATURE_MSBC_ALT1_RTL); } else { msbc_ok = true; msbc_alt1_ok = true; } spa_log_info(backend->log, "bluez-monitor/hardware.conf: msbc:%d msbc-alt1:%d", (int)msbc_ok, (int)msbc_alt1_ok); if (!msbc_ok && !msbc_alt1_ok) return false; res = spa_bt_adapter_has_msbc(device->adapter); if (res < 0) { spa_log_warn(backend->log, "adapter %s: failed to determine msbc/esco capability (%d)", device->adapter->path, res); } else if (res == 0) { spa_log_info(backend->log, "adapter %s: no msbc/esco transport", device->adapter->path); return false; } else { spa_log_debug(backend->log, "adapter %s: has msbc/esco transport", device->adapter->path); } /* Check if USB ALT6 is really available on the device */ if (device->adapter->bus_type == BUS_TYPE_USB && !msbc_alt1_ok && msbc_ok) { #ifdef HAVE_LIBUSB if (device->adapter->source_id == SOURCE_ID_USB) { msbc_ok = check_usb_altsetting_6(backend, device->adapter->vendor_id, device->adapter->product_id); } else { msbc_ok = false; } if (!msbc_ok) spa_log_info(backend->log, "bluetooth host adapter does not support USB ALT6"); #else spa_log_info(backend->log, "compiled without libusb; can't check if bluetooth adapter has USB ALT6"); msbc_ok = false; #endif } if (device->adapter->bus_type != BUS_TYPE_USB) msbc_alt1_ok = false; return msbc_ok || msbc_alt1_ok; } static int codec_switch_start_timer(struct rfcomm *rfcomm, int timeout_msec); static void process_iphoneaccev_indicator(struct rfcomm *rfcomm, unsigned int key, unsigned int value) { struct impl *backend = rfcomm->backend; spa_log_debug(backend->log, "key:%u value:%u", key, value); switch (key) { case SPA_BT_HFP_HF_IPHONEACCEV_KEY_BATTERY_LEVEL: { // Battery level is reported in range of 0-9, convert to 10-100% uint8_t level = (SPA_CLAMP(value, 0u, 9u) + 1) * 10; spa_log_debug(backend->log, "battery level: %d%%", (int) level); // TODO: report without Battery Provider (using props) spa_bt_device_report_battery_level(rfcomm->device, level); break; } case SPA_BT_HFP_HF_IPHONEACCEV_KEY_DOCK_STATE: break; default: spa_log_warn(backend->log, "unknown AT+IPHONEACCEV key:%u value:%u", key, value); break; } } static void process_hfp_hf_indicator(struct rfcomm *rfcomm, unsigned int indicator, unsigned int value) { struct impl *backend = rfcomm->backend; spa_log_debug(backend->log, "indicator:%u value:%u", indicator, value); switch (indicator) { case SPA_BT_HFP_HF_INDICATOR_ENHANCED_SAFETY: break; case SPA_BT_HFP_HF_INDICATOR_BATTERY_LEVEL: // Battery level is reported in range 0-100 spa_log_debug(backend->log, "battery level: %u%%", value); if (value <= 100) { // TODO: report without Battery Provider (using props) spa_bt_device_report_battery_level(rfcomm->device, value); } else { spa_log_warn(backend->log, "battery HF indicator %u outside of range [0, 100]: %u", indicator, value); } break; default: spa_log_warn(backend->log, "unknown HF indicator:%u value:%u", indicator, value); break; } } static void rfcomm_hfp_ag_set_cind(struct rfcomm *rfcomm, bool call_active) { if (rfcomm->profile != SPA_BT_PROFILE_HFP_HF) return; if (call_active == rfcomm->cind_call_active) return; rfcomm->cind_call_active = call_active; if (!rfcomm->cind_call_notify) return; rfcomm_send_reply(rfcomm, "+CIEV: 2,%d", rfcomm->cind_call_active); } static bool rfcomm_hfp_ag(struct rfcomm *rfcomm, char* buf) { struct impl *backend = rfcomm->backend; unsigned int features; unsigned int gain; unsigned int count, r; unsigned int selected_codec; unsigned int indicator; unsigned int indicator_value; unsigned int value; int xapl_vendor; int xapl_product; int xapl_features; spa_debug_log_mem(backend->log, SPA_LOG_LEVEL_DEBUG, 2, buf, strlen(buf)); /* Some devices send initial \n: be permissive */ while (*buf == '\n') ++buf; if (sscanf(buf, "AT+BRSF=%u", &features) == 1) { unsigned int ag_features = SPA_BT_HFP_AG_FEATURE_NONE; /* * Determine device volume control. Some headsets only support control of * TX volume, but not RX, even if they have a microphone. Determine this * separately based on whether we also get AT+VGS/AT+VGM, and quirks. */ rfcomm->has_volume = (features & SPA_BT_HFP_HF_FEATURE_REMOTE_VOLUME_CONTROL); /* Decide if we want to signal that the computer supports mSBC negotiation This should be done when the computers bluetooth adapter supports the necessary transport mode */ if (device_supports_required_mSBC_transport_modes(backend, rfcomm->device)) { /* set the feature bit that indicates AG (=computer) supports codec negotiation */ ag_features |= SPA_BT_HFP_AG_FEATURE_CODEC_NEGOTIATION; /* let's see if the headset supports codec negotiation */ if ((features & (SPA_BT_HFP_HF_FEATURE_CODEC_NEGOTIATION)) != 0) { spa_log_debug(backend->log, "RFCOMM features = %i, codec negotiation supported by headset", features); /* Prepare reply: Audio Gateway (=computer) supports codec negotiation */ rfcomm->codec_negotiation_supported = true; rfcomm->msbc_supported_by_hfp = false; } else { /* Codec negotiation not supported */ spa_log_debug(backend->log, "RFCOMM features = %i, codec negotiation NOT supported by headset", features); rfcomm->codec_negotiation_supported = false; rfcomm->msbc_supported_by_hfp = false; } } /* send reply to HF with the features supported by Audio Gateway (=computer) */ ag_features |= mm_supported_features(); ag_features |= SPA_BT_HFP_AG_FEATURE_HF_INDICATORS; rfcomm_send_reply(rfcomm, "+BRSF: %u", ag_features); rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+BAC=")) { /* retrieve supported codecs */ /* response has the form AT+BAC=,, strategy: split the string into tokens */ char* token; int cntr = 0; while ((token = strsep(&buf, "=,"))) { unsigned int codec_id; /* skip token 0 i.e. the "AT+BAC=" part */ if (cntr > 0 && sscanf(token, "%u", &codec_id) == 1) { spa_log_debug(backend->log, "RFCOMM AT+BAC found codec %u", codec_id); if (codec_id == HFP_AUDIO_CODEC_MSBC) { rfcomm->msbc_supported_by_hfp = true; spa_log_debug(backend->log, "RFCOMM headset supports mSBC codec"); } } cntr++; } rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+CIND=?")) { rfcomm_send_reply(rfcomm, "+CIND:%s", CIND_INDICATORS); rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+CIND?")) { rfcomm_send_reply(rfcomm, "+CIND: %d,%d,%d,0,%d,%d,%d", backend->modem.network_has_service, backend->modem.active_call, backend->modem.call_setup, backend->modem.signal_strength, backend->modem.network_is_roaming, backend->battery_level); rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+CMER")) { int mode, keyp, disp, ind; rfcomm->slc_configured = true; rfcomm_send_reply(rfcomm, "OK"); rfcomm->cind_call_active = false; if (sscanf(buf, "AT+CMER= %d , %d , %d , %d", &mode, &keyp, &disp, &ind) == 4) rfcomm->cind_call_notify = ind ? true : false; else rfcomm->cind_call_notify = false; /* switch codec to mSBC by sending unsolicited +BCS message */ if (rfcomm->codec_negotiation_supported && rfcomm->msbc_supported_by_hfp) { spa_log_debug(backend->log, "RFCOMM initial codec setup"); rfcomm->hfp_ag_initial_codec_setup = HFP_AG_INITIAL_CODEC_SETUP_SEND; rfcomm_send_reply(rfcomm, "+BCS: 2"); codec_switch_start_timer(rfcomm, HFP_CODEC_SWITCH_INITIAL_TIMEOUT_MSEC); } else { rfcomm->transport = _transport_create(rfcomm); if (rfcomm->transport == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); // TODO: We should manage the missing transport } else { rfcomm->transport->codec = HFP_AUDIO_CODEC_CVSD; spa_bt_device_connect_profile(rfcomm->device, rfcomm->profile); rfcomm_emit_volume_changed(rfcomm, -1, SPA_BT_VOLUME_INVALID); } } } else if (spa_streq(buf, "\r")) { /* No commands, reply OK (ITU-T Rec. V.250 Sec. 5.2.1 & 5.6) */ rfcomm_send_reply(rfcomm, "OK"); } else if (!rfcomm->slc_configured) { spa_log_warn(backend->log, "RFCOMM receive command before SLC completed: %s", buf); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); return true; /* ***** * Following commands requires a Service Level Connection * ***** */ } else if (sscanf(buf, "AT+BCS=%u", &selected_codec) == 1) { /* parse BCS(=Bluetooth Codec Selection) reply */ bool was_switching_codec = rfcomm->hfp_ag_switching_codec && (rfcomm->device != NULL); rfcomm->hfp_ag_switching_codec = false; rfcomm->hfp_ag_initial_codec_setup = HFP_AG_INITIAL_CODEC_SETUP_NONE; codec_switch_stop_timer(rfcomm); volume_sync_stop_timer(rfcomm); if (selected_codec != HFP_AUDIO_CODEC_CVSD && selected_codec != HFP_AUDIO_CODEC_MSBC) { spa_log_warn(backend->log, "unsupported codec negotiation: %d", selected_codec); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); if (was_switching_codec) spa_bt_device_emit_codec_switched(rfcomm->device, -EIO); return true; } rfcomm->codec = selected_codec; spa_log_debug(backend->log, "RFCOMM selected_codec = %i", selected_codec); /* Recreate transport, since previous connection may now be invalid */ if (rfcomm->transport) spa_bt_transport_free(rfcomm->transport); rfcomm->transport = _transport_create(rfcomm); if (rfcomm->transport == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); // TODO: We should manage the missing transport rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); if (was_switching_codec) spa_bt_device_emit_codec_switched(rfcomm->device, -ENOMEM); return true; } rfcomm->transport->codec = selected_codec; spa_bt_device_connect_profile(rfcomm->device, rfcomm->profile); rfcomm_emit_volume_changed(rfcomm, -1, SPA_BT_VOLUME_INVALID); rfcomm_send_reply(rfcomm, "OK"); if (was_switching_codec) spa_bt_device_emit_codec_switched(rfcomm->device, 0); } else if (spa_strstartswith(buf, "AT+BIA=")) { /* retrieve indicators activation * form: AT+BIA=[indrep1],[indrep2],[indrepx] */ char *str = buf + 7; unsigned int ind = 1; while (*str && ind < CIND_MAX && *str != '\r' && *str != '\n') { if (*str == ',') { ind++; goto next_indicator; } /* Ignore updates to mandantory indicators which are always ON */ if (ind == CIND_CALL || ind == CIND_CALLSETUP || ind == CIND_CALLHELD) goto next_indicator; switch (*str) { case '0': rfcomm->cind_enabled_indicators &= ~(1 << ind); break; case '1': rfcomm->cind_enabled_indicators |= (1 << ind); break; default: spa_log_warn(backend->log, "Unsupported entry in %s: %c", buf, *str); } next_indicator: str++; } rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+CLCC")) { struct spa_list *calls; struct call *call; unsigned int type; if (backend->modemmanager) { calls = mm_get_calls(backend->modemmanager); spa_list_for_each(call, calls, link) { if (!call->number) { rfcomm_send_reply(rfcomm, "+CLCC: %u,%u,%u,0,%u", call->index, call->direction, call->state, call->multiparty); } else { if (spa_strstartswith(call->number, "+")) type = INTERNATIONAL_NUMBER; else type = NATIONAL_NUMBER; rfcomm_send_reply(rfcomm, "+CLCC: %u,%u,%u,0,%u,\"%s\",%d", call->index, call->direction, call->state, call->multiparty, call->number, type); } } } rfcomm_send_reply(rfcomm, "OK"); } else if (sscanf(buf, "AT+CLIP=%u", &value) == 1) { if (value > 1) { spa_log_debug(backend->log, "Unsupported AT+CLIP value: %u", value); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); return true; } rfcomm->clip_notify = value; rfcomm_send_reply(rfcomm, "OK"); } else if (sscanf(buf, "AT+CMEE=%u", &value) == 1) { if (value > 1) { spa_log_debug(backend->log, "Unsupported AT+CMEE value: %u", value); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); return true; } rfcomm->extended_error_reporting = value; rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+CNUM")) { if (backend->modem.own_number) { unsigned int type; if (spa_strstartswith(backend->modem.own_number, "+")) type = INTERNATIONAL_NUMBER; else type = NATIONAL_NUMBER; rfcomm_send_reply(rfcomm, "+CNUM: ,\"%s\",%u", backend->modem.own_number, type); } rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+COPS=")) { unsigned int mode, val; if (sscanf(buf, "AT+COPS=%u,%u", &mode, &val) != 2 || mode != 3 || val != 0) { rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); } else { rfcomm_send_reply(rfcomm, "OK"); } } else if (spa_strstartswith(buf, "AT+COPS?")) { if (!backend->modem.network_has_service) { rfcomm_send_error(rfcomm, CMEE_NO_NETWORK_SERVICE); } else { if (backend->modem.operator_name) rfcomm_send_reply(rfcomm, "+COPS: 0,0,\"%s\"", backend->modem.operator_name); else rfcomm_send_reply(rfcomm, "+COPS: 0,,"); rfcomm_send_reply(rfcomm, "OK"); } } else if (sscanf(buf, "AT+VGM=%u", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { if (!rfcomm->broken_mic_hw_volume) rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_RX, gain); rfcomm_send_reply(rfcomm, "OK"); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGM gain: %s", buf); rfcomm_send_error(rfcomm, CMEE_OPERATION_NOT_ALLOWED); } } else if (sscanf(buf, "AT+VGS=%u", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_TX, gain); rfcomm_send_reply(rfcomm, "OK"); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGS gain: %s", buf); rfcomm_send_error(rfcomm, CMEE_OPERATION_NOT_ALLOWED); } } else if (spa_strstartswith(buf, "AT+BIND=?")) { rfcomm_send_reply(rfcomm, "+BIND: (2)"); rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+BIND?")) { rfcomm_send_reply(rfcomm, "+BIND: 2,1"); rfcomm_send_reply(rfcomm, "OK"); } else if (spa_strstartswith(buf, "AT+BIND=")) { // BIND=... should return a comma separated list of indicators and // 2 should be among the other numbers telling that battery charge // is supported rfcomm_send_reply(rfcomm, "OK"); } else if (sscanf(buf, "AT+BIEV=%u,%u", &indicator, &indicator_value) == 2) { process_hfp_hf_indicator(rfcomm, indicator, indicator_value); } else if (sscanf(buf, "AT+XAPL=%04x-%04x-%*[^,],%u", &xapl_vendor, &xapl_product, &xapl_features) == 3) { if (xapl_features & SPA_BT_HFP_HF_XAPL_FEATURE_BATTERY_REPORTING) { /* claim, that we support battery status reports */ rfcomm_send_reply(rfcomm, "+XAPL=iPhone,%u", SPA_BT_HFP_HF_XAPL_FEATURE_BATTERY_REPORTING); } rfcomm_send_reply(rfcomm, "OK"); } else if (sscanf(buf, "AT+IPHONEACCEV=%u%n", &count, &r) == 1) { if (count < 1 || count > 100) return false; buf += r; for (unsigned int i = 0; i < count; i++) { unsigned int key, value; if (sscanf(buf, " , %u , %u%n", &key, &value, &r) != 2) return false; process_iphoneaccev_indicator(rfcomm, key, value); buf += r; } } else if (spa_strstartswith(buf, "AT+APLSIRI?")) { // This command is sent when we activate Apple extensions rfcomm_send_reply(rfcomm, "OK"); } else if (!mm_is_available(backend->modemmanager)) { spa_log_warn(backend->log, "RFCOMM receive command but modem not available: %s", buf); rfcomm_send_error(rfcomm, CMEE_NO_CONNECTION_TO_PHONE); return true; /* ***** * Following commands requires a Service Level Connection * and acces to a modem * ***** */ } else if (!backend->modem.network_has_service) { spa_log_warn(backend->log, "RFCOMM receive command but network not available: %s", buf); rfcomm_send_error(rfcomm, CMEE_NO_NETWORK_SERVICE); return true; /* ***** * Following commands requires a Service Level Connection, * acces to a modem and to the network * ***** */ } else if (spa_strstartswith(buf, "ATA")) { enum cmee_error error; if (!mm_answer_call(backend->modemmanager, rfcomm, &error)) { rfcomm_send_error(rfcomm, error); return true; } } else if (spa_strstartswith(buf, "ATD")) { char number[31], sep; enum cmee_error error; if (sscanf(buf, "ATD%30[^;]%c", number, &sep) != 2 || sep != ';') { spa_log_debug(backend->log, "Failed to parse ATD: \"%s\"", buf); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); return true; } if (!mm_do_call(backend->modemmanager, number, rfcomm, &error)) { rfcomm_send_error(rfcomm, error); return true; } } else if (spa_strstartswith(buf, "AT+CHUP")) { enum cmee_error error; if (!mm_hangup_call(backend->modemmanager, rfcomm, &error)) { rfcomm_send_error(rfcomm, error); return true; } } else if (spa_strstartswith(buf, "AT+VTS=")) { char *dtmf; enum cmee_error error; dtmf = calloc(1, 2); if (sscanf(buf, "AT+VTS=%1s", dtmf) != 1) { spa_log_debug(backend->log, "Failed to parse AT+VTS: \"%s\"", buf); rfcomm_send_error(rfcomm, CMEE_AG_FAILURE); return true; } if (!mm_send_dtmf(backend->modemmanager, dtmf, rfcomm, &error)) { rfcomm_send_error(rfcomm, error); return true; } } else { return false; } return true; } static bool rfcomm_hfp_hf(struct rfcomm *rfcomm, char* buf) { struct impl *backend = rfcomm->backend; unsigned int features, gain, selected_codec, indicator, value; char* token; while ((token = strsep(&buf, "\r\n"))) { if (sscanf(token, "+BRSF:%u", &features) == 1) { if (((features & (SPA_BT_HFP_AG_FEATURE_CODEC_NEGOTIATION)) != 0) && rfcomm->msbc_supported_by_hfp) rfcomm->codec_negotiation_supported = true; } else if (sscanf(token, "+BCS:%u", &selected_codec) == 1 && rfcomm->codec_negotiation_supported) { if (selected_codec != HFP_AUDIO_CODEC_CVSD && selected_codec != HFP_AUDIO_CODEC_MSBC) { spa_log_warn(backend->log, "unsupported codec negotiation: %d", selected_codec); } else { spa_log_debug(backend->log, "RFCOMM selected_codec = %i", selected_codec); /* send codec selection to AG */ rfcomm_send_cmd(rfcomm, "AT+BCS=%u", selected_codec); rfcomm->hf_state = hfp_hf_bcs; if (!rfcomm->transport || (rfcomm->transport->codec != selected_codec) ) { if (rfcomm->transport) spa_bt_transport_free(rfcomm->transport); rfcomm->transport = _transport_create(rfcomm); if (rfcomm->transport == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); // TODO: We should manage the missing transport } else { rfcomm->transport->codec = selected_codec; spa_bt_device_connect_profile(rfcomm->device, rfcomm->profile); } } } } else if (sscanf(token, "+VGM%*1[:=]%u", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_TX, gain); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGM gain: %s", token); } } else if (sscanf(token, "+VGS%*1[:=]%u", &gain) == 1) { if (gain <= SPA_BT_VOLUME_HS_MAX) { rfcomm_emit_volume_changed(rfcomm, SPA_BT_VOLUME_ID_RX, gain); } else { spa_log_debug(backend->log, "RFCOMM receive unsupported VGS gain: %s", token); } } else if (spa_strstartswith(token, "+CIND: (")) { uint8_t i = 1; while (strstr(token, "\"")) { token += strcspn(token, "\"") + 1; token[strcspn(token, "\"")] = 0; rfcomm->hf_indicators[i] = strdup(token); token += strcspn(token, "\"") + 1; i++; if (i == MAX_HF_INDICATORS) { break; } } } else if (spa_strstartswith(token, "+CIND: ")) { token[strcspn(token, "\r")] = 0; token[strcspn(token, "\n")] = 0; token += strlen("+CIND: "); uint8_t i = 1; while (strlen(token)) { if (i >= MAX_HF_INDICATORS || !rfcomm->hf_indicators[i]) { break; } token[strcspn(token, ",")] = 0; spa_log_info(backend->log, "AG indicator state: %s = %i", rfcomm->hf_indicators[i], atoi(token)); if (spa_streq(rfcomm->hf_indicators[i], "battchg")) { spa_bt_device_report_battery_level(rfcomm->device, atoi(token) * 100 / 5); } token += strcspn(token, "\0") + 1; i++; } } else if (sscanf(token, "+CIEV: %u,%u", &indicator, &value) == 2) { if (indicator >= MAX_HF_INDICATORS || !rfcomm->hf_indicators[indicator]) { spa_log_warn(backend->log, "indicator %u has not been registered, ignoring", indicator); } else { spa_log_info(backend->log, "AG indicator update: %s = %u", rfcomm->hf_indicators[indicator], value); if (spa_streq(rfcomm->hf_indicators[indicator], "battchg")) { spa_bt_device_report_battery_level(rfcomm->device, value * 100 / 5); } } } else if (spa_strstartswith(token, "OK")) { switch(rfcomm->hf_state) { case hfp_hf_brsf: if (rfcomm->codec_negotiation_supported) { rfcomm_send_cmd(rfcomm, "AT+BAC=1,2"); rfcomm->hf_state = hfp_hf_bac; } else { rfcomm_send_cmd(rfcomm, "AT+CIND=?"); rfcomm->hf_state = hfp_hf_cind1; } break; case hfp_hf_bac: rfcomm_send_cmd(rfcomm, "AT+CIND=?"); rfcomm->hf_state = hfp_hf_cind1; break; case hfp_hf_cind1: rfcomm_send_cmd(rfcomm, "AT+CIND?"); rfcomm->hf_state = hfp_hf_cind2; break; case hfp_hf_cind2: rfcomm_send_cmd(rfcomm, "AT+CMER=3,0,0,1"); rfcomm->hf_state = hfp_hf_cmer; break; case hfp_hf_cmer: rfcomm->hf_state = hfp_hf_slc1; rfcomm->slc_configured = true; if (!rfcomm->codec_negotiation_supported) { rfcomm->transport = _transport_create(rfcomm); if (rfcomm->transport == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); // TODO: We should manage the missing transport } else { rfcomm->transport->codec = HFP_AUDIO_CODEC_CVSD; spa_bt_device_connect_profile(rfcomm->device, rfcomm->profile); } } /* Report volume on SLC establishment */ if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_RX)) rfcomm->hf_state = hfp_hf_vgs; break; case hfp_hf_slc2: if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_RX)) rfcomm->hf_state = hfp_hf_vgs; break; case hfp_hf_vgs: rfcomm->hf_state = hfp_hf_slc1; if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_TX)) rfcomm->hf_state = hfp_hf_vgm; break; default: break; } } } return true; } #endif static void rfcomm_event(struct spa_source *source) { struct rfcomm *rfcomm = source->data; struct impl *backend = rfcomm->backend; if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) { spa_log_info(backend->log, "lost RFCOMM connection."); rfcomm_free(rfcomm); return; } if (source->rmask & SPA_IO_IN) { char buf[512]; ssize_t len; bool res = false; len = read(source->fd, buf, 511); if (len < 0) { spa_log_error(backend->log, "RFCOMM read error: %s", strerror(errno)); return; } buf[len] = 0; spa_log_debug(backend->log, "RFCOMM << %s", buf); switch (rfcomm->profile) { #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE case SPA_BT_PROFILE_HSP_HS: res = rfcomm_hsp_ag(rfcomm, buf); break; case SPA_BT_PROFILE_HSP_AG: res = rfcomm_hsp_hs(rfcomm, buf); break; #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE case SPA_BT_PROFILE_HFP_HF: res = rfcomm_hfp_ag(rfcomm, buf); break; case SPA_BT_PROFILE_HFP_AG: res = rfcomm_hfp_hf(rfcomm, buf); break; #endif default: break; } if (!res) { spa_log_debug(backend->log, "RFCOMM received unsupported command: %s", buf); rfcomm_send_error(rfcomm, CMEE_OPERATION_NOT_SUPPORTED); } } } static int sco_create_socket(struct impl *backend, struct spa_bt_adapter *adapter, bool msbc) { struct sockaddr_sco addr; socklen_t len; bdaddr_t src; int sock = -1; sock = socket(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_SCO); if (sock < 0) { spa_log_error(backend->log, "socket(SEQPACKET, SCO) %s", strerror(errno)); goto fail; } str2ba(adapter->address, &src); len = sizeof(addr); memset(&addr, 0, len); addr.sco_family = AF_BLUETOOTH; bacpy(&addr.sco_bdaddr, &src); if (bind(sock, (struct sockaddr *) &addr, len) < 0) { spa_log_error(backend->log, "bind(): %s", strerror(errno)); goto fail; } spa_log_debug(backend->log, "msbc=%d", (int)msbc); if (msbc) { /* set correct socket options for mSBC */ struct bt_voice voice_config; memset(&voice_config, 0, sizeof(voice_config)); voice_config.setting = BT_VOICE_TRANSPARENT; if (setsockopt(sock, SOL_BLUETOOTH, BT_VOICE, &voice_config, sizeof(voice_config)) < 0) { spa_log_error(backend->log, "setsockopt(): %s", strerror(errno)); goto fail; } } return sock; fail: if (sock >= 0) close(sock); return -1; } static int sco_do_connect(struct spa_bt_transport *t) { struct impl *backend = SPA_CONTAINER_OF(t->backend, struct impl, this); struct spa_bt_device *d = t->device; struct transport_data *td = t->user_data; struct sockaddr_sco addr; socklen_t len; int err; int sock; bdaddr_t dst; int retry = 2; spa_log_debug(backend->log, "transport %p: enter sco_do_connect, codec=%u", t, t->codec); if (d->adapter == NULL) return -EIO; str2ba(d->address, &dst); again: sock = sco_create_socket(backend, d->adapter, (t->codec == HFP_AUDIO_CODEC_MSBC)); if (sock < 0) return -1; len = sizeof(addr); memset(&addr, 0, len); addr.sco_family = AF_BLUETOOTH; bacpy(&addr.sco_bdaddr, &dst); spa_log_debug(backend->log, "transport %p: doing connect", t); err = connect(sock, (struct sockaddr *) &addr, len); if (err < 0 && errno == ECONNABORTED && retry-- > 0) { spa_log_warn(backend->log, "connect(): %s. Remaining retry:%d", strerror(errno), retry); close(sock); goto again; } else if (err < 0 && !(errno == EAGAIN || errno == EINPROGRESS)) { spa_log_error(backend->log, "connect(): %s", strerror(errno)); #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE if (errno == EOPNOTSUPP && t->codec == HFP_AUDIO_CODEC_MSBC && td->rfcomm->msbc_supported_by_hfp) { /* Adapter doesn't support msbc. Renegotiate. */ d->adapter->msbc_probed = true; d->adapter->has_msbc = false; td->rfcomm->msbc_supported_by_hfp = false; if (t->profile == SPA_BT_PROFILE_HFP_HF) { td->rfcomm->hfp_ag_switching_codec = true; rfcomm_send_reply(td->rfcomm, "+BCS: 1"); } else if (t->profile == SPA_BT_PROFILE_HFP_AG) { rfcomm_send_cmd(td->rfcomm, "AT+BAC=1"); } } #endif goto fail_close; } return sock; fail_close: close(sock); return -1; } static int rfcomm_ag_sync_volume(struct rfcomm *rfcomm, bool later); static void wait_for_socket(int fd) { struct pollfd fds[1]; const int timeout_ms = 500; fds[0].fd = fd; fds[0].events = POLLIN | POLLERR | POLLHUP; poll(fds, 1, timeout_ms); } static int sco_acquire_cb(void *data, bool optional) { struct spa_bt_transport *t = data; struct transport_data *td = t->user_data; struct impl *backend = SPA_CONTAINER_OF(t->backend, struct impl, this); int sock; socklen_t len; spa_log_debug(backend->log, "transport %p: enter sco_acquire_cb", t); if (optional || t->fd > 0) sock = t->fd; else sock = sco_do_connect(t); if (sock < 0) goto fail; #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE rfcomm_hfp_ag_set_cind(td->rfcomm, true); #endif /* * Send RFCOMM volume after connection is ready, and also after * a timeout. * * Some headsets adjust their HFP volume when in A2DP mode * without reporting via RFCOMM to us, so the volume level can * be out of sync, and we can't know what it is. Moreover, they may * take the first +VGS command after connection only partially * into account, and need a long enough timeout. * * E.g. with Sennheiser HD-250BT, the first +VGS changes the * actual volume, but does not update the level in the hardware * volume buttons, which is updated by an +VGS event only after * sufficient time is elapsed from the connection. */ wait_for_socket(sock); rfcomm_ag_sync_volume(td->rfcomm, false); rfcomm_ag_sync_volume(td->rfcomm, true); t->fd = sock; /* Fallback value */ t->read_mtu = 48; t->write_mtu = 48; if (true) { struct sco_options sco_opt; len = sizeof(sco_opt); memset(&sco_opt, 0, len); if (getsockopt(sock, SOL_SCO, SCO_OPTIONS, &sco_opt, &len) < 0) spa_log_warn(backend->log, "getsockopt(SCO_OPTIONS) failed, loading defaults"); else { spa_log_debug(backend->log, "autodetected mtu = %u", sco_opt.mtu); t->read_mtu = sco_opt.mtu; t->write_mtu = sco_opt.mtu; } } spa_log_debug(backend->log, "transport %p: read_mtu=%u, write_mtu=%u", t, t->read_mtu, t->write_mtu); return 0; fail: return -1; } static int sco_release_cb(void *data) { struct spa_bt_transport *t = data; struct transport_data *td = t->user_data; struct impl *backend = SPA_CONTAINER_OF(t->backend, struct impl, this); spa_log_info(backend->log, "Transport %s released", t->path); #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE rfcomm_hfp_ag_set_cind(td->rfcomm, false); #endif if (t->sco_io) { spa_bt_sco_io_destroy(t->sco_io); t->sco_io = NULL; } if (t->fd > 0) { /* Shutdown and close the socket */ shutdown(t->fd, SHUT_RDWR); close(t->fd); t->fd = -1; } return 0; } static void sco_event(struct spa_source *source) { struct spa_bt_transport *t = source->data; struct impl *backend = SPA_CONTAINER_OF(t->backend, struct impl, this); if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) { spa_log_debug(backend->log, "transport %p: error on SCO socket: %s", t, strerror(errno)); if (t->fd >= 0) { if (source->loop) spa_loop_remove_source(source->loop, source); shutdown(t->fd, SHUT_RDWR); close (t->fd); t->fd = -1; spa_bt_transport_set_state(t, SPA_BT_TRANSPORT_STATE_IDLE); } } } static void sco_listen_event(struct spa_source *source) { struct impl *backend = source->data; struct sockaddr_sco addr; socklen_t addrlen; int sock = -1; char local_address[18], remote_address[18]; struct rfcomm *rfcomm; struct spa_bt_transport *t = NULL; struct transport_data *td; if (source->rmask & (SPA_IO_HUP | SPA_IO_ERR)) { spa_log_error(backend->log, "error listening SCO connection: %s", strerror(errno)); goto fail; } memset(&addr, 0, sizeof(addr)); addrlen = sizeof(addr); spa_log_debug(backend->log, "doing accept"); sock = accept(source->fd, (struct sockaddr *) &addr, &addrlen); if (sock < 0) { if (errno != EAGAIN) spa_log_error(backend->log, "SCO accept(): %s", strerror(errno)); goto fail; } ba2str(&addr.sco_bdaddr, remote_address); memset(&addr, 0, sizeof(addr)); addrlen = sizeof(addr); if (getsockname(sock, (struct sockaddr *) &addr, &addrlen) < 0) { spa_log_error(backend->log, "SCO getsockname(): %s", strerror(errno)); goto fail; } ba2str(&addr.sco_bdaddr, local_address); /* Find transport for local and remote address */ spa_list_for_each(rfcomm, &backend->rfcomm_list, link) { if (rfcomm->transport && spa_streq(rfcomm->transport->device->address, remote_address) && spa_streq(rfcomm->transport->device->adapter->address, local_address)) { t = rfcomm->transport; break; } } if (!t) { spa_log_debug(backend->log, "No transport for adapter %s and remote %s", local_address, remote_address); goto fail; } /* The Synchronous Connection shall always be established by the AG, i.e. the remote profile should be a HSP AG or HFP AG profile */ if ((t->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY) == 0) { spa_log_debug(backend->log, "transport %p: Rejecting incoming audio connection to an AG profile", t); goto fail; } if (t->fd >= 0) { spa_log_debug(backend->log, "transport %p: Rejecting, audio already connected", t); goto fail; } spa_log_debug(backend->log, "transport %p: codec=%u", t, t->codec); if (backend->defer_setup_enabled) { /* In BT_DEFER_SETUP mode, when a connection is accepted, the listening socket is unblocked but * the effective connection setup happens only on first receive, allowing to configure the * accepted socket. */ char buff; if (t->codec == HFP_AUDIO_CODEC_MSBC) { /* set correct socket options for mSBC */ struct bt_voice voice_config; memset(&voice_config, 0, sizeof(voice_config)); voice_config.setting = BT_VOICE_TRANSPARENT; if (setsockopt(sock, SOL_BLUETOOTH, BT_VOICE, &voice_config, sizeof(voice_config)) < 0) { spa_log_error(backend->log, "transport %p: setsockopt(): %s", t, strerror(errno)); goto fail; } } /* First read from the accepted socket is non-blocking and returns a zero length buffer. */ if (read(sock, &buff, 1) == -1) { spa_log_error(backend->log, "transport %p: Couldn't authorize SCO connection: %s", t, strerror(errno)); goto fail; } } t->fd = sock; td = t->user_data; td->sco.func = sco_event; td->sco.data = t; td->sco.fd = sock; td->sco.mask = SPA_IO_HUP | SPA_IO_ERR; td->sco.rmask = 0; spa_loop_add_source(backend->main_loop, &td->sco); spa_log_debug(backend->log, "transport %p: audio connected", t); /* Report initial volume to remote */ if (t->profile == SPA_BT_PROFILE_HSP_AG) { if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_RX)) rfcomm->hs_state = hsp_hs_vgs; else rfcomm->hs_state = hsp_hs_init1; } else if (t->profile == SPA_BT_PROFILE_HFP_AG) { if (rfcomm_send_volume_cmd(rfcomm, SPA_BT_VOLUME_ID_RX)) rfcomm->hf_state = hfp_hf_vgs; else rfcomm->hf_state = hfp_hf_slc1; } spa_bt_transport_set_state(t, SPA_BT_TRANSPORT_STATE_PENDING); return; fail: if (sock >= 0) close(sock); return; } static int sco_listen(struct impl *backend) { struct sockaddr_sco addr; int sock; uint32_t defer = 1; sock = socket(PF_BLUETOOTH, SOCK_SEQPACKET | SOCK_NONBLOCK | SOCK_CLOEXEC, BTPROTO_SCO); if (sock < 0) { spa_log_error(backend->log, "socket(SEQPACKET, SCO) %m"); return -errno; } /* Bind to local address */ memset(&addr, 0, sizeof(addr)); addr.sco_family = AF_BLUETOOTH; bacpy(&addr.sco_bdaddr, BDADDR_ANY); if (bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) { spa_log_error(backend->log, "bind(): %m"); goto fail_close; } if (setsockopt(sock, SOL_BLUETOOTH, BT_DEFER_SETUP, &defer, sizeof(defer)) < 0) { spa_log_warn(backend->log, "Can't enable deferred setup: %s", strerror(errno)); backend->defer_setup_enabled = 0; } else { backend->defer_setup_enabled = 1; } spa_log_debug(backend->log, "doing listen"); if (listen(sock, 1) < 0) { spa_log_error(backend->log, "listen(): %m"); goto fail_close; } backend->sco.func = sco_listen_event; backend->sco.data = backend; backend->sco.fd = sock; backend->sco.mask = SPA_IO_IN; backend->sco.rmask = 0; spa_loop_add_source(backend->main_loop, &backend->sco); return sock; fail_close: close(sock); return -1; } static int rfcomm_ag_set_volume(struct spa_bt_transport *t, int id) { struct transport_data *td = t->user_data; struct rfcomm *rfcomm = td->rfcomm; const char *format; int value; if (!rfcomm_volume_enabled(rfcomm) || !(rfcomm->profile & SPA_BT_PROFILE_HEADSET_HEAD_UNIT) || !(rfcomm->has_volume && rfcomm->volumes[id].active)) return -ENOTSUP; value = rfcomm->volumes[id].hw_volume; if (id == SPA_BT_VOLUME_ID_RX) if (rfcomm->profile & SPA_BT_PROFILE_HFP_HF) format = "+VGM: %d"; else format = "+VGM=%d"; else if (id == SPA_BT_VOLUME_ID_TX) if (rfcomm->profile & SPA_BT_PROFILE_HFP_HF) format = "+VGS: %d"; else format = "+VGS=%d"; else spa_assert_not_reached(); if (rfcomm->transport) rfcomm_send_reply(rfcomm, format, value); return 0; } static int sco_set_volume_cb(void *data, int id, float volume) { struct spa_bt_transport *t = data; struct spa_bt_transport_volume *t_volume = &t->volumes[id]; struct transport_data *td = t->user_data; struct rfcomm *rfcomm = td->rfcomm; int value; if (!rfcomm_volume_enabled(rfcomm) || !(rfcomm->profile & SPA_BT_PROFILE_HEADSET_HEAD_UNIT) || !(rfcomm->has_volume && rfcomm->volumes[id].active)) return -ENOTSUP; value = spa_bt_volume_linear_to_hw(volume, t_volume->hw_volume_max); t_volume->volume = volume; if (rfcomm->volumes[id].hw_volume == value) return 0; rfcomm->volumes[id].hw_volume = value; return rfcomm_ag_set_volume(t, id); } static const struct spa_bt_transport_implementation sco_transport_impl = { SPA_VERSION_BT_TRANSPORT_IMPLEMENTATION, .acquire = sco_acquire_cb, .release = sco_release_cb, .set_volume = sco_set_volume_cb, }; static struct rfcomm *device_find_rfcomm(struct impl *backend, struct spa_bt_device *device) { struct rfcomm *rfcomm; spa_list_for_each(rfcomm, &backend->rfcomm_list, link) { if (rfcomm->device == device) return rfcomm; } return NULL; } static int backend_native_supports_codec(void *data, struct spa_bt_device *device, unsigned int codec) { #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE struct impl *backend = data; struct rfcomm *rfcomm; rfcomm = device_find_rfcomm(backend, device); if (rfcomm == NULL || rfcomm->profile != SPA_BT_PROFILE_HFP_HF) return -ENOTSUP; if (codec == HFP_AUDIO_CODEC_CVSD) return 1; return (codec == HFP_AUDIO_CODEC_MSBC && (rfcomm->profile == SPA_BT_PROFILE_HFP_AG || rfcomm->profile == SPA_BT_PROFILE_HFP_HF) && rfcomm->msbc_supported_by_hfp && rfcomm->codec_negotiation_supported) ? 1 : 0; #else return -ENOTSUP; #endif } static int codec_switch_stop_timer(struct rfcomm *rfcomm) { struct impl *backend = rfcomm->backend; struct itimerspec ts; if (rfcomm->timer.data == NULL) return 0; spa_loop_remove_source(backend->main_loop, &rfcomm->timer); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(backend->main_system, rfcomm->timer.fd, 0, &ts, NULL); spa_system_close(backend->main_system, rfcomm->timer.fd); rfcomm->timer.data = NULL; return 0; } static void volume_sync_stop_timer(struct rfcomm *rfcomm) { if (rfcomm->volume_sync_timer) spa_loop_utils_update_timer(rfcomm->backend->loop_utils, rfcomm->volume_sync_timer, NULL, NULL, false); } static void volume_sync_timer_event(void *data, uint64_t expirations) { struct rfcomm *rfcomm = data; volume_sync_stop_timer(rfcomm); if (rfcomm->transport) { rfcomm_ag_set_volume(rfcomm->transport, SPA_BT_VOLUME_ID_TX); rfcomm_ag_set_volume(rfcomm->transport, SPA_BT_VOLUME_ID_RX); } } static int volume_sync_start_timer(struct rfcomm *rfcomm) { struct timespec ts; const uint64_t timeout = 1500 * SPA_NSEC_PER_MSEC; if (rfcomm->volume_sync_timer == NULL) rfcomm->volume_sync_timer = spa_loop_utils_add_timer(rfcomm->backend->loop_utils, volume_sync_timer_event, rfcomm); if (rfcomm->volume_sync_timer == NULL) return -EIO; ts.tv_sec = timeout / SPA_NSEC_PER_SEC; ts.tv_nsec = timeout % SPA_NSEC_PER_SEC; spa_loop_utils_update_timer(rfcomm->backend->loop_utils, rfcomm->volume_sync_timer, &ts, NULL, false); return 0; } static int rfcomm_ag_sync_volume(struct rfcomm *rfcomm, bool later) { if (rfcomm->transport == NULL) return -ENOENT; if (!later) { rfcomm_ag_set_volume(rfcomm->transport, SPA_BT_VOLUME_ID_TX); rfcomm_ag_set_volume(rfcomm->transport, SPA_BT_VOLUME_ID_RX); } else { volume_sync_start_timer(rfcomm); } return 0; } static void codec_switch_timer_event(struct spa_source *source) { struct rfcomm *rfcomm = source->data; struct impl *backend = rfcomm->backend; uint64_t exp; if (spa_system_timerfd_read(backend->main_system, source->fd, &exp) < 0) spa_log_warn(backend->log, "error reading timerfd: %s", strerror(errno)); codec_switch_stop_timer(rfcomm); spa_log_debug(backend->log, "rfcomm %p: codec switch timeout", rfcomm); switch (rfcomm->hfp_ag_initial_codec_setup) { case HFP_AG_INITIAL_CODEC_SETUP_SEND: /* Retry codec selection */ rfcomm->hfp_ag_initial_codec_setup = HFP_AG_INITIAL_CODEC_SETUP_WAIT; rfcomm_send_reply(rfcomm, "+BCS: 2"); codec_switch_start_timer(rfcomm, HFP_CODEC_SWITCH_TIMEOUT_MSEC); return; case HFP_AG_INITIAL_CODEC_SETUP_WAIT: /* Failure, try falling back to CVSD. */ rfcomm->hfp_ag_initial_codec_setup = HFP_AG_INITIAL_CODEC_SETUP_NONE; if (rfcomm->transport == NULL) { rfcomm->transport = _transport_create(rfcomm); if (rfcomm->transport == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); } else { rfcomm->transport->codec = HFP_AUDIO_CODEC_CVSD; spa_bt_device_connect_profile(rfcomm->device, rfcomm->profile); } } rfcomm_send_reply(rfcomm, "+BCS: 1"); return; default: break; } if (rfcomm->hfp_ag_switching_codec) { rfcomm->hfp_ag_switching_codec = false; if (rfcomm->device) spa_bt_device_emit_codec_switched(rfcomm->device, -EIO); } } static int codec_switch_start_timer(struct rfcomm *rfcomm, int timeout_msec) { struct impl *backend = rfcomm->backend; struct itimerspec ts; spa_log_debug(backend->log, "rfcomm %p: start timer", rfcomm); if (rfcomm->timer.data == NULL) { rfcomm->timer.data = rfcomm; rfcomm->timer.func = codec_switch_timer_event; rfcomm->timer.fd = spa_system_timerfd_create(backend->main_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); rfcomm->timer.mask = SPA_IO_IN; rfcomm->timer.rmask = 0; spa_loop_add_source(backend->main_loop, &rfcomm->timer); } ts.it_value.tv_sec = timeout_msec / SPA_MSEC_PER_SEC; ts.it_value.tv_nsec = (timeout_msec % SPA_MSEC_PER_SEC) * SPA_NSEC_PER_MSEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(backend->main_system, rfcomm->timer.fd, 0, &ts, NULL); return 0; } static int backend_native_ensure_codec(void *data, struct spa_bt_device *device, unsigned int codec) { #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE struct impl *backend = data; struct rfcomm *rfcomm; int res; res = backend_native_supports_codec(data, device, codec); if (res <= 0) return -EINVAL; rfcomm = device_find_rfcomm(backend, device); if (rfcomm == NULL) return -ENOTSUP; if (!rfcomm->codec_negotiation_supported) return -ENOTSUP; if (rfcomm->codec == codec) { spa_bt_device_emit_codec_switched(device, 0); return 0; } if ((res = rfcomm_send_reply(rfcomm, "+BCS: %u", codec)) < 0) return res; rfcomm->hfp_ag_switching_codec = true; codec_switch_start_timer(rfcomm, HFP_CODEC_SWITCH_TIMEOUT_MSEC); return 0; #else return -ENOTSUP; #endif } static void device_destroy(void *data) { struct rfcomm *rfcomm = data; rfcomm_free(rfcomm); } static const struct spa_bt_device_events device_events = { SPA_VERSION_BT_DEVICE_EVENTS, .destroy = device_destroy, }; static enum spa_bt_profile path_to_profile(const char *path) { #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE if (spa_streq(path, PROFILE_HSP_AG)) return SPA_BT_PROFILE_HSP_HS; if (spa_streq(path, PROFILE_HSP_HS)) return SPA_BT_PROFILE_HSP_AG; #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE if (spa_streq(path, PROFILE_HFP_AG)) return SPA_BT_PROFILE_HFP_HF; if (spa_streq(path, PROFILE_HFP_HF)) return SPA_BT_PROFILE_HFP_AG; #endif return SPA_BT_PROFILE_NULL; } static DBusHandlerResult profile_new_connection(DBusConnection *conn, DBusMessage *m, void *userdata) { struct impl *backend = userdata; DBusMessage *r; DBusMessageIter it[5]; const char *handler, *path; enum spa_bt_profile profile; struct rfcomm *rfcomm; struct spa_bt_device *d; struct spa_bt_transport *t = NULL; int fd; if (!dbus_message_has_signature(m, "oha{sv}")) { spa_log_warn(backend->log, "invalid NewConnection() signature"); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } handler = dbus_message_get_path(m); profile = path_to_profile(handler); if (profile == SPA_BT_PROFILE_NULL) { spa_log_warn(backend->log, "invalid handler %s", handler); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } dbus_message_iter_init(m, &it[0]); dbus_message_iter_get_basic(&it[0], &path); d = spa_bt_device_find(backend->monitor, path); if (d == NULL || d->adapter == NULL) { spa_log_warn(backend->log, "unknown device for path %s", path); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } spa_bt_device_add_profile(d, profile); dbus_message_iter_next(&it[0]); dbus_message_iter_get_basic(&it[0], &fd); spa_log_debug(backend->log, "NewConnection path=%s, fd=%d, profile %s", path, fd, handler); rfcomm = calloc(1, sizeof(struct rfcomm)); if (rfcomm == NULL) return DBUS_HANDLER_RESULT_NEED_MEMORY; rfcomm->backend = backend; rfcomm->profile = profile; rfcomm->device = d; rfcomm->path = strdup(path); rfcomm->source.func = rfcomm_event; rfcomm->source.data = rfcomm; rfcomm->source.fd = fd; rfcomm->source.mask = SPA_IO_IN; rfcomm->source.rmask = 0; /* By default all indicators are enabled */ rfcomm->cind_enabled_indicators = 0xFFFFFFFF; memset(rfcomm->hf_indicators, 0, sizeof rfcomm->hf_indicators); for (int i = 0; i < SPA_BT_VOLUME_ID_TERM; ++i) { if (rfcomm->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY) rfcomm->volumes[i].active = true; rfcomm->volumes[i].hw_volume = SPA_BT_VOLUME_INVALID; } spa_bt_device_add_listener(d, &rfcomm->device_listener, &device_events, rfcomm); spa_loop_add_source(backend->main_loop, &rfcomm->source); spa_list_append(&backend->rfcomm_list, &rfcomm->link); if (profile == SPA_BT_PROFILE_HSP_HS || profile == SPA_BT_PROFILE_HSP_AG) { t = _transport_create(rfcomm); if (t == NULL) { spa_log_warn(backend->log, "can't create transport: %m"); goto fail_need_memory; } rfcomm->transport = t; rfcomm->has_volume = rfcomm_volume_enabled(rfcomm); if (profile == SPA_BT_PROFILE_HSP_AG) { rfcomm->hs_state = hsp_hs_init1; } spa_bt_device_connect_profile(t->device, profile); spa_log_debug(backend->log, "Transport %s available for profile %s", t->path, handler); } else if (profile == SPA_BT_PROFILE_HFP_AG) { /* Start SLC connection */ unsigned int hf_features = SPA_BT_HFP_HF_FEATURE_NONE; /* Decide if we want to signal that the HF supports mSBC negotiation This should be done when the bluetooth adapter supports the necessary transport mode */ if (device_supports_required_mSBC_transport_modes(backend, rfcomm->device)) { /* set the feature bit that indicates HF supports codec negotiation */ hf_features |= SPA_BT_HFP_HF_FEATURE_CODEC_NEGOTIATION; rfcomm->msbc_supported_by_hfp = true; rfcomm->codec_negotiation_supported = false; } else { rfcomm->msbc_supported_by_hfp = false; rfcomm->codec_negotiation_supported = false; } if (rfcomm_volume_enabled(rfcomm)) { rfcomm->has_volume = true; hf_features |= SPA_BT_HFP_HF_FEATURE_REMOTE_VOLUME_CONTROL; } /* send command to AG with the features supported by Hands-Free */ rfcomm_send_cmd(rfcomm, "AT+BRSF=%u", hf_features); rfcomm->hf_state = hfp_hf_brsf; } if (rfcomm_volume_enabled(rfcomm) && (profile == SPA_BT_PROFILE_HFP_HF || profile == SPA_BT_PROFILE_HSP_HS)) { uint32_t device_features; if (spa_bt_quirks_get_features(backend->quirks, d->adapter, d, &device_features) == 0) { rfcomm->broken_mic_hw_volume = !(device_features & SPA_BT_FEATURE_HW_VOLUME_MIC); if (rfcomm->broken_mic_hw_volume) spa_log_debug(backend->log, "microphone HW volume disabled by quirk"); } } if ((r = dbus_message_new_method_return(m)) == NULL) goto fail_need_memory; if (!dbus_connection_send(conn, r, NULL)) goto fail_need_memory; dbus_message_unref(r); return DBUS_HANDLER_RESULT_HANDLED; fail_need_memory: if (rfcomm) rfcomm_free(rfcomm); return DBUS_HANDLER_RESULT_NEED_MEMORY; } static DBusHandlerResult profile_request_disconnection(DBusConnection *conn, DBusMessage *m, void *userdata) { struct impl *backend = userdata; DBusMessage *r; const char *handler, *path; struct spa_bt_device *d; enum spa_bt_profile profile = SPA_BT_PROFILE_NULL; DBusMessageIter it[5]; struct rfcomm *rfcomm, *rfcomm_tmp; if (!dbus_message_has_signature(m, "o")) { spa_log_warn(backend->log, "invalid RequestDisconnection() signature"); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } handler = dbus_message_get_path(m); profile = path_to_profile(handler); if (profile == SPA_BT_PROFILE_NULL) { spa_log_warn(backend->log, "invalid handler %s", handler); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } dbus_message_iter_init(m, &it[0]); dbus_message_iter_get_basic(&it[0], &path); d = spa_bt_device_find(backend->monitor, path); if (d == NULL || d->adapter == NULL) { spa_log_warn(backend->log, "unknown device for path %s", path); return DBUS_HANDLER_RESULT_NOT_YET_HANDLED; } spa_list_for_each_safe(rfcomm, rfcomm_tmp, &backend->rfcomm_list, link) { if (rfcomm->device == d && rfcomm->profile == profile) { rfcomm_free(rfcomm); } } spa_bt_device_check_profiles(d, false); if ((r = dbus_message_new_method_return(m)) == NULL) return DBUS_HANDLER_RESULT_NEED_MEMORY; if (!dbus_connection_send(conn, r, NULL)) return DBUS_HANDLER_RESULT_NEED_MEMORY; dbus_message_unref(r); return DBUS_HANDLER_RESULT_HANDLED; } static DBusHandlerResult profile_handler(DBusConnection *c, DBusMessage *m, void *userdata) { struct impl *backend = userdata; const char *path, *interface, *member; DBusMessage *r; DBusHandlerResult res; path = dbus_message_get_path(m); interface = dbus_message_get_interface(m); member = dbus_message_get_member(m); spa_log_debug(backend->log, "dbus: path=%s, interface=%s, member=%s", path, interface, member); if (dbus_message_is_method_call(m, "org.freedesktop.DBus.Introspectable", "Introspect")) { const char *xml = PROFILE_INTROSPECT_XML; if ((r = dbus_message_new_method_return(m)) == NULL) return DBUS_HANDLER_RESULT_NEED_MEMORY; if (!dbus_message_append_args(r, DBUS_TYPE_STRING, &xml, DBUS_TYPE_INVALID)) return DBUS_HANDLER_RESULT_NEED_MEMORY; if (!dbus_connection_send(backend->conn, r, NULL)) return DBUS_HANDLER_RESULT_NEED_MEMORY; dbus_message_unref(r); res = DBUS_HANDLER_RESULT_HANDLED; } else if (dbus_message_is_method_call(m, BLUEZ_PROFILE_INTERFACE, "Release")) res = profile_release(c, m, userdata); else if (dbus_message_is_method_call(m, BLUEZ_PROFILE_INTERFACE, "RequestDisconnection")) res = profile_request_disconnection(c, m, userdata); else if (dbus_message_is_method_call(m, BLUEZ_PROFILE_INTERFACE, "NewConnection")) res = profile_new_connection(c, m, userdata); else res = DBUS_HANDLER_RESULT_NOT_YET_HANDLED; return res; } static void register_profile_reply(DBusPendingCall *pending, void *user_data) { struct impl *backend = user_data; DBusMessage *r; r = dbus_pending_call_steal_reply(pending); if (r == NULL) return; if (dbus_message_is_error(r, BLUEZ_ERROR_NOT_SUPPORTED)) { spa_log_warn(backend->log, "Register profile not supported"); goto finish; } if (dbus_message_is_error(r, DBUS_ERROR_UNKNOWN_METHOD)) { spa_log_warn(backend->log, "Error registering profile"); goto finish; } if (dbus_message_get_type(r) == DBUS_MESSAGE_TYPE_ERROR) { spa_log_error(backend->log, "RegisterProfile() failed: %s", dbus_message_get_error_name(r)); goto finish; } finish: dbus_message_unref(r); dbus_pending_call_unref(pending); } static int register_profile(struct impl *backend, const char *profile, const char *uuid) { DBusMessage *m; DBusMessageIter it[4]; dbus_bool_t autoconnect; dbus_uint16_t version, chan, features; char *str; DBusPendingCall *call; if (!(backend->enabled_profiles & spa_bt_profile_from_uuid(uuid))) return -ECANCELED; spa_log_debug(backend->log, "Registering Profile %s %s", profile, uuid); m = dbus_message_new_method_call(BLUEZ_SERVICE, "/org/bluez", BLUEZ_PROFILE_MANAGER_INTERFACE, "RegisterProfile"); if (m == NULL) return -ENOMEM; dbus_message_iter_init_append(m, &it[0]); dbus_message_iter_append_basic(&it[0], DBUS_TYPE_OBJECT_PATH, &profile); dbus_message_iter_append_basic(&it[0], DBUS_TYPE_STRING, &uuid); dbus_message_iter_open_container(&it[0], DBUS_TYPE_ARRAY, "{sv}", &it[1]); if (spa_streq(uuid, SPA_BT_UUID_HSP_HS) || spa_streq(uuid, SPA_BT_UUID_HSP_HS_ALT)) { /* In the headset role, the connection will only be initiated from the remote side */ str = "AutoConnect"; autoconnect = 0; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "b", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_BOOLEAN, &autoconnect); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); str = "Channel"; chan = HSP_HS_DEFAULT_CHANNEL; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &chan); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); /* HSP version 1.2 */ str = "Version"; version = 0x0102; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &version); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); } else if (spa_streq(uuid, SPA_BT_UUID_HFP_AG)) { str = "Features"; /* We announce wideband speech support anyway */ features = SPA_BT_HFP_SDP_AG_FEATURE_WIDEBAND_SPEECH; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &features); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); /* HFP version 1.7 */ str = "Version"; version = 0x0107; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &version); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); } else if (spa_streq(uuid, SPA_BT_UUID_HFP_HF)) { str = "Features"; /* We announce wideband speech support anyway */ features = SPA_BT_HFP_SDP_HF_FEATURE_WIDEBAND_SPEECH; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &features); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); /* HFP version 1.7 */ str = "Version"; version = 0x0107; dbus_message_iter_open_container(&it[1], DBUS_TYPE_DICT_ENTRY, NULL, &it[2]); dbus_message_iter_append_basic(&it[2], DBUS_TYPE_STRING, &str); dbus_message_iter_open_container(&it[2], DBUS_TYPE_VARIANT, "q", &it[3]); dbus_message_iter_append_basic(&it[3], DBUS_TYPE_UINT16, &version); dbus_message_iter_close_container(&it[2], &it[3]); dbus_message_iter_close_container(&it[1], &it[2]); } dbus_message_iter_close_container(&it[0], &it[1]); dbus_connection_send_with_reply(backend->conn, m, &call, -1); dbus_pending_call_set_notify(call, register_profile_reply, backend, NULL); dbus_message_unref(m); return 0; } static void unregister_profile(struct impl *backend, const char *profile) { DBusMessage *m, *r; DBusError err; spa_log_debug(backend->log, "Unregistering Profile %s", profile); m = dbus_message_new_method_call(BLUEZ_SERVICE, "/org/bluez", BLUEZ_PROFILE_MANAGER_INTERFACE, "UnregisterProfile"); if (m == NULL) return; dbus_message_append_args(m, DBUS_TYPE_OBJECT_PATH, &profile, DBUS_TYPE_INVALID); dbus_error_init(&err); r = dbus_connection_send_with_reply_and_block(backend->conn, m, -1, &err); dbus_message_unref(m); m = NULL; if (r == NULL) { spa_log_info(backend->log, "Unregistering Profile %s failed", profile); dbus_error_free(&err); return; } if (dbus_message_get_type(r) == DBUS_MESSAGE_TYPE_ERROR) { spa_log_error(backend->log, "UnregisterProfile() returned error: %s", dbus_message_get_error_name(r)); return; } dbus_message_unref(r); } static int backend_native_register_profiles(void *data) { struct impl *backend = data; #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE register_profile(backend, PROFILE_HSP_AG, SPA_BT_UUID_HSP_AG); register_profile(backend, PROFILE_HSP_HS, SPA_BT_UUID_HSP_HS); #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE register_profile(backend, PROFILE_HFP_AG, SPA_BT_UUID_HFP_AG); register_profile(backend, PROFILE_HFP_HF, SPA_BT_UUID_HFP_HF); #endif if (backend->enabled_profiles & SPA_BT_PROFILE_HEADSET_HEAD_UNIT) sco_listen(backend); return 0; } static void sco_close(struct impl *backend) { if (backend->sco.fd >= 0) { if (backend->sco.loop) spa_loop_remove_source(backend->sco.loop, &backend->sco); shutdown(backend->sco.fd, SHUT_RDWR); close (backend->sco.fd); backend->sco.fd = -1; } } static int backend_native_unregister_profiles(void *data) { struct impl *backend = data; sco_close(backend); #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE if (backend->enabled_profiles & SPA_BT_PROFILE_HSP_AG) unregister_profile(backend, PROFILE_HSP_AG); if (backend->enabled_profiles & SPA_BT_PROFILE_HSP_HS) unregister_profile(backend, PROFILE_HSP_HS); #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE if (backend->enabled_profiles & SPA_BT_PROFILE_HFP_AG) unregister_profile(backend, PROFILE_HFP_AG); if (backend->enabled_profiles & SPA_BT_PROFILE_HFP_HF) unregister_profile(backend, PROFILE_HFP_HF); #endif return 0; } static void send_ciev_for_each_rfcomm(struct impl *backend, int indicator, int value) { struct rfcomm *rfcomm; spa_list_for_each(rfcomm, &backend->rfcomm_list, link) { if (rfcomm->slc_configured && ((indicator == CIND_CALL || indicator == CIND_CALLSETUP || indicator == CIND_CALLHELD) || (rfcomm->cind_call_notify && (rfcomm->cind_enabled_indicators & (1 << indicator))))) rfcomm_send_reply(rfcomm, "+CIEV: %d,%d", indicator, value); } } static void ring_timer_event(void *data, uint64_t expirations) { struct impl *backend = data; const char *number; unsigned int type; struct timespec ts; const uint64_t timeout = 1 * SPA_NSEC_PER_SEC; struct rfcomm *rfcomm; number = mm_get_incoming_call_number(backend->modemmanager); if (number) { if (spa_strstartswith(number, "+")) type = INTERNATIONAL_NUMBER; else type = NATIONAL_NUMBER; } ts.tv_sec = timeout / SPA_NSEC_PER_SEC; ts.tv_nsec = timeout % SPA_NSEC_PER_SEC; spa_loop_utils_update_timer(backend->loop_utils, backend->ring_timer, &ts, NULL, false); spa_list_for_each(rfcomm, &backend->rfcomm_list, link) { if (rfcomm->slc_configured) { rfcomm_send_reply(rfcomm, "RING"); if (rfcomm->clip_notify && number) rfcomm_send_reply(rfcomm, "+CLIP: \"%s\",%u", number, type); } } } static void set_call_active(bool active, void *user_data) { struct impl *backend = user_data; if (backend->modem.active_call != active) { backend->modem.active_call = active; send_ciev_for_each_rfcomm(backend, CIND_CALL, active); } } static void set_call_setup(enum call_setup value, void *user_data) { struct impl *backend = user_data; enum call_setup old = backend->modem.call_setup; if (backend->modem.call_setup != value) { backend->modem.call_setup = value; send_ciev_for_each_rfcomm(backend, CIND_CALLSETUP, value); } if (value == CIND_CALLSETUP_INCOMING) { if (backend->ring_timer == NULL) backend->ring_timer = spa_loop_utils_add_timer(backend->loop_utils, ring_timer_event, backend); if (backend->ring_timer == NULL) { spa_log_warn(backend->log, "Failed to create ring timer"); return; } ring_timer_event(backend, 0); } else if (old == CIND_CALLSETUP_INCOMING) { spa_loop_utils_update_timer(backend->loop_utils, backend->ring_timer, NULL, NULL, false); } } void set_battery_level(unsigned int level, void *user_data) { struct impl *backend = user_data; if (backend->battery_level != level) { backend->battery_level = level; send_ciev_for_each_rfcomm(backend, CIND_BATTERY_LEVEL, level); } } static void set_modem_operator_name(const char *name, void *user_data) { struct impl *backend = user_data; if (backend->modem.operator_name) { free(backend->modem.operator_name); backend->modem.operator_name = NULL; } if (name) backend->modem.operator_name = strdup(name); } static void set_modem_roaming(bool is_roaming, void *user_data) { struct impl *backend = user_data; if (backend->modem.network_is_roaming != is_roaming) { backend->modem.network_is_roaming = is_roaming; send_ciev_for_each_rfcomm(backend, CIND_ROAM, is_roaming); } } static void set_modem_own_number(const char *number, void *user_data) { struct impl *backend = user_data; if (backend->modem.own_number) { free(backend->modem.own_number); backend->modem.own_number = NULL; } if (number) backend->modem.own_number = strdup(number); } static void set_modem_service(bool available, void *user_data) { struct impl *backend = user_data; if (backend->modem.network_has_service != available) { backend->modem.network_has_service = available; send_ciev_for_each_rfcomm(backend, CIND_SERVICE, available); } } static void set_modem_signal_strength(unsigned int strength, void *user_data) { struct impl *backend = user_data; if (backend->modem.signal_strength != strength) { backend->modem.signal_strength = strength; send_ciev_for_each_rfcomm(backend, CIND_SIGNAL, strength); } } static void send_cmd_result(bool success, enum cmee_error error, void *user_data) { struct rfcomm *rfcomm = user_data; if (success) { rfcomm_send_reply(rfcomm, "OK"); return; } rfcomm_send_error(rfcomm, error); } static int backend_native_free(void *data) { struct impl *backend = data; struct rfcomm *rfcomm; sco_close(backend); if (backend->modemmanager) { mm_unregister(backend); backend->modemmanager = NULL; } if (backend->upower) { upower_unregister(backend->upower); backend->upower = NULL; } if (backend->ring_timer) spa_loop_utils_destroy_source(backend->loop_utils, backend->ring_timer); #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE dbus_connection_unregister_object_path(backend->conn, PROFILE_HSP_AG); dbus_connection_unregister_object_path(backend->conn, PROFILE_HSP_HS); #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE dbus_connection_unregister_object_path(backend->conn, PROFILE_HFP_AG); dbus_connection_unregister_object_path(backend->conn, PROFILE_HFP_HF); #endif spa_list_consume(rfcomm, &backend->rfcomm_list, link) rfcomm_free(rfcomm); if (backend->modem.operator_name) free(backend->modem.operator_name); free(backend); return 0; } static int parse_headset_roles(struct impl *backend, const struct spa_dict *info) { const char *str; int profiles = SPA_BT_PROFILE_NULL; if (info == NULL || (str = spa_dict_lookup(info, PROP_KEY_HEADSET_ROLES)) == NULL) goto fallback; profiles = spa_bt_profiles_from_json_array(str); if (profiles < 0) goto fallback; backend->enabled_profiles = profiles & SPA_BT_PROFILE_HEADSET_AUDIO; return 0; fallback: backend->enabled_profiles = DEFAULT_ENABLED_PROFILES; return 0; } static const struct spa_bt_backend_implementation backend_impl = { SPA_VERSION_BT_BACKEND_IMPLEMENTATION, .free = backend_native_free, .register_profiles = backend_native_register_profiles, .unregister_profiles = backend_native_unregister_profiles, .ensure_codec = backend_native_ensure_codec, .supports_codec = backend_native_supports_codec, }; static const struct mm_ops mm_ops = { .send_cmd_result = send_cmd_result, .set_modem_service = set_modem_service, .set_modem_signal_strength = set_modem_signal_strength, .set_modem_operator_name = set_modem_operator_name, .set_modem_own_number = set_modem_own_number, .set_modem_roaming = set_modem_roaming, .set_call_active = set_call_active, .set_call_setup = set_call_setup, }; struct spa_bt_backend *backend_native_new(struct spa_bt_monitor *monitor, void *dbus_connection, const struct spa_dict *info, const struct spa_bt_quirks *quirks, const struct spa_support *support, uint32_t n_support) { struct impl *backend; static const DBusObjectPathVTable vtable_profile = { .message_function = profile_handler, }; backend = calloc(1, sizeof(struct impl)); if (backend == NULL) return NULL; spa_bt_backend_set_implementation(&backend->this, &backend_impl, backend); backend->this.name = "native"; backend->monitor = monitor; backend->quirks = quirks; backend->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log); backend->dbus = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DBus); backend->main_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Loop); backend->main_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_System); backend->loop_utils = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_LoopUtils); backend->conn = dbus_connection; backend->sco.fd = -1; spa_log_topic_init(backend->log, &log_topic); spa_list_init(&backend->rfcomm_list); if (parse_headset_roles(backend, info) < 0) goto fail; #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE if (!dbus_connection_register_object_path(backend->conn, PROFILE_HSP_AG, &vtable_profile, backend)) { goto fail; } if (!dbus_connection_register_object_path(backend->conn, PROFILE_HSP_HS, &vtable_profile, backend)) { goto fail1; } #endif #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE if (!dbus_connection_register_object_path(backend->conn, PROFILE_HFP_AG, &vtable_profile, backend)) { goto fail2; } if (!dbus_connection_register_object_path(backend->conn, PROFILE_HFP_HF, &vtable_profile, backend)) { goto fail3; } #endif backend->modemmanager = mm_register(backend->log, backend->conn, info, &mm_ops, backend); backend->upower = upower_register(backend->log, backend->conn, set_battery_level, backend); return &backend->this; #ifdef HAVE_BLUEZ_5_BACKEND_HFP_NATIVE fail3: dbus_connection_unregister_object_path(backend->conn, PROFILE_HFP_AG); fail2: #endif #ifdef HAVE_BLUEZ_5_BACKEND_HSP_NATIVE dbus_connection_unregister_object_path(backend->conn, PROFILE_HSP_HS); fail1: dbus_connection_unregister_object_path(backend->conn, PROFILE_HSP_AG); #endif fail: free(backend); return NULL; }