/* Spa SCO Sink * * Copyright © 2019 Collabora Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" static struct spa_log_topic log_topic = SPA_LOG_TOPIC(0, "spa.bluez5.sink.sco"); #undef SPA_LOG_TOPIC_DEFAULT #define SPA_LOG_TOPIC_DEFAULT &log_topic #define DEFAULT_CLOCK_NAME "clock.system.monotonic" struct props { char clock_name[64]; }; #define MAX_BUFFERS 32 struct buffer { uint32_t id; unsigned int outstanding:1; struct spa_buffer *buf; struct spa_meta_header *h; struct spa_list link; }; struct port { struct spa_audio_info current_format; int frame_size; unsigned int have_format:1; uint64_t info_all; struct spa_port_info info; struct spa_io_buffers *io; struct spa_io_rate_match *rate_match; struct spa_latency_info latency; #define IDX_EnumFormat 0 #define IDX_Meta 1 #define IDX_IO 2 #define IDX_Format 3 #define IDX_Buffers 4 #define IDX_Latency 5 #define N_PORT_PARAMS 6 struct spa_param_info params[N_PORT_PARAMS]; struct buffer buffers[MAX_BUFFERS]; uint32_t n_buffers; struct spa_list ready; struct buffer *current_buffer; uint32_t ready_offset; uint8_t write_buffer[4096]; uint32_t write_buffer_size; }; struct impl { struct spa_handle handle; struct spa_node node; /* Support */ struct spa_log *log; struct spa_loop *data_loop; struct spa_system *data_system; /* Hooks and callbacks */ struct spa_hook_list hooks; struct spa_callbacks callbacks; /* Info */ uint64_t info_all; struct spa_node_info info; #define IDX_PropInfo 0 #define IDX_Props 1 #define N_NODE_PARAMS 2 struct spa_param_info params[N_NODE_PARAMS]; struct props props; uint32_t quantum_limit; /* Transport */ struct spa_bt_transport *transport; struct spa_hook transport_listener; /* Port */ struct port port; /* Flags */ unsigned int started:1; unsigned int following:1; unsigned int flush_pending:1; /* Sources */ struct spa_source source; struct spa_source flush_timer_source; /* Timer */ int timerfd; int flush_timerfd; struct spa_io_clock *clock; struct spa_io_position *position; uint64_t current_time; uint64_t next_time; uint64_t process_time; uint64_t prev_flush_time; uint64_t next_flush_time; /* mSBC */ sbc_t msbc; uint8_t *buffer; uint8_t *buffer_head; uint8_t *buffer_next; int buffer_size; int msbc_seq; }; #define CHECK_PORT(this,d,p) ((d) == SPA_DIRECTION_INPUT && (p) == 0) static const char sntable[4] = { 0x08, 0x38, 0xC8, 0xF8 }; static void reset_props(struct props *props) { strncpy(props->clock_name, DEFAULT_CLOCK_NAME, sizeof(props->clock_name)); } static int impl_node_enum_params(void *object, int seq, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_PropInfo: { switch (result.index) { default: return 0; } break; } case SPA_PARAM_Props: { switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, id); break; default: return 0; } break; } default: return -ENOENT; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int set_timeout(struct impl *this, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; return spa_system_timerfd_settime(this->data_system, this->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); } static int set_timers(struct impl *this) { struct timespec now; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now); this->next_time = SPA_TIMESPEC_TO_NSEC(&now); return set_timeout(this, this->following ? 0 : this->next_time); } static int do_reassign_follower(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; set_timers(this); return 0; } static inline bool is_following(struct impl *this) { return this->position && this->clock && this->position->clock.id != this->clock->id; } static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size) { struct impl *this = object; bool following; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_IO_Clock: this->clock = data; if (this->clock != NULL) { spa_scnprintf(this->clock->name, sizeof(this->clock->name), "%s", this->props.clock_name); } break; case SPA_IO_Position: this->position = data; break; default: return -ENOENT; } following = is_following(this); if (this->started && following != this->following) { spa_log_debug(this->log, "%p: reassign follower %d->%d", this, this->following, following); this->following = following; spa_loop_invoke(this->data_loop, do_reassign_follower, 0, NULL, 0, true, this); } return 0; } static void emit_node_info(struct impl *this, bool full); static int apply_props(struct impl *this, const struct spa_pod *param) { struct props new_props = this->props; int changed = 0; if (param == NULL) { reset_props(&new_props); } else { spa_pod_parse_object(param, SPA_TYPE_OBJECT_Props, NULL); } changed = (memcmp(&new_props, &this->props, sizeof(struct props)) != 0); this->props = new_props; return changed; } static int impl_node_set_param(void *object, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_PARAM_Props: { if (apply_props(this, param) > 0) { this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; this->params[IDX_Props].flags ^= SPA_PARAM_INFO_SERIAL; emit_node_info(this, false); } break; } default: return -ENOENT; } return 0; } static void enable_flush_timer(struct impl *this, bool enabled) { struct itimerspec ts; if (!enabled) this->next_flush_time = 0; ts.it_value.tv_sec = this->next_flush_time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = this->next_flush_time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(this->data_system, this->flush_timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); this->flush_pending = enabled; } static uint32_t get_queued_frames(struct impl *this) { struct port *port = &this->port; uint32_t bytes = 0; struct buffer *b; spa_list_for_each(b, &port->ready, link) { struct spa_data *d = b->buf->datas; bytes += d[0].chunk->size; } if (bytes > port->ready_offset) bytes -= port->ready_offset; else bytes = 0; return bytes / port->frame_size; } static void flush_data(struct impl *this) { struct port *port = &this->port; const uint32_t min_in_size = (this->transport->codec == HFP_AUDIO_CODEC_MSBC) ? MSBC_DECODED_SIZE : this->transport->write_mtu; uint8_t * const packet = (this->transport->codec == HFP_AUDIO_CODEC_MSBC) ? this->buffer_head : port->write_buffer; const uint32_t packet_samples = min_in_size / port->frame_size; const uint64_t packet_time = (uint64_t)packet_samples * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate; int processed = 0; int written; if (this->transport == NULL || this->transport->sco_io == NULL) return; while (!spa_list_is_empty(&port->ready) && port->write_buffer_size < min_in_size) { struct spa_data *datas; /* get buffer */ if (!port->current_buffer) { spa_return_if_fail(!spa_list_is_empty(&port->ready)); port->current_buffer = spa_list_first(&port->ready, struct buffer, link); port->ready_offset = 0; } datas = port->current_buffer->buf->datas; /* if buffer has data, copy it into the write buffer */ if (datas[0].chunk->size - port->ready_offset > 0) { const uint32_t avail = SPA_MIN(min_in_size, datas[0].chunk->size - port->ready_offset); const uint32_t size = (avail + port->write_buffer_size) > min_in_size ? min_in_size - port->write_buffer_size : avail; memcpy(port->write_buffer + port->write_buffer_size, (uint8_t *)datas[0].data + port->ready_offset, size); port->write_buffer_size += size; port->ready_offset += size; } else { struct buffer *b; b = port->current_buffer; port->current_buffer = NULL; /* reuse buffer */ spa_list_remove(&b->link); b->outstanding = true; spa_log_trace(this->log, "sco-sink %p: reuse buffer %u", this, b->id); port->io->buffer_id = b->id; spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); } } if (this->flush_pending) { spa_log_trace(this->log, "%p: wait for flush timer", this); return; } if (port->write_buffer_size < min_in_size) { /* wait for more data */ spa_log_trace(this->log, "%p: skip flush", this); enable_flush_timer(this, false); return; } if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) { ssize_t out_encoded; /* Encode */ if (this->buffer_next + MSBC_ENCODED_SIZE > this->buffer + this->buffer_size) { /* Buffer overrun; shouldn't usually happen. Drop data and reset. */ this->buffer_head = this->buffer_next = this->buffer; spa_log_warn(this->log, "sco-sink: mSBC buffer overrun, dropping data"); } this->buffer_next[0] = 0x01; this->buffer_next[1] = sntable[this->msbc_seq % 4]; this->buffer_next[59] = 0x00; this->msbc_seq = (this->msbc_seq + 1) % 4; processed = sbc_encode(&this->msbc, port->write_buffer, port->write_buffer_size, this->buffer_next + 2, MSBC_ENCODED_SIZE - 3, &out_encoded); if (processed < 0) { spa_log_warn(this->log, "sbc_encode failed: %d", processed); return; } this->buffer_next += out_encoded + 3; port->write_buffer_size = 0; /* Write */ written = spa_bt_sco_io_write(this->transport->sco_io, packet, this->buffer_next - this->buffer_head); if (written < 0) { spa_log_warn(this->log, "failed to write data: %d (%s)", written, spa_strerror(written)); goto stop; } this->buffer_head += written; if (this->buffer_head == this->buffer_next) this->buffer_head = this->buffer_next = this->buffer; else if (this->buffer_next + MSBC_ENCODED_SIZE > this->buffer + this->buffer_size) { /* Written bytes is not necessarily commensurate * with MSBC_ENCODED_SIZE. If this occurs, copy data. */ int size = this->buffer_next - this->buffer_head; spa_memmove(this->buffer, this->buffer_head, size); this->buffer_next = this->buffer + size; this->buffer_head = this->buffer; } } else { written = spa_bt_sco_io_write(this->transport->sco_io, packet, port->write_buffer_size); if (written < 0) { spa_log_warn(this->log, "sco-sink: write failure: %d (%s)", written, spa_strerror(written)); goto stop; } else if (written == 0) { /* EAGAIN or similar, just skip ahead */ written = SPA_MIN(port->write_buffer_size, (uint32_t)48); } processed = written; port->write_buffer_size -= written; if (port->write_buffer_size > 0 && written > 0) { spa_memmove(port->write_buffer, port->write_buffer + written, port->write_buffer_size); } } if (SPA_UNLIKELY(spa_log_level_topic_enabled(this->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_TRACE))) { struct timespec ts; uint64_t now; uint64_t dt; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &ts); now = SPA_TIMESPEC_TO_NSEC(&ts); dt = now - this->prev_flush_time; this->prev_flush_time = now; spa_log_trace(this->log, "%p: send wrote:%d dt:%"PRIu64, this, written, dt); } spa_log_trace(this->log, "write socket data %d", written); if (SPA_LIKELY(this->position)) { uint32_t frames = get_queued_frames(this); uint64_t duration_ns; /* * Flush at the time position of the next buffered sample. */ duration_ns = ((uint64_t)this->position->clock.duration * SPA_NSEC_PER_SEC / this->position->clock.rate.denom); this->next_flush_time = this->process_time + duration_ns - ((uint64_t)frames * SPA_NSEC_PER_SEC / port->current_format.info.raw.rate); /* * We could delay the output by one packet to avoid waiting * for the next buffer and so make send intervals more regular. * However, this appears not needed in practice, and it's better * to not add latency if not needed. */ #if 0 this->next_flush_time += SPA_MIN(packet_time, duration_ns * (port->n_buffers - 1)); #endif } else { if (this->next_flush_time == 0) this->next_flush_time = this->process_time; this->next_flush_time += packet_time; } enable_flush_timer(this, true); return; stop: if (this->source.loop) spa_loop_remove_source(this->data_loop, &this->source); enable_flush_timer(this, false); } static void sco_on_flush_timeout(struct spa_source *source) { struct impl *this = source->data; uint64_t exp; int res; spa_log_trace(this->log, "%p: flush on timeout", this); if ((res = spa_system_timerfd_read(this->data_system, this->flush_timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res)); return; } if (this->transport == NULL) { enable_flush_timer(this, false); return; } while (exp-- > 0) { this->flush_pending = false; flush_data(this); } } static void sco_on_timeout(struct spa_source *source) { struct impl *this = source->data; struct port *port = &this->port; uint64_t exp, duration; uint32_t rate; struct spa_io_buffers *io = port->io; uint64_t prev_time, now_time; int res; if (this->transport == NULL) return; if (this->started) { if ((res = spa_system_timerfd_read(this->data_system, this->timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res)); return; } } prev_time = this->current_time; now_time = this->current_time = this->next_time; spa_log_debug(this->log, "%p: timer %"PRIu64" %"PRIu64"", this, now_time, now_time - prev_time); if (SPA_LIKELY(this->position)) { duration = this->position->clock.duration; rate = this->position->clock.rate.denom; } else { duration = 1024; rate = 48000; } this->next_time = now_time + duration * SPA_NSEC_PER_SEC / rate; if (SPA_LIKELY(this->clock)) { this->clock->nsec = now_time; this->clock->position += duration; this->clock->duration = duration; this->clock->rate_diff = 1.0f; this->clock->next_nsec = this->next_time; this->clock->delay = 0; } spa_log_trace(this->log, "%p: %d", this, io->status); io->status = SPA_STATUS_NEED_DATA; spa_node_call_ready(&this->callbacks, SPA_STATUS_NEED_DATA); set_timeout(this, this->next_time); } /* greater common divider */ static int gcd(int a, int b) { while(b) { int c = b; b = a % b; a = c; } return a; } /* least common multiple */ static int lcm(int a, int b) { return (a*b)/gcd(a,b); } static int do_start(struct impl *this) { bool do_accept; int res; /* Don't do anything if the node has already started */ if (this->started) return 0; /* Make sure the transport is valid */ spa_return_val_if_fail(this->transport != NULL, -EIO); this->following = is_following(this); spa_log_debug(this->log, "%p: start following:%d", this, this->following); /* Do accept if Gateway; otherwise do connect for Head Unit */ do_accept = this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY; /* acquire the socket fd (false -> connect | true -> accept) */ if ((res = spa_bt_transport_acquire(this->transport, do_accept)) < 0) return res; /* Init mSBC if needed */ if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) { sbc_init_msbc(&this->msbc, 0); /* Libsbc expects audio samples by default in host endianness, mSBC requires little endian */ this->msbc.endian = SBC_LE; /* write_mtu might not be correct at this point, so we'll throw * in some common ones, at the cost of a potentially larger * allocation (size <= 120 * write_mtu). If it still fails to be * commensurate, we may end up doing memmoves, but nothing worse * is going to happen. */ this->buffer_size = lcm(24, lcm(60, lcm(this->transport->write_mtu, 2 * MSBC_ENCODED_SIZE))); this->buffer = calloc(this->buffer_size, sizeof(uint8_t)); this->buffer_head = this->buffer_next = this->buffer; if (this->buffer == NULL) { res = -errno; goto fail; } } spa_return_val_if_fail(this->transport->write_mtu <= sizeof(this->port.write_buffer), -EINVAL); /* start socket i/o */ if ((res = spa_bt_transport_ensure_sco_io(this->transport, this->data_loop)) < 0) goto fail; /* Add the timeout callback */ this->source.data = this; this->source.fd = this->timerfd; this->source.func = sco_on_timeout; this->source.mask = SPA_IO_IN; this->source.rmask = 0; spa_loop_add_source(this->data_loop, &this->source); this->flush_timer_source.data = this; this->flush_timer_source.fd = this->flush_timerfd; this->flush_timer_source.func = sco_on_flush_timeout; this->flush_timer_source.mask = SPA_IO_IN; this->flush_timer_source.rmask = 0; spa_loop_add_source(this->data_loop, &this->flush_timer_source); /* start processing */ this->flush_pending = false; set_timers(this); /* Set the started flag */ this->started = true; return 0; fail: free(this->buffer); this->buffer = NULL; spa_bt_transport_release(this->transport); return res; } /* Drop any buffered data remaining in the port */ static void drop_port_output(struct impl *this) { struct port *port = &this->port; port->write_buffer_size = 0; port->current_buffer = NULL; port->ready_offset = 0; while (!spa_list_is_empty(&port->ready)) { struct buffer *b; b = spa_list_first(&port->ready, struct buffer, link); spa_list_remove(&b->link); b->outstanding = true; port->io->buffer_id = b->id; spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); } } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; struct itimerspec ts; set_timeout(this, 0); if (this->source.loop) spa_loop_remove_source(this->data_loop, &this->source); if (this->flush_timer_source.loop) spa_loop_remove_source(this->data_loop, &this->flush_timer_source); ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(this->data_system, this->flush_timerfd, 0, &ts, NULL); /* Drop buffered data in the ready queue. Ideally there shouldn't be any. */ drop_port_output(this); return 0; } static int do_stop(struct impl *this) { int res = 0; if (!this->started) return 0; spa_log_trace(this->log, "sco-sink %p: stop", this); spa_loop_invoke(this->data_loop, do_remove_source, 0, NULL, 0, true, this); this->started = false; if (this->buffer) { free(this->buffer); this->buffer = NULL; this->buffer_head = this->buffer_next = this->buffer; } if (this->transport) { /* Release the transport; it is responsible for closing the fd */ res = spa_bt_transport_release(this->transport); } return res; } static int impl_node_send_command(void *object, const struct spa_command *command) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(command != NULL, -EINVAL); port = &this->port; switch (SPA_NODE_COMMAND_ID(command)) { case SPA_NODE_COMMAND_Start: if (!port->have_format) return -EIO; if (port->n_buffers == 0) return -EIO; if ((res = do_start(this)) < 0) return res; break; case SPA_NODE_COMMAND_Pause: case SPA_NODE_COMMAND_Suspend: if ((res = do_stop(this)) < 0) return res; break; default: return -ENOTSUP; } return 0; } static void emit_node_info(struct impl *this, bool full) { static const struct spa_dict_item hu_node_info_items[] = { { SPA_KEY_DEVICE_API, "bluez5" }, { SPA_KEY_MEDIA_CLASS, "Audio/Sink" }, { SPA_KEY_NODE_DRIVER, "true" }, }; const struct spa_dict_item ag_node_info_items[] = { { SPA_KEY_DEVICE_API, "bluez5" }, { SPA_KEY_MEDIA_CLASS, "Stream/Input/Audio" }, { "media.name", ((this->transport && this->transport->device->name) ? this->transport->device->name : "HSP/HFP") }, { SPA_KEY_MEDIA_ROLE, "Communication" }, }; bool is_ag = this->transport && (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY); uint64_t old = full ? this->info.change_mask : 0; if (full) this->info.change_mask = this->info_all; if (this->info.change_mask) { this->info.props = is_ag ? &SPA_DICT_INIT_ARRAY(ag_node_info_items) : &SPA_DICT_INIT_ARRAY(hu_node_info_items); spa_node_emit_info(&this->hooks, &this->info); this->info.change_mask = old; } } static void emit_port_info(struct impl *this, struct port *port, bool full) { uint64_t old = full ? port->info.change_mask : 0; if (full) port->info.change_mask = port->info_all; if (port->info.change_mask) { spa_node_emit_port_info(&this->hooks, SPA_DIRECTION_INPUT, 0, &port->info); port->info.change_mask = old; } } static int impl_node_add_listener(void *object, struct spa_hook *listener, const struct spa_node_events *events, void *data) { struct impl *this = object; struct spa_hook_list save; spa_return_val_if_fail(this != NULL, -EINVAL); spa_hook_list_isolate(&this->hooks, &save, listener, events, data); emit_node_info(this, true); emit_port_info(this, &this->port, true); spa_hook_list_join(&this->hooks, &save); return 0; } static int impl_node_set_callbacks(void *object, const struct spa_node_callbacks *callbacks, void *data) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); this->callbacks = SPA_CALLBACKS_INIT(callbacks, data); return 0; } static int impl_node_sync(void *object, int seq) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); spa_node_emit_result(&this->hooks, seq, 0, 0, NULL); return 0; } static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id, const struct spa_dict *props) { return -ENOTSUP; } static int impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id) { return -ENOTSUP; } static int impl_node_port_enum_params(void *object, int seq, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct port *port; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_EnumFormat: if (result.index > 0) return 0; if (this->transport == NULL) return -EIO; /* set the info structure */ struct spa_audio_info_raw info = { 0, }; info.format = SPA_AUDIO_FORMAT_S16_LE; info.channels = 1; info.position[0] = SPA_AUDIO_CHANNEL_MONO; /* CVSD format has a rate of 8kHz * MSBC format has a rate of 16kHz */ if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) info.rate = 16000; else info.rate = 8000; /* build the param */ param = spa_format_audio_raw_build(&b, id, &info); break; case SPA_PARAM_Format: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_format_audio_raw_build(&b, id, &port->current_format.info.raw); break; case SPA_PARAM_Buffers: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamBuffers, id, SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(2, 1, MAX_BUFFERS), SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(1), SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int( this->quantum_limit * port->frame_size, 16 * port->frame_size, INT32_MAX), SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->frame_size)); break; case SPA_PARAM_Meta: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamMeta, id, SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header), SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header))); break; default: return 0; } break; case SPA_PARAM_IO: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers))); break; case 1: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_RateMatch), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_rate_match))); break; default: return 0; } break; case SPA_PARAM_Latency: switch (result.index) { case 0: param = spa_latency_build(&b, id, &port->latency); break; default: return 0; } break; default: return -ENOENT; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int clear_buffers(struct impl *this, struct port *port) { do_stop(this); if (port->n_buffers > 0) { spa_list_init(&port->ready); port->n_buffers = 0; } return 0; } static int port_set_format(struct impl *this, struct port *port, uint32_t flags, const struct spa_pod *format) { int err; if (format == NULL) { spa_log_debug(this->log, "clear format"); clear_buffers(this, port); port->have_format = false; } else { struct spa_audio_info info = { 0 }; if ((err = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0) return err; if (info.media_type != SPA_MEDIA_TYPE_audio || info.media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; if (spa_format_audio_raw_parse(format, &info.info.raw) < 0) return -EINVAL; if (info.info.raw.format != SPA_AUDIO_FORMAT_S16_LE || info.info.raw.rate == 0 || info.info.raw.channels != 1) return -EINVAL; port->frame_size = info.info.raw.channels * 2; port->current_format = info; port->have_format = true; } port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; if (port->have_format) { port->info.change_mask |= SPA_PORT_CHANGE_MASK_FLAGS; port->info.flags = SPA_PORT_FLAG_LIVE; port->info.change_mask |= SPA_PORT_CHANGE_MASK_RATE; port->info.rate = SPA_FRACTION(1, port->current_format.info.raw.rate); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ); port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL; } else { port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); } emit_port_info(this, port, false); return 0; } static int impl_node_port_set_param(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(node, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_PARAM_Format: res = port_set_format(this, port, flags, param); break; case SPA_PARAM_Latency: res = 0; break; default: res = -ENOENT; break; } return res; } static int impl_node_port_use_buffers(void *object, enum spa_direction direction, uint32_t port_id, uint32_t flags, struct spa_buffer **buffers, uint32_t n_buffers) { struct impl *this = object; struct port *port; uint32_t i; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; spa_log_debug(this->log, "use buffers %d", n_buffers); clear_buffers(this, port); if (n_buffers > 0 && !port->have_format) return -EIO; if (n_buffers > MAX_BUFFERS) return -ENOSPC; for (i = 0; i < n_buffers; i++) { struct buffer *b = &port->buffers[i]; b->buf = buffers[i]; b->id = i; b->outstanding = true; b->h = spa_buffer_find_meta_data(buffers[i], SPA_META_Header, sizeof(*b->h)); if (buffers[i]->datas[0].data == NULL) { spa_log_error(this->log, "%p: need mapped memory", this); return -EINVAL; } } port->n_buffers = n_buffers; return 0; } static int impl_node_port_set_io(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, void *data, size_t size) { struct impl *this = object; struct port *port; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_IO_Buffers: port->io = data; break; case SPA_IO_RateMatch: port->rate_match = data; break; default: return -ENOENT; } return 0; } static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id) { return -ENOTSUP; } static int impl_node_process(void *object) { struct impl *this = object; struct port *port; struct spa_io_buffers *io; spa_return_val_if_fail(this != NULL, -EINVAL); port = &this->port; if ((io = port->io) == NULL) return -EIO; if (this->position && this->position->clock.flags & SPA_IO_CLOCK_FLAG_FREEWHEEL) { io->status = SPA_STATUS_NEED_DATA; return SPA_STATUS_HAVE_DATA; } if (io->status == SPA_STATUS_HAVE_DATA && io->buffer_id < port->n_buffers) { struct buffer *b = &port->buffers[io->buffer_id]; if (!b->outstanding) { spa_log_warn(this->log, "%p: buffer %u in use", this, io->buffer_id); io->status = -EINVAL; return -EINVAL; } spa_log_trace(this->log, "%p: queue buffer %u", this, io->buffer_id); spa_list_append(&port->ready, &b->link); b->outstanding = false; io->buffer_id = SPA_ID_INVALID; io->status = SPA_STATUS_OK; } if (this->following) { if (this->position) { this->current_time = this->position->clock.nsec; } else { struct timespec now; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now); this->current_time = SPA_TIMESPEC_TO_NSEC(&now); } } this->process_time = this->current_time; if (!spa_list_is_empty(&port->ready)) { spa_log_trace(this->log, "%p: flush on process", this); flush_data(this); } return SPA_STATUS_HAVE_DATA; } static const struct spa_node_methods impl_node = { SPA_VERSION_NODE_METHODS, .add_listener = impl_node_add_listener, .set_callbacks = impl_node_set_callbacks, .sync = impl_node_sync, .enum_params = impl_node_enum_params, .set_param = impl_node_set_param, .set_io = impl_node_set_io, .send_command = impl_node_send_command, .add_port = impl_node_add_port, .remove_port = impl_node_remove_port, .port_enum_params = impl_node_port_enum_params, .port_set_param = impl_node_port_set_param, .port_use_buffers = impl_node_port_use_buffers, .port_set_io = impl_node_port_set_io, .port_reuse_buffer = impl_node_port_reuse_buffer, .process = impl_node_process, }; static int do_transport_destroy(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport = NULL; return 0; } static void transport_destroy(void *data) { struct impl *this = data; spa_log_debug(this->log, "transport %p destroy", this->transport); spa_loop_invoke(this->data_loop, do_transport_destroy, 0, NULL, 0, true, this); } static const struct spa_bt_transport_events transport_events = { SPA_VERSION_BT_TRANSPORT_EVENTS, .destroy = transport_destroy, }; static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface) { struct impl *this; spa_return_val_if_fail(handle != NULL, -EINVAL); spa_return_val_if_fail(interface != NULL, -EINVAL); this = (struct impl *) handle; if (spa_streq(type, SPA_TYPE_INTERFACE_Node)) *interface = &this->node; else return -ENOENT; return 0; } static int impl_clear(struct spa_handle *handle) { struct impl *this = (struct impl *) handle; do_stop(this); if (this->transport) spa_hook_remove(&this->transport_listener); spa_system_close(this->data_system, this->timerfd); spa_system_close(this->data_system, this->flush_timerfd); return 0; } static size_t impl_get_size(const struct spa_handle_factory *factory, const struct spa_dict *params) { return sizeof(struct impl); } static int impl_init(const struct spa_handle_factory *factory, struct spa_handle *handle, const struct spa_dict *info, const struct spa_support *support, uint32_t n_support) { struct impl *this; struct port *port; const char *str; spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(handle != NULL, -EINVAL); handle->get_interface = impl_get_interface; handle->clear = impl_clear; this = (struct impl *) handle; this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log); this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop); this->data_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataSystem); spa_log_topic_init(this->log, &log_topic); if (this->data_loop == NULL) { spa_log_error(this->log, "a data loop is needed"); return -EINVAL; } if (this->data_system == NULL) { spa_log_error(this->log, "a data system is needed"); return -EINVAL; } this->node.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_Node, SPA_VERSION_NODE, &impl_node, this); spa_hook_list_init(&this->hooks); reset_props(&this->props); this->info_all = SPA_NODE_CHANGE_MASK_FLAGS | SPA_NODE_CHANGE_MASK_PARAMS | SPA_NODE_CHANGE_MASK_PROPS; this->info = SPA_NODE_INFO_INIT(); this->info.max_input_ports = 1; this->info.max_output_ports = 0; this->info.flags = SPA_NODE_FLAG_RT; this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ); this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE); this->info.params = this->params; this->info.n_params = N_NODE_PARAMS; port = &this->port; port->info_all = SPA_PORT_CHANGE_MASK_FLAGS | SPA_PORT_CHANGE_MASK_PARAMS; port->info = SPA_PORT_INFO_INIT(); port->info.flags = 0; port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ); port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ); port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE); port->info.params = port->params; port->info.n_params = N_PORT_PARAMS; port->latency = SPA_LATENCY_INFO(SPA_DIRECTION_INPUT); port->latency.min_quantum = 1.0f; port->latency.max_quantum = 1.0f; spa_list_init(&port->ready); this->quantum_limit = 8192; if (info && (str = spa_dict_lookup(info, "clock.quantum-limit"))) spa_atou32(str, &this->quantum_limit, 0); if (info && (str = spa_dict_lookup(info, SPA_KEY_API_BLUEZ5_TRANSPORT))) sscanf(str, "pointer:%p", &this->transport); if (this->transport == NULL) { spa_log_error(this->log, "a transport is needed"); return -EINVAL; } spa_bt_transport_add_listener(this->transport, &this->transport_listener, &transport_events, this); this->timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); this->flush_timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); return 0; } static const struct spa_interface_info impl_interfaces[] = { {SPA_TYPE_INTERFACE_Node,}, }; static int impl_enum_interface_info(const struct spa_handle_factory *factory, const struct spa_interface_info **info, uint32_t *index) { spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(info != NULL, -EINVAL); spa_return_val_if_fail(index != NULL, -EINVAL); switch (*index) { case 0: *info = &impl_interfaces[*index]; break; default: return 0; } (*index)++; return 1; } static const struct spa_dict_item info_items[] = { { SPA_KEY_FACTORY_AUTHOR, "Collabora Ltd. " }, { SPA_KEY_FACTORY_DESCRIPTION, "Play bluetooth audio with hsp/hfp" }, { SPA_KEY_FACTORY_USAGE, SPA_KEY_API_BLUEZ5_TRANSPORT"=" }, }; static const struct spa_dict info = SPA_DICT_INIT_ARRAY(info_items); const struct spa_handle_factory spa_sco_sink_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_API_BLUEZ5_SCO_SINK, &info, impl_get_size, impl_init, impl_enum_interface_info, };