diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/2d/ImageScalingSSE2.cpp | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream/1%115.7.0.tar.xz thunderbird-upstream/1%115.7.0.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/2d/ImageScalingSSE2.cpp')
-rw-r--r-- | gfx/2d/ImageScalingSSE2.cpp | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/gfx/2d/ImageScalingSSE2.cpp b/gfx/2d/ImageScalingSSE2.cpp new file mode 100644 index 0000000000..f901641eaf --- /dev/null +++ b/gfx/2d/ImageScalingSSE2.cpp @@ -0,0 +1,333 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "ImageScaling.h" +#include "mozilla/Attributes.h" + +#include "SSEHelpers.h" + +/* The functions below use the following system for averaging 4 pixels: + * + * The first observation is that a half-adder is implemented as follows: + * R = S + 2C or in the case of a and b (a ^ b) + ((a & b) << 1); + * + * This can be trivially extended to three pixels by observaring that when + * doing (a ^ b ^ c) as the sum, the carry is simply the bitwise-or of the + * carries of the individual numbers, since the sum of 3 bits can only ever + * have a carry of one. + * + * We then observe that the average is then ((carry << 1) + sum) >> 1, or, + * assuming eliminating overflows and underflows, carry + (sum >> 1). + * + * We now average our existing sum with the fourth number, so we get: + * sum2 = (sum + d) >> 1 or (sum >> 1) + (d >> 1). + * + * We now observe that our sum has been moved into place relative to the + * carry, so we can now average with the carry to get the final 4 input + * average: avg = (sum2 + carry) >> 1; + * + * Or to reverse the proof: + * avg = ((sum >> 1) + carry + d >> 1) >> 1 + * avg = ((a + b + c) >> 1 + d >> 1) >> 1 + * avg = ((a + b + c + d) >> 2) + * + * An additional fact used in the SSE versions is the concept that we can + * trivially convert a rounded average to a truncated average: + * + * We have: + * f(a, b) = (a + b + 1) >> 1 + * + * And want: + * g(a, b) = (a + b) >> 1 + * + * Observe: + * ~f(~a, ~b) == ~((~a + ~b + 1) >> 1) + * == ~((-a - 1 + -b - 1 + 1) >> 1) + * == ~((-a - 1 + -b) >> 1) + * == ~((-(a + b) - 1) >> 1) + * == ~((~(a + b)) >> 1) + * == (a + b) >> 1 + * == g(a, b) + */ + +MOZ_ALWAYS_INLINE __m128i _mm_not_si128(__m128i arg) { + __m128i minusone = _mm_set1_epi32(0xffffffff); + return _mm_xor_si128(arg, minusone); +} + +/* We have to pass pointers here, MSVC does not allow passing more than 3 + * __m128i arguments on the stack. And it does not allow 16-byte aligned + * stack variables. This inlines properly on MSVC 2010. It does -not- inline + * with just the inline directive. + */ +MOZ_ALWAYS_INLINE __m128i avg_sse2_8x2(__m128i* a, __m128i* b, __m128i* c, + __m128i* d) { +#define shuf1 _MM_SHUFFLE(2, 0, 2, 0) +#define shuf2 _MM_SHUFFLE(3, 1, 3, 1) + +// This cannot be an inline function as the __Imm argument to _mm_shuffle_ps +// needs to be a compile time constant. +#define shuffle_si128(arga, argb, imm) \ + _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps((arga)), \ + _mm_castsi128_ps((argb)), (imm))); + + __m128i t = shuffle_si128(*a, *b, shuf1); + *b = shuffle_si128(*a, *b, shuf2); + *a = t; + t = shuffle_si128(*c, *d, shuf1); + *d = shuffle_si128(*c, *d, shuf2); + *c = t; + +#undef shuf1 +#undef shuf2 +#undef shuffle_si128 + + __m128i sum = _mm_xor_si128(*a, _mm_xor_si128(*b, *c)); + + __m128i carry = + _mm_or_si128(_mm_and_si128(*a, *b), + _mm_or_si128(_mm_and_si128(*a, *c), _mm_and_si128(*b, *c))); + + sum = _mm_avg_epu8(_mm_not_si128(sum), _mm_not_si128(*d)); + + return _mm_not_si128(_mm_avg_epu8(sum, _mm_not_si128(carry))); +} + +MOZ_ALWAYS_INLINE __m128i avg_sse2_4x2_4x1(__m128i a, __m128i b) { + return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b))); +} + +MOZ_ALWAYS_INLINE __m128i avg_sse2_8x1_4x1(__m128i a, __m128i b) { + __m128i t = _mm_castps_si128(_mm_shuffle_ps( + _mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(3, 1, 3, 1))); + b = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), + _MM_SHUFFLE(2, 0, 2, 0))); + a = t; + + return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b))); +} + +MOZ_ALWAYS_INLINE uint32_t Avg2x2(uint32_t a, uint32_t b, uint32_t c, + uint32_t d) { + uint32_t sum = a ^ b ^ c; + uint32_t carry = (a & b) | (a & c) | (b & c); + + uint32_t mask = 0xfefefefe; + + // Not having a byte based average instruction means we should mask to avoid + // underflow. + sum = (((sum ^ d) & mask) >> 1) + (sum & d); + + return (((sum ^ carry) & mask) >> 1) + (sum & carry); +} + +// Simple 2 pixel average version of the function above. +MOZ_ALWAYS_INLINE uint32_t Avg2(uint32_t a, uint32_t b) { + uint32_t sum = a ^ b; + uint32_t carry = (a & b); + + uint32_t mask = 0xfefefefe; + + return ((sum & mask) >> 1) + carry; +} + +namespace mozilla::gfx { + +void ImageHalfScaler::HalfImage2D_SSE2(uint8_t* aSource, int32_t aSourceStride, + const IntSize& aSourceSize, + uint8_t* aDest, uint32_t aDestStride) { + const int Bpp = 4; + + for (int y = 0; y < aSourceSize.height; y += 2) { + __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride); + int x = 0; + // Run a loop depending on alignment. + if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) && + !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); + __m128i* lowerRow = + (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); + + __m128i a = _mm_load_si128(upperRow); + __m128i b = _mm_load_si128(upperRow + 1); + __m128i c = _mm_load_si128(lowerRow); + __m128i d = _mm_load_si128(lowerRow + 1); + + *storage++ = avg_sse2_8x2(&a, &b, &c, &d); + } + } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); + __m128i* lowerRow = + (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); + + __m128i a = _mm_load_si128(upperRow); + __m128i b = _mm_load_si128(upperRow + 1); + __m128i c = loadUnaligned128(lowerRow); + __m128i d = loadUnaligned128(lowerRow + 1); + + *storage++ = avg_sse2_8x2(&a, &b, &c, &d); + } + } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); + __m128i* lowerRow = + (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); + + __m128i a = loadUnaligned128((__m128i*)upperRow); + __m128i b = loadUnaligned128((__m128i*)upperRow + 1); + __m128i c = _mm_load_si128((__m128i*)lowerRow); + __m128i d = _mm_load_si128((__m128i*)lowerRow + 1); + + *storage++ = avg_sse2_8x2(&a, &b, &c, &d); + } + } else { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); + __m128i* lowerRow = + (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); + + __m128i a = loadUnaligned128(upperRow); + __m128i b = loadUnaligned128(upperRow + 1); + __m128i c = loadUnaligned128(lowerRow); + __m128i d = loadUnaligned128(lowerRow + 1); + + *storage++ = avg_sse2_8x2(&a, &b, &c, &d); + } + } + + uint32_t* unalignedStorage = (uint32_t*)storage; + // Take care of the final pixels, we know there's an even number of pixels + // in the source rectangle. We use a 2x2 'simd' implementation for this. + // + // Potentially we only have to do this in the last row since overflowing + // 8 pixels in an earlier row would appear to be harmless as it doesn't + // touch invalid memory. Even when reading and writing to the same surface. + // in practice we only do this when doing an additional downscale pass, and + // in this situation we have unused stride to write into harmlessly. + // I do not believe the additional code complexity would be worth it though. + for (; x < aSourceSize.width; x += 2) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * Bpp); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * Bpp); + + *unalignedStorage++ = + Avg2x2(*(uint32_t*)upperRow, *((uint32_t*)upperRow + 1), + *(uint32_t*)lowerRow, *((uint32_t*)lowerRow + 1)); + } + } +} + +void ImageHalfScaler::HalfImageVertical_SSE2(uint8_t* aSource, + int32_t aSourceStride, + const IntSize& aSourceSize, + uint8_t* aDest, + uint32_t aDestStride) { + for (int y = 0; y < aSourceSize.height; y += 2) { + __m128i* storage = (__m128i*)(aDest + (y / 2) * aDestStride); + int x = 0; + // Run a loop depending on alignment. + if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) && + !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 3); x += 4) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * 4); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); + + __m128i a = _mm_load_si128((__m128i*)upperRow); + __m128i b = _mm_load_si128((__m128i*)lowerRow); + + *storage++ = avg_sse2_4x2_4x1(a, b); + } + } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { + // This line doesn't align well. + for (; x < (aSourceSize.width - 3); x += 4) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * 4); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); + + __m128i a = _mm_load_si128((__m128i*)upperRow); + __m128i b = loadUnaligned128((__m128i*)lowerRow); + + *storage++ = avg_sse2_4x2_4x1(a, b); + } + } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 3); x += 4) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * 4); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); + + __m128i a = loadUnaligned128((__m128i*)upperRow); + __m128i b = _mm_load_si128((__m128i*)lowerRow); + + *storage++ = avg_sse2_4x2_4x1(a, b); + } + } else { + for (; x < (aSourceSize.width - 3); x += 4) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * 4); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); + + __m128i a = loadUnaligned128((__m128i*)upperRow); + __m128i b = loadUnaligned128((__m128i*)lowerRow); + + *storage++ = avg_sse2_4x2_4x1(a, b); + } + } + + uint32_t* unalignedStorage = (uint32_t*)storage; + // Take care of the final pixels, we know there's an even number of pixels + // in the source rectangle. + // + // Similar overflow considerations are valid as in the previous function. + for (; x < aSourceSize.width; x++) { + uint8_t* upperRow = aSource + (y * aSourceStride + x * 4); + uint8_t* lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); + + *unalignedStorage++ = Avg2(*(uint32_t*)upperRow, *(uint32_t*)lowerRow); + } + } +} + +void ImageHalfScaler::HalfImageHorizontal_SSE2(uint8_t* aSource, + int32_t aSourceStride, + const IntSize& aSourceSize, + uint8_t* aDest, + uint32_t aDestStride) { + for (int y = 0; y < aSourceSize.height; y++) { + __m128i* storage = (__m128i*)(aDest + (y * aDestStride)); + int x = 0; + // Run a loop depending on alignment. + if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4)); + + __m128i a = _mm_load_si128(pixels); + __m128i b = _mm_load_si128(pixels + 1); + + *storage++ = avg_sse2_8x1_4x1(a, b); + } + } else { + for (; x < (aSourceSize.width - 7); x += 8) { + __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4)); + + __m128i a = loadUnaligned128(pixels); + __m128i b = loadUnaligned128(pixels + 1); + + *storage++ = avg_sse2_8x1_4x1(a, b); + } + } + + uint32_t* unalignedStorage = (uint32_t*)storage; + // Take care of the final pixels, we know there's an even number of pixels + // in the source rectangle. + // + // Similar overflow considerations are valid as in the previous function. + for (; x < aSourceSize.width; x += 2) { + uint32_t* pixels = (uint32_t*)(aSource + (y * aSourceStride + x * 4)); + + *unalignedStorage++ = Avg2(*pixels, *(pixels + 1)); + } + } +} + +} // namespace mozilla::gfx |