diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/gl/Colorspaces.h | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream/1%115.7.0.tar.xz thunderbird-upstream/1%115.7.0.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/gl/Colorspaces.h')
-rw-r--r-- | gfx/gl/Colorspaces.h | 987 |
1 files changed, 987 insertions, 0 deletions
diff --git a/gfx/gl/Colorspaces.h b/gfx/gl/Colorspaces.h new file mode 100644 index 0000000000..8f36854d2d --- /dev/null +++ b/gfx/gl/Colorspaces.h @@ -0,0 +1,987 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef MOZILLA_GFX_GL_COLORSPACES_H_ +#define MOZILLA_GFX_GL_COLORSPACES_H_ + +// Reference: https://hackmd.io/0wkiLmP7RWOFjcD13M870A + +// We are going to be doing so, so many transforms, so descriptive labels are +// critical. + +// Colorspace background info: https://hackmd.io/0wkiLmP7RWOFjcD13M870A + +#include <algorithm> +#include <array> +#include <cmath> +#include <cstdint> +#include <cstdlib> +#include <functional> +#include <optional> +#include <vector> + +#include "AutoMappable.h" +#include "mozilla/Assertions.h" +#include "mozilla/Attributes.h" +#include "mozilla/Span.h" + +#ifdef DEBUG +# define ASSERT(EXPR) \ + do { \ + if (!(EXPR)) { \ + __builtin_trap(); \ + } \ + } while (false) +#else +# define ASSERT(EXPR) (void)(EXPR) +#endif + +struct _qcms_profile; +typedef struct _qcms_profile qcms_profile; + +namespace mozilla::color { + +struct YuvLumaCoeffs final { + float r = 0.2126; + float g = 0.7152; + float b = 0.0722; + + auto Members() const { return std::tie(r, g, b); } + INLINE_AUTO_MAPPABLE(YuvLumaCoeffs) + + static constexpr auto Rec709() { return YuvLumaCoeffs(); } + + static constexpr auto Rec2020() { + return YuvLumaCoeffs{0.2627, 0.6780, 0.0593}; + } +}; + +struct PiecewiseGammaDesc final { + // tf = { k * linear | linear < b + // { a * pow(linear, 1/g) - (1-a) | linear >= b + + // Default to Srgb + float a = 1.055; + float b = 0.04045 / 12.92; + float g = 2.4; + float k = 12.92; + + auto Members() const { return std::tie(a, b, g, k); } + INLINE_AUTO_MAPPABLE(PiecewiseGammaDesc) + + static constexpr auto Srgb() { return PiecewiseGammaDesc(); } + static constexpr auto DisplayP3() { return Srgb(); } + + static constexpr auto Rec709() { + return PiecewiseGammaDesc{ + 1.099, + 0.018, + 1.0 / 0.45, // ~2.222 + 4.5, + }; + } + // FYI: static constexpr auto Rec2020_10bit() { return Rec709(); } + static constexpr auto Rec2020_12bit() { + return PiecewiseGammaDesc{ + 1.0993, + 0.0181, + 1.0 / 0.45, // ~2.222 + 4.5, + }; + } +}; + +struct YcbcrDesc final { + float y0 = 16 / 255.0; + float y1 = 235 / 255.0; + float u0 = 128 / 255.0; + float uPlusHalf = 240 / 255.0; + + auto Members() const { return std::tie(y0, y1, u0, uPlusHalf); } + INLINE_AUTO_MAPPABLE(YcbcrDesc) + + static constexpr auto Narrow8() { // AKA limited/studio/tv + return YcbcrDesc(); + } + static constexpr auto Full8() { // AKA pc + return YcbcrDesc{ + 0 / 255.0, + 255 / 255.0, + 128 / 255.0, + 254 / 255.0, + }; + } + static constexpr auto Float() { // Best for a LUT + return YcbcrDesc{0.0, 1.0, 0.5, 1.0}; + } +}; + +struct Chromaticities final { + float rx = 0.640; + float ry = 0.330; + float gx = 0.300; + float gy = 0.600; + float bx = 0.150; + float by = 0.060; + // D65: + static constexpr float wx = 0.3127; + static constexpr float wy = 0.3290; + + auto Members() const { return std::tie(rx, ry, gx, gy, bx, by); } + INLINE_AUTO_MAPPABLE(Chromaticities) + + // - + + static constexpr auto Rec709() { // AKA limited/studio/tv + return Chromaticities(); + } + static constexpr auto Srgb() { return Rec709(); } + + static constexpr auto Rec601_625_Pal() { + auto ret = Rec709(); + ret.gx = 0.290; + return ret; + } + static constexpr auto Rec601_525_Ntsc() { + return Chromaticities{ + 0.630, 0.340, // r + 0.310, 0.595, // g + 0.155, 0.070, // b + }; + } + static constexpr auto Rec2020() { + return Chromaticities{ + 0.708, 0.292, // r + 0.170, 0.797, // g + 0.131, 0.046, // b + }; + } + static constexpr auto DisplayP3() { + return Chromaticities{ + 0.680, 0.320, // r + 0.265, 0.690, // g + 0.150, 0.060, // b + }; + } +}; + +// - + +struct YuvDesc final { + YuvLumaCoeffs yCoeffs; + YcbcrDesc ycbcr; + + auto Members() const { return std::tie(yCoeffs, ycbcr); } + INLINE_AUTO_MAPPABLE(YuvDesc); +}; + +struct ColorspaceDesc final { + Chromaticities chrom; + std::optional<PiecewiseGammaDesc> tf; + std::optional<YuvDesc> yuv; + + auto Members() const { return std::tie(chrom, tf, yuv); } + INLINE_AUTO_MAPPABLE(ColorspaceDesc); +}; + +// - + +template <class TT, int NN> +struct avec final { + using T = TT; + static constexpr auto N = NN; + + std::array<T, N> data = {}; + + // - + + constexpr avec() = default; + constexpr avec(const avec&) = default; + + constexpr avec(const avec<T, N - 1>& v, T a) { + for (int i = 0; i < N - 1; i++) { + data[i] = v[i]; + } + data[N - 1] = a; + } + constexpr avec(const avec<T, N - 2>& v, T a, T b) { + for (int i = 0; i < N - 2; i++) { + data[i] = v[i]; + } + data[N - 2] = a; + data[N - 1] = b; + } + + MOZ_IMPLICIT constexpr avec(const std::array<T, N>& data) { + this->data = data; + } + + explicit constexpr avec(const T v) { + for (int i = 0; i < N; i++) { + data[i] = v; + } + } + + template <class T2, int N2> + explicit constexpr avec(const avec<T2, N2>& v) { + const auto n = std::min(N, N2); + for (int i = 0; i < n; i++) { + data[i] = static_cast<T>(v[i]); + } + } + + // - + + const auto& operator[](const size_t n) const { return data[n]; } + auto& operator[](const size_t n) { return data[n]; } + + template <int i> + constexpr auto get() const { + return (i < N) ? data[i] : 0; + } + constexpr auto x() const { return get<0>(); } + constexpr auto y() const { return get<1>(); } + constexpr auto z() const { return get<2>(); } + constexpr auto w() const { return get<3>(); } + + constexpr auto xyz() const { return vec3({x(), y(), z()}); } + + template <int i> + void set(const T v) { + if (i < N) { + data[i] = v; + } + } + void x(const T v) { set<0>(v); } + void y(const T v) { set<1>(v); } + void z(const T v) { set<2>(v); } + void w(const T v) { set<3>(v); } + + // - + +#define _(OP) \ + friend avec operator OP(const avec a, const avec b) { \ + avec c; \ + for (int i = 0; i < N; i++) { \ + c[i] = a[i] OP b[i]; \ + } \ + return c; \ + } \ + friend avec operator OP(const avec a, const T b) { \ + avec c; \ + for (int i = 0; i < N; i++) { \ + c[i] = a[i] OP b; \ + } \ + return c; \ + } \ + friend avec operator OP(const T a, const avec b) { \ + avec c; \ + for (int i = 0; i < N; i++) { \ + c[i] = a OP b[i]; \ + } \ + return c; \ + } + _(+) + _(-) + _(*) + _(/) +#undef _ + + friend bool operator==(const avec a, const avec b) { + bool eq = true; + for (int i = 0; i < N; i++) { + eq &= (a[i] == b[i]); + } + return eq; + } +}; +using vec2 = avec<float, 2>; +using vec3 = avec<float, 3>; +using vec4 = avec<float, 4>; +using ivec3 = avec<int32_t, 3>; +using ivec4 = avec<int32_t, 4>; + +template <class T, int N> +T dot(const avec<T, N>& a, const avec<T, N>& b) { + const auto c = a * b; + T ret = 0; + for (int i = 0; i < N; i++) { + ret += c[i]; + } + return ret; +} + +template <class V> +V mix(const V& zero, const V& one, const float val) { + return zero * (1 - val) + one * val; +} + +template <class T, int N> +auto min(const avec<T, N>& a, const avec<T, N>& b) { + auto ret = avec<T, N>{}; + for (int i = 0; i < ret.N; i++) { + ret[i] = std::min(a[i], b[i]); + } + return ret; +} + +template <class T, int N> +auto max(const avec<T, N>& a, const avec<T, N>& b) { + auto ret = avec<T, N>{}; + for (int i = 0; i < ret.N; i++) { + ret[i] = std::max(a[i], b[i]); + } + return ret; +} + +template <class T, int N> +auto floor(const avec<T, N>& a) { + auto ret = avec<T, N>{}; + for (int i = 0; i < ret.N; i++) { + ret[i] = floorf(a[i]); + } + return ret; +} + +template <class T, int N> +auto round(const avec<T, N>& a) { + auto ret = avec<T, N>{}; + for (int i = 0; i < ret.N; i++) { + ret[i] = roundf(a[i]); + } + return ret; +} + +template <class T, int N> +auto abs(const avec<T, N>& a) { + auto ret = avec<T, N>{}; + for (int i = 0; i < ret.N; i++) { + ret[i] = std::abs(a[i]); + } + return ret; +} + +// - + +template <int Y_Rows, int X_Cols> +struct mat final { + static constexpr int y_rows = Y_Rows; + static constexpr int x_cols = X_Cols; + + static constexpr auto Identity() { + auto ret = mat{}; + for (int i = 0; i < std::min(x_cols, y_rows); i++) { + ret.at(i, i) = 1; + } + return ret; + } + static constexpr auto Scale(const avec<float, std::min(x_cols, y_rows)>& v) { + auto ret = mat{}; + for (int i = 0; i < v.N; i++) { + ret.at(i, i) = v[i]; + } + return ret; + } + + std::array<avec<float, X_Cols>, Y_Rows> rows = {}; // row-major + + // - + + constexpr mat() = default; + + explicit constexpr mat(const std::array<avec<float, X_Cols>, Y_Rows>& rows) { + this->rows = rows; + } + + template <int Y_Rows2, int X_Cols2> + explicit constexpr mat(const mat<Y_Rows2, X_Cols2>& m) { + *this = Identity(); + for (int x = 0; x < std::min(X_Cols, X_Cols2); x++) { + for (int y = 0; y < std::min(Y_Rows, Y_Rows2); y++) { + at(x, y) = m.at(x, y); + } + } + } + + const auto& at(const int x, const int y) const { return rows.at(y)[x]; } + auto& at(const int x, const int y) { return rows.at(y)[x]; } + + friend auto operator*(const mat& a, const avec<float, X_Cols>& b_colvec) { + avec<float, Y_Rows> c_colvec; + for (int i = 0; i < y_rows; i++) { + c_colvec[i] = dot(a.rows.at(i), b_colvec); + } + return c_colvec; + } + + friend auto operator*(const mat& a, const float b) { + mat c; + for (int x = 0; x < x_cols; x++) { + for (int y = 0; y < y_rows; y++) { + c.at(x, y) = a.at(x, y) * b; + } + } + return c; + } + friend auto operator/(const mat& a, const float b) { return a * (1 / b); } + + template <int BCols, int BRows = X_Cols> + friend auto operator*(const mat& a, const mat<BRows, BCols>& b) { + const auto bt = transpose(b); + const auto& b_cols = bt.rows; + + mat<Y_Rows, BCols> c; + for (int x = 0; x < BCols; x++) { + for (int y = 0; y < Y_Rows; y++) { + c.at(x, y) = dot(a.rows.at(y), b_cols.at(x)); + } + } + return c; + } + + // For e.g. similarity evaluation + friend auto operator-(const mat& a, const mat& b) { + mat c; + for (int y = 0; y < y_rows; y++) { + c.rows[y] = a.rows[y] - b.rows[y]; + } + return c; + } +}; + +template <class M> +inline float dotDifference(const M& a, const M& b) { + const auto c = a - b; + const auto d = c * avec<float, M::x_cols>(1); + const auto d2 = dot(d, d); + return d2; +} +template <class M> +inline bool approx(const M& a, const M& b, const float eps = 0.0001) { + const auto errSquared = dotDifference(a, b); + return errSquared <= (eps * eps); +} + +using mat3 = mat<3, 3>; +using mat4 = mat<4, 4>; + +inline float determinant(const mat<1, 1>& m) { return m.at(0, 0); } +template <class T> +float determinant(const T& m) { + static_assert(T::x_cols == T::y_rows); + + float ret = 0; + for (int i = 0; i < T::x_cols; i++) { + const auto cofact = cofactor(m, i, 0); + ret += m.at(i, 0) * cofact; + } + return ret; +} + +// - + +template <class T> +float cofactor(const T& m, const int x_col, const int y_row) { + ASSERT(0 <= x_col && x_col < T::x_cols); + ASSERT(0 <= y_row && y_row < T::y_rows); + + auto cofactor = minor_val(m, x_col, y_row); + if ((x_col + y_row) % 2 == 1) { + cofactor *= -1; + } + return cofactor; +} + +// - + +// Unfortunately, can't call this `minor(...)` because there is +// `#define minor(dev) gnu_dev_minor (dev)` +// in /usr/include/x86_64-linux-gnu/sys/sysmacros.h:62 +template <class T> +float minor_val(const T& a, const int skip_x, const int skip_y) { + ASSERT(0 <= skip_x && skip_x < T::x_cols); + ASSERT(0 <= skip_y && skip_y < T::y_rows); + + // A minor matrix is a matrix without its x_col and y_row. + mat<T::y_rows - 1, T::x_cols - 1> b; + + int x_skips = 0; + for (int ax = 0; ax < T::x_cols; ax++) { + if (ax == skip_x) { + x_skips = 1; + continue; + } + + int y_skips = 0; + for (int ay = 0; ay < T::y_rows; ay++) { + if (ay == skip_y) { + y_skips = 1; + continue; + } + + b.at(ax - x_skips, ay - y_skips) = a.at(ax, ay); + } + } + + const auto minor = determinant(b); + return minor; +} + +// - + +/// The matrix of cofactors. +template <class T> +auto comatrix(const T& a) { + auto b = T{}; + for (int x = 0; x < T::x_cols; x++) { + for (int y = 0; y < T::y_rows; y++) { + b.at(x, y) = cofactor(a, x, y); + } + } + return b; +} + +// - + +template <class T> +auto transpose(const T& a) { + auto b = mat<T::x_cols, T::y_rows>{}; + for (int x = 0; x < T::x_cols; x++) { + for (int y = 0; y < T::y_rows; y++) { + b.at(y, x) = a.at(x, y); + } + } + return b; +} + +// - + +template <class T> +inline T inverse(const T& a) { + const auto det = determinant(a); + const auto comat = comatrix(a); + const auto adjugate = transpose(comat); + const auto inv = adjugate / det; + return inv; +} + +// - + +template <class F> +void ForEachIntWithin(const ivec3 size, const F& f) { + ivec3 p; + for (p.z(0); p.z() < size.z(); p.z(p.z() + 1)) { + for (p.y(0); p.y() < size.y(); p.y(p.y() + 1)) { + for (p.x(0); p.x() < size.x(); p.x(p.x() + 1)) { + f(p); + } + } + } +} +template <class F> +void ForEachSampleWithin(const ivec3 size, const F& f) { + const auto div = vec3(size - 1); + ForEachIntWithin(size, [&](const ivec3& isrc) { + const auto fsrc = vec3(isrc) / div; + f(fsrc); + }); +} + +// - + +struct Lut3 final { + ivec3 size; + std::vector<vec3> data; + + // - + + static Lut3 Create(const ivec3 size) { + Lut3 lut; + lut.size = size; + lut.data.resize(size.x() * size.y() * size.z()); + return lut; + } + + // - + + /// p: [0, N-1] (clamps) + size_t Index(ivec3 p) const { + const auto scales = ivec3({1, size.x(), size.x() * size.y()}); + p = max(ivec3(0), min(p, size - 1)); // clamp + return dot(p, scales); + } + + // - + + template <class F> + void SetMap(const F& dstFromSrc01) { + ForEachIntWithin(size, [&](const ivec3 p) { + const auto i = Index(p); + const auto src01 = vec3(p) / vec3(size - 1); + const auto dstVal = dstFromSrc01(src01); + data.at(i) = dstVal; + }); + } + + // - + + /// p: [0, N-1] (clamps) + vec3 Fetch(ivec3 p) const { + const auto i = Index(p); + return data.at(i); + } + + /// in01: [0.0, 1.0] (clamps) + vec3 Sample(vec3 in01) const; +}; + +// - + +/** +Naively, it would be ideal to map directly from ycbcr to rgb, +but headroom and footroom are problematic: For e.g. narrow-range-8-bit, +our naive LUT would start at absolute y=0/255. However, values only start +at y=16/255, and depending on where your first LUT sample is, you might get +very poor approximations for y=16/255. +Further, even for full-range-8-bit, y=-0.5 is encoded as 1/255. U and v +aren't *as* important as y, but we should try be accurate for the min and +max values. Additionally, it would be embarassing to get whites/greys wrong, +so preserving u=0.0 should also be a goal. +Finally, when using non-linear transfer functions, the linear approximation of a +point between two samples will be fairly inaccurate. +We preserve min and max by choosing our input range such that min and max are +the endpoints of their LUT axis. +We preserve accuracy (at and around) mid by choosing odd sizes for dimentions. + +But also, the LUT is surprisingly robust, so check if the simple version works +before adding complexity! +**/ + +struct ColorspaceTransform final { + ColorspaceDesc srcSpace; + ColorspaceDesc dstSpace; + mat4 srcRgbTfFromSrc; + std::optional<PiecewiseGammaDesc> srcTf; + mat3 dstRgbLinFromSrcRgbLin; + std::optional<PiecewiseGammaDesc> dstTf; + mat4 dstFromDstRgbTf; + + static ColorspaceTransform Create(const ColorspaceDesc& src, + const ColorspaceDesc& dst); + + // - + + vec3 DstFromSrc(vec3 src) const; + + std::optional<mat4> ToMat4() const; + + Lut3 ToLut3(const ivec3 size) const; + Lut3 ToLut3() const { + auto defaultSize = ivec3({31, 31, 15}); // Order of importance: G, R, B + if (srcSpace.yuv) { + defaultSize = ivec3({31, 15, 31}); // Y, Cb, Cr + } + return ToLut3(defaultSize); + } +}; + +// - + +struct RgbTransferTables { + std::vector<float> r; + std::vector<float> g; + std::vector<float> b; +}; +float GuessGamma(const std::vector<float>& vals, float exp_guess = 1.0); + +static constexpr auto D65 = vec2{{0.3127, 0.3290}}; +static constexpr auto D50 = vec2{{0.34567, 0.35850}}; +mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB); + +// - + +struct ColorProfileDesc { + // ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50) + // However, all of our colorspaces are D65, so let's normalize to that, + // even though it's a reversible transform. + color::mat4 rgbFromYcbcr = color::mat4::Identity(); + RgbTransferTables linearFromTf; + color::mat3 xyzd65FromLinearRgb = color::mat3::Identity(); + + static ColorProfileDesc From(const ColorspaceDesc&); + static ColorProfileDesc From(const qcms_profile&); +}; + +template <class C> +inline float SampleOutByIn(const C& outByIn, const float in) { + switch (outByIn.size()) { + case 0: + return in; + case 1: + return outByIn.at(0); + } + MOZ_ASSERT(outByIn.size() >= 2); + const auto begin = outByIn.begin(); + + const auto in0i = size_t(floorf(in * (outByIn.size() - 1))); + const auto out0_itr = begin + std::min(in0i, outByIn.size() - 2); + + const auto in0 = float(out0_itr - begin) / (outByIn.size() - 1); + const auto out0 = *out0_itr; + const auto d_in = float(1) / (outByIn.size() - 1); + const auto d_out = *(out0_itr + 1) - *out0_itr; + + const auto out = out0 + (d_out / d_in) * (in - in0); + // printf("SampleOutByIn(%f)->%f\n", in, out); + return out; +} + +template <class C> +inline float SampleInByOut(const C& outByIn, const float out) { + MOZ_ASSERT(outByIn.size() >= 2); + const auto begin = outByIn.begin(); + + const auto out0_itr = std::lower_bound(begin + 1, outByIn.end() - 1, out) - 1; + + const auto in0 = float(out0_itr - begin) / (outByIn.size() - 1); + const auto out0 = *out0_itr; + const auto d_in = float(1) / (outByIn.size() - 1); + const auto d_out = *(out0_itr + 1) - *out0_itr; + + // printf("%f + (%f / %f) * (%f - %f)\n", in0, d_in, d_out, out, out0); + const auto in = in0 + (d_in / d_out) * (out - out0); + // printf("SampleInByOut(%f)->%f\n", out, in); + return in; +} + +template <class C, class FnLessEqualT = std::less_equal<typename C::value_type>> +inline bool IsMonotonic(const C& vals, const FnLessEqualT& LessEqual = {}) { + bool ok = true; + const auto begin = vals.begin(); + for (size_t i = 1; i < vals.size(); i++) { + const auto itr = begin + i; + ok &= LessEqual(*(itr - 1), *itr); + // Assert(true, [&]() { + // return prints("[%zu]->%f <= [%zu]->%f", i-1, *(itr-1), i, *itr); + // }); + } + return ok; +} + +template <class T, class I> +inline std::optional<I> SeekNeq(const T& ref, const I first, const I last) { + const auto inc = (last - first) > 0 ? 1 : -1; + auto itr = first; + while (true) { + if (*itr != ref) return itr; + if (itr == last) return {}; + itr += inc; + } +} + +template <class T> +struct TwoPoints { + struct { + T x; + T y; + } p0; + struct { + T x; + T y; + } p1; + + T y(const T x) const { + const auto dx = p1.x - p0.x; + const auto dy = p1.y - p0.y; + return p0.y + dy / dx * (x - p0.x); + } +}; + +/// Fills `vals` with `x:[0..vals.size()-1] => line.y(x)`. +template <class T> +static void LinearFill(T& vals, const TwoPoints<float>& line) { + float x = -1; + for (auto& val : vals) { + x += 1; + val = line.y(x); + } +} + +// - + +inline void DequantizeMonotonic(const Span<float> vals) { + MOZ_ASSERT(IsMonotonic(vals)); + + const auto first = vals.begin(); + const auto end = vals.end(); + if (first == end) return; + const auto last = end - 1; + if (first == last) return; + + // Three monotonic cases: + // 1. [0,0,0,0] + // 2. [0,0,1,1] + // 3. [0,1,1,2] + + const auto body_first = SeekNeq(*first, first, last); + if (!body_first) { + // E.g. [0,0,0,0] + return; + } + + const auto body_last = SeekNeq(*last, last, *body_first); + if (!body_last) { + // E.g. [0,0,1,1] + // This isn't the most accurate, but close enough. + // print("#2: %s", to_str(vals).c_str()); + LinearFill(vals, { + {0, *first}, + {float(vals.size() - 1), *last}, + }); + // print(" -> %s\n", to_str(vals).c_str()); + return; + } + + // E.g. [0,1,1,2] + // ^^^ body + // => f(0.5)->0.5, f(2.5)->1.5 + // => f(x) = f(x0) + (x-x0) * (f(x1) - f(x0)) / (x1-x0) + // => f(x) = f(x0) + (x-x0) * dfdx + + const auto head_end = *body_first; + const auto head = vals.subspan(0, head_end - vals.begin()); + const auto tail_begin = *body_last + 1; + const auto tail = vals.subspan(tail_begin - vals.begin()); + // print("head tail: %s %s\n", + // to_str(head).c_str(), + // to_str(tail).c_str()); + + // const auto body = vals->subspan(head.size(), vals->size()-tail.size()); + auto next_part_first = head_end; + while (next_part_first != tail_begin) { + const auto part_first = next_part_first; + // print("part_first: %f\n", *part_first); + next_part_first = *SeekNeq(*part_first, part_first, tail_begin); + // print("next_part_first: %f\n", *next_part_first); + const auto part = + Span<float>{part_first, size_t(next_part_first - part_first)}; + // print("part: %s\n", to_str(part).c_str()); + const auto prev_part_last = part_first - 1; + const auto part_last = next_part_first - 1; + const auto line = TwoPoints<float>{ + {-0.5, (*prev_part_last + *part_first) / 2}, + {part.size() - 0.5f, (*part_last + *next_part_first) / 2}, + }; + LinearFill(part, line); + } + + static constexpr bool INFER_HEAD_TAIL_FROM_BODY_EDGE = false; + // Basically ignore contents of head and tail, and infer from edges of body. + // print("3: %s\n", to_str(vals).c_str()); + if (!IsMonotonic(head, std::less<float>{})) { + if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) { + LinearFill(head, + { + {0, *head.begin()}, + {head.size() - 0.5f, (*(head.end() - 1) + *head_end) / 2}, + }); + } else { + LinearFill(head, { + {head.size() + 0.0f, *head_end}, + {head.size() + 1.0f, *(head_end + 1)}, + }); + } + } + if (!IsMonotonic(tail, std::less<float>{})) { + if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) { + LinearFill(tail, { + {-0.5, (*(tail_begin - 1) + *tail.begin()) / 2}, + {tail.size() - 1.0f, *(tail.end() - 1)}, + }); + } else { + LinearFill(tail, { + {-2.0f, *(tail_begin - 2)}, + {-1.0f, *(tail_begin - 1)}, + }); + } + } + // print("3: %s\n", to_str(vals).c_str()); + MOZ_ASSERT(IsMonotonic(vals, std::less<float>{})); + + // Rescale, because we tend to lose range. + static constexpr bool RESCALE = false; + if (RESCALE) { + const auto firstv = *first; + const auto lastv = *last; + for (auto& val : vals) { + val = (val - firstv) / (lastv - firstv); + } + } + // print("4: %s\n", to_str(vals).c_str()); +} + +template <class In, class Out> +static void InvertLut(const In& lut, Out* const out_invertedLut) { + MOZ_ASSERT(IsMonotonic(lut)); + auto plut = &lut; + auto vec = std::vector<float>{}; + if (!IsMonotonic(lut, std::less<float>{})) { + // print("Not strictly monotonic...\n"); + vec.assign(lut.begin(), lut.end()); + DequantizeMonotonic(vec); + plut = &vec; + // print(" Now strictly monotonic: %i: %s\n", + // int(IsMonotonic(*plut, std::less<float>{})), to_str(*plut).c_str()); + MOZ_ASSERT(IsMonotonic(*plut, std::less<float>{})); + } + MOZ_ASSERT(plut->size() >= 2); + + auto& ret = *out_invertedLut; + for (size_t i_out = 0; i_out < ret.size(); i_out++) { + const auto f_out = i_out / float(ret.size() - 1); + const auto f_in = SampleInByOut(*plut, f_out); + ret[i_out] = f_in; + } + + MOZ_ASSERT(IsMonotonic(ret)); + MOZ_ASSERT(IsMonotonic(ret, std::less<float>{})); +} + +// - + +struct ColorProfileConversionDesc { + // ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50) + color::mat4 srcRgbFromSrcYuv = color::mat4::Identity(); + RgbTransferTables srcLinearFromSrcTf; + color::mat3 dstLinearFromSrcLinear = color::mat3::Identity(); + RgbTransferTables dstTfFromDstLinear; + + struct FromDesc { + ColorProfileDesc src; + ColorProfileDesc dst; + }; + static ColorProfileConversionDesc From(const FromDesc&); + + vec3 Apply(const vec3 src) const { + const auto srcRgb = vec3(srcRgbFromSrcYuv * vec4(src, 1)); + const auto srcLinear = vec3{{ + SampleOutByIn(srcLinearFromSrcTf.r, srcRgb.x()), + SampleOutByIn(srcLinearFromSrcTf.g, srcRgb.y()), + SampleOutByIn(srcLinearFromSrcTf.b, srcRgb.z()), + }}; + const auto dstLinear = dstLinearFromSrcLinear * srcLinear; + const auto dstRgb = vec3{{ + SampleOutByIn(dstTfFromDstLinear.r, dstLinear.x()), + SampleOutByIn(dstTfFromDstLinear.g, dstLinear.y()), + SampleOutByIn(dstTfFromDstLinear.b, dstLinear.z()), + }}; + return dstRgb; + } +}; + +} // namespace mozilla::color + +#undef ASSERT + +#endif // MOZILLA_GFX_GL_COLORSPACES_H_ |