summaryrefslogtreecommitdiffstats
path: root/mfbt/CheckedInt.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /mfbt/CheckedInt.h
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mfbt/CheckedInt.h')
-rw-r--r--mfbt/CheckedInt.h804
1 files changed, 804 insertions, 0 deletions
diff --git a/mfbt/CheckedInt.h b/mfbt/CheckedInt.h
new file mode 100644
index 0000000000..d784376d8c
--- /dev/null
+++ b/mfbt/CheckedInt.h
@@ -0,0 +1,804 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* Provides checked integers, detecting integer overflow and divide-by-0. */
+
+#ifndef mozilla_CheckedInt_h
+#define mozilla_CheckedInt_h
+
+#include <stdint.h>
+#include "mozilla/Assertions.h"
+#include "mozilla/Attributes.h"
+#include "mozilla/IntegerTypeTraits.h"
+#include <limits>
+#include <type_traits>
+
+#define MOZILLA_CHECKEDINT_COMPARABLE_VERSION(major, minor, patch) \
+ (major << 16 | minor << 8 | patch)
+
+// Probe for builtin math overflow support. Disabled for 32-bit builds for now
+// since "gcc -m32" claims to support these but its implementation is buggy.
+// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82274
+// Also disabled for clang before version 7 (resp. Xcode clang 10.0.1): while
+// clang 5 and 6 have a working __builtin_add_overflow, it is not constexpr.
+#if defined(HAVE_64BIT_BUILD)
+# if defined(__has_builtin) && \
+ (!defined(__clang_major__) || \
+ (!defined(__apple_build_version__) && __clang_major__ >= 7) || \
+ (defined(__apple_build_version__) && \
+ MOZILLA_CHECKEDINT_COMPARABLE_VERSION( \
+ __clang_major__, __clang_minor__, __clang_patchlevel__) >= \
+ MOZILLA_CHECKEDINT_COMPARABLE_VERSION(10, 0, 1)))
+# define MOZ_HAS_BUILTIN_OP_OVERFLOW (__has_builtin(__builtin_add_overflow))
+# elif defined(__GNUC__)
+// (clang also defines __GNUC__ but it supports __has_builtin since at least
+// v3.1 (released in 2012) so it won't get here.)
+# define MOZ_HAS_BUILTIN_OP_OVERFLOW (__GNUC__ >= 5)
+# else
+# define MOZ_HAS_BUILTIN_OP_OVERFLOW (0)
+# endif
+#else
+# define MOZ_HAS_BUILTIN_OP_OVERFLOW (0)
+#endif
+
+#undef MOZILLA_CHECKEDINT_COMPARABLE_VERSION
+
+namespace mozilla {
+
+template <typename T>
+class CheckedInt;
+
+namespace detail {
+
+/*
+ * Step 1: manually record supported types
+ *
+ * What's nontrivial here is that there are different families of integer
+ * types: basic integer types and stdint types. It is merrily undefined which
+ * types from one family may be just typedefs for a type from another family.
+ *
+ * For example, on GCC 4.6, aside from the basic integer types, the only other
+ * type that isn't just a typedef for some of them, is int8_t.
+ */
+
+struct UnsupportedType {};
+
+template <typename IntegerType>
+struct IsSupportedPass2 {
+ static const bool value = false;
+};
+
+template <typename IntegerType>
+struct IsSupported {
+ static const bool value = IsSupportedPass2<IntegerType>::value;
+};
+
+template <>
+struct IsSupported<int8_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<uint8_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<int16_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<uint16_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<int32_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<uint32_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<int64_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupported<uint64_t> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<char> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<signed char> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<unsigned char> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<short> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<unsigned short> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<int> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<unsigned int> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<long> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<unsigned long> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<long long> {
+ static const bool value = true;
+};
+
+template <>
+struct IsSupportedPass2<unsigned long long> {
+ static const bool value = true;
+};
+
+/*
+ * Step 2: Implement the actual validity checks.
+ *
+ * Ideas taken from IntegerLib, code different.
+ */
+
+template <typename IntegerType, size_t Size = sizeof(IntegerType)>
+struct TwiceBiggerType {
+ typedef typename detail::StdintTypeForSizeAndSignedness<
+ sizeof(IntegerType) * 2, std::is_signed_v<IntegerType>>::Type Type;
+};
+
+template <typename IntegerType>
+struct TwiceBiggerType<IntegerType, 8> {
+ typedef UnsupportedType Type;
+};
+
+template <typename T>
+constexpr bool HasSignBit(T aX) {
+ // In C++, right bit shifts on negative values is undefined by the standard.
+ // Notice that signed-to-unsigned conversions are always well-defined in the
+ // standard, as the value congruent modulo 2**n as expected. By contrast,
+ // unsigned-to-signed is only well-defined if the value is representable.
+ return bool(std::make_unsigned_t<T>(aX) >> PositionOfSignBit<T>::value);
+}
+
+// Bitwise ops may return a larger type, so it's good to use this inline
+// helper guaranteeing that the result is really of type T.
+template <typename T>
+constexpr T BinaryComplement(T aX) {
+ return ~aX;
+}
+
+template <typename T, typename U, bool IsTSigned = std::is_signed_v<T>,
+ bool IsUSigned = std::is_signed_v<U>>
+struct DoesRangeContainRange {};
+
+template <typename T, typename U, bool Signedness>
+struct DoesRangeContainRange<T, U, Signedness, Signedness> {
+ static const bool value = sizeof(T) >= sizeof(U);
+};
+
+template <typename T, typename U>
+struct DoesRangeContainRange<T, U, true, false> {
+ static const bool value = sizeof(T) > sizeof(U);
+};
+
+template <typename T, typename U>
+struct DoesRangeContainRange<T, U, false, true> {
+ static const bool value = false;
+};
+
+template <typename T, typename U, bool IsTSigned = std::is_signed_v<T>,
+ bool IsUSigned = std::is_signed_v<U>,
+ bool DoesTRangeContainURange = DoesRangeContainRange<T, U>::value>
+struct IsInRangeImpl {};
+
+template <typename T, typename U, bool IsTSigned, bool IsUSigned>
+struct IsInRangeImpl<T, U, IsTSigned, IsUSigned, true> {
+ static constexpr bool run(U) { return true; }
+};
+
+template <typename T, typename U>
+struct IsInRangeImpl<T, U, true, true, false> {
+ static constexpr bool run(U aX) {
+ return aX <= std::numeric_limits<T>::max() &&
+ aX >= std::numeric_limits<T>::min();
+ }
+};
+
+template <typename T, typename U>
+struct IsInRangeImpl<T, U, false, false, false> {
+ static constexpr bool run(U aX) {
+ return aX <= std::numeric_limits<T>::max();
+ }
+};
+
+template <typename T, typename U>
+struct IsInRangeImpl<T, U, true, false, false> {
+ static constexpr bool run(U aX) {
+ return sizeof(T) > sizeof(U) || aX <= U(std::numeric_limits<T>::max());
+ }
+};
+
+template <typename T, typename U>
+struct IsInRangeImpl<T, U, false, true, false> {
+ static constexpr bool run(U aX) {
+ return sizeof(T) >= sizeof(U)
+ ? aX >= 0
+ : aX >= 0 && aX <= U(std::numeric_limits<T>::max());
+ }
+};
+
+template <typename T, typename U>
+constexpr bool IsInRange(U aX) {
+ return IsInRangeImpl<T, U>::run(aX);
+}
+
+template <typename T>
+constexpr bool IsAddValid(T aX, T aY) {
+#if MOZ_HAS_BUILTIN_OP_OVERFLOW
+ T dummy;
+ return !__builtin_add_overflow(aX, aY, &dummy);
+#else
+ // Addition is valid if the sign of aX+aY is equal to either that of aX or
+ // that of aY. Since the value of aX+aY is undefined if we have a signed
+ // type, we compute it using the unsigned type of the same size. Beware!
+ // These bitwise operations can return a larger integer type, if T was a
+ // small type like int8_t, so we explicitly cast to T.
+
+ std::make_unsigned_t<T> ux = aX;
+ std::make_unsigned_t<T> uy = aY;
+ std::make_unsigned_t<T> result = ux + uy;
+ return std::is_signed_v<T>
+ ? HasSignBit(BinaryComplement(T((result ^ aX) & (result ^ aY))))
+ : BinaryComplement(aX) >= aY;
+#endif
+}
+
+template <typename T>
+constexpr bool IsSubValid(T aX, T aY) {
+#if MOZ_HAS_BUILTIN_OP_OVERFLOW
+ T dummy;
+ return !__builtin_sub_overflow(aX, aY, &dummy);
+#else
+ // Subtraction is valid if either aX and aY have same sign, or aX-aY and aX
+ // have same sign. Since the value of aX-aY is undefined if we have a signed
+ // type, we compute it using the unsigned type of the same size.
+ std::make_unsigned_t<T> ux = aX;
+ std::make_unsigned_t<T> uy = aY;
+ std::make_unsigned_t<T> result = ux - uy;
+
+ return std::is_signed_v<T>
+ ? HasSignBit(BinaryComplement(T((result ^ aX) & (aX ^ aY))))
+ : aX >= aY;
+#endif
+}
+
+template <typename T, bool IsTSigned = std::is_signed_v<T>,
+ bool TwiceBiggerTypeIsSupported =
+ IsSupported<typename TwiceBiggerType<T>::Type>::value>
+struct IsMulValidImpl {};
+
+template <typename T, bool IsTSigned>
+struct IsMulValidImpl<T, IsTSigned, true> {
+ static constexpr bool run(T aX, T aY) {
+ typedef typename TwiceBiggerType<T>::Type TwiceBiggerType;
+ TwiceBiggerType product = TwiceBiggerType(aX) * TwiceBiggerType(aY);
+ return IsInRange<T>(product);
+ }
+};
+
+template <typename T>
+struct IsMulValidImpl<T, true, false> {
+ static constexpr bool run(T aX, T aY) {
+ const T max = std::numeric_limits<T>::max();
+ const T min = std::numeric_limits<T>::min();
+
+ if (aX == 0 || aY == 0) {
+ return true;
+ }
+ if (aX > 0) {
+ return aY > 0 ? aX <= max / aY : aY >= min / aX;
+ }
+
+ // If we reach this point, we know that aX < 0.
+ return aY > 0 ? aX >= min / aY : aY >= max / aX;
+ }
+};
+
+template <typename T>
+struct IsMulValidImpl<T, false, false> {
+ static constexpr bool run(T aX, T aY) {
+ return aY == 0 || aX <= std::numeric_limits<T>::max() / aY;
+ }
+};
+
+template <typename T>
+constexpr bool IsMulValid(T aX, T aY) {
+#if MOZ_HAS_BUILTIN_OP_OVERFLOW
+ T dummy;
+ return !__builtin_mul_overflow(aX, aY, &dummy);
+#else
+ return IsMulValidImpl<T>::run(aX, aY);
+#endif
+}
+
+template <typename T>
+constexpr bool IsDivValid(T aX, T aY) {
+ // Keep in mind that in the signed case, min/-1 is invalid because
+ // abs(min)>max.
+ return aY != 0 && !(std::is_signed_v<T> &&
+ aX == std::numeric_limits<T>::min() && aY == T(-1));
+}
+
+template <typename T, bool IsTSigned = std::is_signed_v<T>>
+struct IsModValidImpl;
+
+template <typename T>
+constexpr bool IsModValid(T aX, T aY) {
+ return IsModValidImpl<T>::run(aX, aY);
+}
+
+/*
+ * Mod is pretty simple.
+ * For now, let's just use the ANSI C definition:
+ * If aX or aY are negative, the results are implementation defined.
+ * Consider these invalid.
+ * Undefined for aY=0.
+ * The result will never exceed either aX or aY.
+ *
+ * Checking that aX>=0 is a warning when T is unsigned.
+ */
+
+template <typename T>
+struct IsModValidImpl<T, false> {
+ static constexpr bool run(T aX, T aY) { return aY >= 1; }
+};
+
+template <typename T>
+struct IsModValidImpl<T, true> {
+ static constexpr bool run(T aX, T aY) {
+ if (aX < 0) {
+ return false;
+ }
+ return aY >= 1;
+ }
+};
+
+template <typename T, bool IsSigned = std::is_signed_v<T>>
+struct NegateImpl;
+
+template <typename T>
+struct NegateImpl<T, false> {
+ static constexpr CheckedInt<T> negate(const CheckedInt<T>& aVal) {
+ // Handle negation separately for signed/unsigned, for simpler code and to
+ // avoid an MSVC warning negating an unsigned value.
+ static_assert(detail::IsInRange<T>(0), "Integer type can't represent 0");
+ return CheckedInt<T>(T(0), aVal.isValid() && aVal.mValue == 0);
+ }
+};
+
+template <typename T>
+struct NegateImpl<T, true> {
+ static constexpr CheckedInt<T> negate(const CheckedInt<T>& aVal) {
+ // Watch out for the min-value, which (with twos-complement) can't be
+ // negated as -min-value is then (max-value + 1).
+ if (!aVal.isValid() || aVal.mValue == std::numeric_limits<T>::min()) {
+ return CheckedInt<T>(aVal.mValue, false);
+ }
+ /* For some T, arithmetic ops automatically promote to a wider type, so
+ * explitly do the narrowing cast here. The narrowing cast is valid because
+ * we did the check for min value above. */
+ return CheckedInt<T>(T(-aVal.mValue), true);
+ }
+};
+
+} // namespace detail
+
+/*
+ * Step 3: Now define the CheckedInt class.
+ */
+
+/**
+ * @class CheckedInt
+ * @brief Integer wrapper class checking for integer overflow and other errors
+ * @param T the integer type to wrap. Can be any type among the following:
+ * - any basic integer type such as |int|
+ * - any stdint type such as |int8_t|
+ *
+ * This class implements guarded integer arithmetic. Do a computation, check
+ * that isValid() returns true, you then have a guarantee that no problem, such
+ * as integer overflow, happened during this computation, and you can call
+ * value() to get the plain integer value.
+ *
+ * The arithmetic operators in this class are guaranteed not to raise a signal
+ * (e.g. in case of a division by zero).
+ *
+ * For example, suppose that you want to implement a function that computes
+ * (aX+aY)/aZ, that doesn't crash if aZ==0, and that reports on error (divide by
+ * zero or integer overflow). You could code it as follows:
+ @code
+ bool computeXPlusYOverZ(int aX, int aY, int aZ, int* aResult)
+ {
+ CheckedInt<int> checkedResult = (CheckedInt<int>(aX) + aY) / aZ;
+ if (checkedResult.isValid()) {
+ *aResult = checkedResult.value();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ @endcode
+ *
+ * Implicit conversion from plain integers to checked integers is allowed. The
+ * plain integer is checked to be in range before being casted to the
+ * destination type. This means that the following lines all compile, and the
+ * resulting CheckedInts are correctly detected as valid or invalid:
+ * @code
+ // 1 is of type int, is found to be in range for uint8_t, x is valid
+ CheckedInt<uint8_t> x(1);
+ // -1 is of type int, is found not to be in range for uint8_t, x is invalid
+ CheckedInt<uint8_t> x(-1);
+ // -1 is of type int, is found to be in range for int8_t, x is valid
+ CheckedInt<int8_t> x(-1);
+ // 1000 is of type int16_t, is found not to be in range for int8_t,
+ // x is invalid
+ CheckedInt<int8_t> x(int16_t(1000));
+ // 3123456789 is of type uint32_t, is found not to be in range for int32_t,
+ // x is invalid
+ CheckedInt<int32_t> x(uint32_t(3123456789));
+ * @endcode
+ * Implicit conversion from
+ * checked integers to plain integers is not allowed. As shown in the
+ * above example, to get the value of a checked integer as a normal integer,
+ * call value().
+ *
+ * Arithmetic operations between checked and plain integers is allowed; the
+ * result type is the type of the checked integer.
+ *
+ * Checked integers of different types cannot be used in the same arithmetic
+ * expression.
+ *
+ * There are convenience typedefs for all stdint types, of the following form
+ * (these are just 2 examples):
+ @code
+ typedef CheckedInt<int32_t> CheckedInt32;
+ typedef CheckedInt<uint16_t> CheckedUint16;
+ @endcode
+ */
+template <typename T>
+class CheckedInt {
+ protected:
+ T mValue;
+ bool mIsValid;
+
+ template <typename U>
+ constexpr CheckedInt(U aValue, bool aIsValid)
+ : mValue(aValue), mIsValid(aIsValid) {
+ static_assert(std::is_same_v<T, U>,
+ "this constructor must accept only T values");
+ static_assert(detail::IsSupported<T>::value,
+ "This type is not supported by CheckedInt");
+ }
+
+ friend struct detail::NegateImpl<T>;
+
+ public:
+ /**
+ * Constructs a checked integer with given @a value. The checked integer is
+ * initialized as valid or invalid depending on whether the @a value
+ * is in range.
+ *
+ * This constructor is not explicit. Instead, the type of its argument is a
+ * separate template parameter, ensuring that no conversion is performed
+ * before this constructor is actually called. As explained in the above
+ * documentation for class CheckedInt, this constructor checks that its
+ * argument is valid.
+ */
+ template <typename U>
+ MOZ_IMPLICIT MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT constexpr CheckedInt(U aValue)
+ : mValue(T(aValue)), mIsValid(detail::IsInRange<T>(aValue)) {
+ static_assert(
+ detail::IsSupported<T>::value && detail::IsSupported<U>::value,
+ "This type is not supported by CheckedInt");
+ }
+
+ template <typename U>
+ friend class CheckedInt;
+
+ template <typename U>
+ constexpr CheckedInt<U> toChecked() const {
+ CheckedInt<U> ret(mValue);
+ ret.mIsValid = ret.mIsValid && mIsValid;
+ return ret;
+ }
+
+ /** Constructs a valid checked integer with initial value 0 */
+ constexpr CheckedInt() : mValue(T(0)), mIsValid(true) {
+ static_assert(detail::IsSupported<T>::value,
+ "This type is not supported by CheckedInt");
+ static_assert(detail::IsInRange<T>(0), "Integer type can't represent 0");
+ }
+
+ /** @returns the actual value */
+ constexpr T value() const {
+ MOZ_DIAGNOSTIC_ASSERT(
+ mIsValid,
+ "Invalid checked integer (division by zero or integer overflow)");
+ return mValue;
+ }
+
+ /**
+ * @returns true if the checked integer is valid, i.e. is not the result
+ * of an invalid operation or of an operation involving an invalid checked
+ * integer
+ */
+ constexpr bool isValid() const { return mIsValid; }
+
+ template <typename U>
+ friend constexpr CheckedInt<U> operator+(const CheckedInt<U>& aLhs,
+ const CheckedInt<U>& aRhs);
+ template <typename U>
+ constexpr CheckedInt& operator+=(U aRhs);
+ constexpr CheckedInt& operator+=(const CheckedInt<T>& aRhs);
+
+ template <typename U>
+ friend constexpr CheckedInt<U> operator-(const CheckedInt<U>& aLhs,
+ const CheckedInt<U>& aRhs);
+ template <typename U>
+ constexpr CheckedInt& operator-=(U aRhs);
+ constexpr CheckedInt& operator-=(const CheckedInt<T>& aRhs);
+
+ template <typename U>
+ friend constexpr CheckedInt<U> operator*(const CheckedInt<U>& aLhs,
+ const CheckedInt<U>& aRhs);
+ template <typename U>
+ constexpr CheckedInt& operator*=(U aRhs);
+ constexpr CheckedInt& operator*=(const CheckedInt<T>& aRhs);
+
+ template <typename U>
+ friend constexpr CheckedInt<U> operator/(const CheckedInt<U>& aLhs,
+ const CheckedInt<U>& aRhs);
+ template <typename U>
+ constexpr CheckedInt& operator/=(U aRhs);
+ constexpr CheckedInt& operator/=(const CheckedInt<T>& aRhs);
+
+ template <typename U>
+ friend constexpr CheckedInt<U> operator%(const CheckedInt<U>& aLhs,
+ const CheckedInt<U>& aRhs);
+ template <typename U>
+ constexpr CheckedInt& operator%=(U aRhs);
+ constexpr CheckedInt& operator%=(const CheckedInt<T>& aRhs);
+
+ constexpr CheckedInt operator-() const {
+ return detail::NegateImpl<T>::negate(*this);
+ }
+
+ /**
+ * @returns true if the left and right hand sides are valid
+ * and have the same value.
+ *
+ * Note that these semantics are the reason why we don't offer
+ * a operator!=. Indeed, we'd want to have a!=b be equivalent to !(a==b)
+ * but that would mean that whenever a or b is invalid, a!=b
+ * is always true, which would be very confusing.
+ *
+ * For similar reasons, operators <, >, <=, >= would be very tricky to
+ * specify, so we just avoid offering them.
+ *
+ * Notice that these == semantics are made more reasonable by these facts:
+ * 1. a==b implies equality at the raw data level
+ * (the converse is false, as a==b is never true among invalids)
+ * 2. This is similar to the behavior of IEEE floats, where a==b
+ * means that a and b have the same value *and* neither is NaN.
+ */
+ constexpr bool operator==(const CheckedInt& aOther) const {
+ return mIsValid && aOther.mIsValid && mValue == aOther.mValue;
+ }
+
+ /** prefix ++ */
+ constexpr CheckedInt& operator++() {
+ *this += 1;
+ return *this;
+ }
+
+ /** postfix ++ */
+ constexpr CheckedInt operator++(int) {
+ CheckedInt tmp = *this;
+ *this += 1;
+ return tmp;
+ }
+
+ /** prefix -- */
+ constexpr CheckedInt& operator--() {
+ *this -= 1;
+ return *this;
+ }
+
+ /** postfix -- */
+ constexpr CheckedInt operator--(int) {
+ CheckedInt tmp = *this;
+ *this -= 1;
+ return tmp;
+ }
+
+ private:
+ /**
+ * The !=, <, <=, >, >= operators are disabled:
+ * see the comment on operator==.
+ */
+ template <typename U>
+ bool operator!=(U aOther) const = delete;
+ template <typename U>
+ bool operator<(U aOther) const = delete;
+ template <typename U>
+ bool operator<=(U aOther) const = delete;
+ template <typename U>
+ bool operator>(U aOther) const = delete;
+ template <typename U>
+ bool operator>=(U aOther) const = delete;
+};
+
+#define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
+ template <typename T> \
+ constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, \
+ const CheckedInt<T>& aRhs) { \
+ if (!detail::Is##NAME##Valid(aLhs.mValue, aRhs.mValue)) { \
+ static_assert(detail::IsInRange<T>(0), \
+ "Integer type can't represent 0"); \
+ return CheckedInt<T>(T(0), false); \
+ } \
+ /* For some T, arithmetic ops automatically promote to a wider type, so \
+ * explitly do the narrowing cast here. The narrowing cast is valid \
+ * because we did the "Is##NAME##Valid" check above. */ \
+ return CheckedInt<T>(T(aLhs.mValue OP aRhs.mValue), \
+ aLhs.mIsValid && aRhs.mIsValid); \
+ }
+
+#if MOZ_HAS_BUILTIN_OP_OVERFLOW
+# define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(NAME, OP, FUN) \
+ template <typename T> \
+ constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, \
+ const CheckedInt<T>& aRhs) { \
+ auto result = T{}; \
+ if (FUN(aLhs.mValue, aRhs.mValue, &result)) { \
+ static_assert(detail::IsInRange<T>(0), \
+ "Integer type can't represent 0"); \
+ return CheckedInt<T>(T(0), false); \
+ } \
+ return CheckedInt<T>(result, aLhs.mIsValid && aRhs.mIsValid); \
+ }
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Add, +, __builtin_add_overflow)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Sub, -, __builtin_sub_overflow)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Mul, *, __builtin_mul_overflow)
+# undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2
+#else
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Add, +)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Sub, -)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mul, *)
+#endif
+
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Div, /)
+MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mod, %)
+#undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR
+
+// Implement castToCheckedInt<T>(x), making sure that
+// - it allows x to be either a CheckedInt<T> or any integer type
+// that can be casted to T
+// - if x is already a CheckedInt<T>, we just return a reference to it,
+// instead of copying it (optimization)
+
+namespace detail {
+
+template <typename T, typename U>
+struct CastToCheckedIntImpl {
+ typedef CheckedInt<T> ReturnType;
+ static constexpr CheckedInt<T> run(U aU) { return aU; }
+};
+
+template <typename T>
+struct CastToCheckedIntImpl<T, CheckedInt<T>> {
+ typedef const CheckedInt<T>& ReturnType;
+ static constexpr const CheckedInt<T>& run(const CheckedInt<T>& aU) {
+ return aU;
+ }
+};
+
+} // namespace detail
+
+template <typename T, typename U>
+constexpr typename detail::CastToCheckedIntImpl<T, U>::ReturnType
+castToCheckedInt(U aU) {
+ static_assert(detail::IsSupported<T>::value && detail::IsSupported<U>::value,
+ "This type is not supported by CheckedInt");
+ return detail::CastToCheckedIntImpl<T, U>::run(aU);
+}
+
+#define MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
+ template <typename T> \
+ template <typename U> \
+ constexpr CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U aRhs) { \
+ *this = *this OP castToCheckedInt<T>(aRhs); \
+ return *this; \
+ } \
+ template <typename T> \
+ constexpr CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP( \
+ const CheckedInt<T>& aRhs) { \
+ *this = *this OP aRhs; \
+ return *this; \
+ } \
+ template <typename T, typename U> \
+ constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, U aRhs) { \
+ return aLhs OP castToCheckedInt<T>(aRhs); \
+ } \
+ template <typename T, typename U> \
+ constexpr CheckedInt<T> operator OP(U aLhs, const CheckedInt<T>& aRhs) { \
+ return castToCheckedInt<T>(aLhs) OP aRhs; \
+ }
+
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
+MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(%, %=)
+
+#undef MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS
+
+template <typename T, typename U>
+constexpr bool operator==(const CheckedInt<T>& aLhs, U aRhs) {
+ return aLhs == castToCheckedInt<T>(aRhs);
+}
+
+template <typename T, typename U>
+constexpr bool operator==(U aLhs, const CheckedInt<T>& aRhs) {
+ return castToCheckedInt<T>(aLhs) == aRhs;
+}
+
+// Convenience typedefs.
+typedef CheckedInt<int8_t> CheckedInt8;
+typedef CheckedInt<uint8_t> CheckedUint8;
+typedef CheckedInt<int16_t> CheckedInt16;
+typedef CheckedInt<uint16_t> CheckedUint16;
+typedef CheckedInt<int32_t> CheckedInt32;
+typedef CheckedInt<uint32_t> CheckedUint32;
+typedef CheckedInt<int64_t> CheckedInt64;
+typedef CheckedInt<uint64_t> CheckedUint64;
+
+} // namespace mozilla
+
+#endif /* mozilla_CheckedInt_h */