diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /mfbt/HashFunctions.h | |
parent | Initial commit. (diff) | |
download | thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | mfbt/HashFunctions.h | 417 |
1 files changed, 417 insertions, 0 deletions
diff --git a/mfbt/HashFunctions.h b/mfbt/HashFunctions.h new file mode 100644 index 0000000000..4b740a3db1 --- /dev/null +++ b/mfbt/HashFunctions.h @@ -0,0 +1,417 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* Utilities for hashing. */ + +/* + * This file exports functions for hashing data down to a uint32_t (a.k.a. + * mozilla::HashNumber), including: + * + * - HashString Hash a char* or char16_t/wchar_t* of known or unknown + * length. + * + * - HashBytes Hash a byte array of known length. + * + * - HashGeneric Hash one or more values. Currently, we support uint32_t, + * types which can be implicitly cast to uint32_t, data + * pointers, and function pointers. + * + * - AddToHash Add one or more values to the given hash. This supports the + * same list of types as HashGeneric. + * + * + * You can chain these functions together to hash complex objects. For example: + * + * class ComplexObject + * { + * char* mStr; + * uint32_t mUint1, mUint2; + * void (*mCallbackFn)(); + * + * public: + * HashNumber hash() + * { + * HashNumber hash = HashString(mStr); + * hash = AddToHash(hash, mUint1, mUint2); + * return AddToHash(hash, mCallbackFn); + * } + * }; + * + * If you want to hash an nsAString or nsACString, use the HashString functions + * in nsHashKeys.h. + */ + +#ifndef mozilla_HashFunctions_h +#define mozilla_HashFunctions_h + +#include "mozilla/Assertions.h" +#include "mozilla/Attributes.h" +#include "mozilla/Char16.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Types.h" +#include "mozilla/WrappingOperations.h" + +#include <stdint.h> +#include <type_traits> + +namespace mozilla { + +using HashNumber = uint32_t; +static const uint32_t kHashNumberBits = 32; + +/** + * The golden ratio as a 32-bit fixed-point value. + */ +static const HashNumber kGoldenRatioU32 = 0x9E3779B9U; + +/* + * Given a raw hash code, h, return a number that can be used to select a hash + * bucket. + * + * This function aims to produce as uniform an output distribution as possible, + * especially in the most significant (leftmost) bits, even though the input + * distribution may be highly nonrandom, given the constraints that this must + * be deterministic and quick to compute. + * + * Since the leftmost bits of the result are best, the hash bucket index is + * computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent + * right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask. + */ +constexpr HashNumber ScrambleHashCode(HashNumber h) { + /* + * Simply returning h would not cause any hash tables to produce wrong + * answers. But it can produce pathologically bad performance: The caller + * right-shifts the result, keeping only the highest bits. The high bits of + * hash codes are very often completely entropy-free. (So are the lowest + * bits.) + * + * So we use Fibonacci hashing, as described in Knuth, The Art of Computer + * Programming, 6.4. This mixes all the bits of the input hash code h. + * + * The value of goldenRatio is taken from the hex expansion of the golden + * ratio, which starts 1.9E3779B9.... This value is especially good if + * values with consecutive hash codes are stored in a hash table; see Knuth + * for details. + */ + return mozilla::WrappingMultiply(h, kGoldenRatioU32); +} + +namespace detail { + +MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW +constexpr HashNumber RotateLeft5(HashNumber aValue) { + return (aValue << 5) | (aValue >> 27); +} + +constexpr HashNumber AddU32ToHash(HashNumber aHash, uint32_t aValue) { + /* + * This is the meat of all our hash routines. This hash function is not + * particularly sophisticated, but it seems to work well for our mostly + * plain-text inputs. Implementation notes follow. + * + * Our use of the golden ratio here is arbitrary; we could pick almost any + * number which: + * + * * is odd (because otherwise, all our hash values will be even) + * + * * has a reasonably-even mix of 1's and 0's (consider the extreme case + * where we multiply by 0x3 or 0xeffffff -- this will not produce good + * mixing across all bits of the hash). + * + * The rotation length of 5 is also arbitrary, although an odd number is again + * preferable so our hash explores the whole universe of possible rotations. + * + * Finally, we multiply by the golden ratio *after* xor'ing, not before. + * Otherwise, if |aHash| is 0 (as it often is for the beginning of a + * message), the expression + * + * mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash)) + * |xor| + * aValue + * + * evaluates to |aValue|. + * + * (Number-theoretic aside: Because any odd number |m| is relatively prime to + * our modulus (2**32), the list + * + * [x * m (mod 2**32) for 0 <= x < 2**32] + * + * has no duplicate elements. This means that multiplying by |m| does not + * cause us to skip any possible hash values. + * + * It's also nice if |m| has large-ish order mod 2**32 -- that is, if the + * smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely + * multiply our hash value by |m| a few times without negating the + * multiplicative effect. Our golden ratio constant has order 2**29, which is + * more than enough for our purposes.) + */ + return mozilla::WrappingMultiply(kGoldenRatioU32, + RotateLeft5(aHash) ^ aValue); +} + +/** + * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter. + */ +template <size_t PtrSize> +constexpr HashNumber AddUintptrToHash(HashNumber aHash, uintptr_t aValue) { + return AddU32ToHash(aHash, static_cast<uint32_t>(aValue)); +} + +template <> +inline HashNumber AddUintptrToHash<8>(HashNumber aHash, uintptr_t aValue) { + uint32_t v1 = static_cast<uint32_t>(aValue); + uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32); + return AddU32ToHash(AddU32ToHash(aHash, v1), v2); +} + +} /* namespace detail */ + +/** + * AddToHash takes a hash and some values and returns a new hash based on the + * inputs. + * + * Currently, we support hashing uint32_t's, values which we can implicitly + * convert to uint32_t, data pointers, and function pointers. + */ +template <typename T, bool TypeIsNotIntegral = !std::is_integral_v<T>, + bool TypeIsNotEnum = !std::is_enum_v<T>, + std::enable_if_t<TypeIsNotIntegral && TypeIsNotEnum, int> = 0> +[[nodiscard]] inline HashNumber AddToHash(HashNumber aHash, T aA) { + /* + * Try to convert |A| to uint32_t implicitly. If this works, great. If not, + * we'll error out. + */ + return detail::AddU32ToHash(aHash, aA); +} + +template <typename A> +[[nodiscard]] inline HashNumber AddToHash(HashNumber aHash, A* aA) { + /* + * You might think this function should just take a void*. But then we'd only + * catch data pointers and couldn't handle function pointers. + */ + + static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!"); + + return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA)); +} + +// We use AddUintptrToHash() for hashing all integral types. 8-byte integral +// types are treated the same as 64-bit pointers, and smaller integral types are +// first implicitly converted to 32 bits and then passed to AddUintptrToHash() +// to be hashed. +template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0> +[[nodiscard]] constexpr HashNumber AddToHash(HashNumber aHash, T aA) { + return detail::AddUintptrToHash<sizeof(T)>(aHash, aA); +} + +template <typename T, std::enable_if_t<std::is_enum_v<T>, int> = 0> +[[nodiscard]] constexpr HashNumber AddToHash(HashNumber aHash, T aA) { + // Hash using AddUintptrToHash with the underlying type of the enum type + using UnderlyingType = typename std::underlying_type<T>::type; + return detail::AddUintptrToHash<sizeof(UnderlyingType)>( + aHash, static_cast<UnderlyingType>(aA)); +} + +template <typename A, typename... Args> +[[nodiscard]] HashNumber AddToHash(HashNumber aHash, A aArg, Args... aArgs) { + return AddToHash(AddToHash(aHash, aArg), aArgs...); +} + +/** + * The HashGeneric class of functions let you hash one or more values. + * + * If you want to hash together two values x and y, calling HashGeneric(x, y) is + * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes + * that x has already been hashed. + */ +template <typename... Args> +[[nodiscard]] inline HashNumber HashGeneric(Args... aArgs) { + return AddToHash(0, aArgs...); +} + +/** + * Hash successive |*aIter| until |!*aIter|, i.e. til null-termination. + * + * This function is *not* named HashString like the non-template overloads + * below. Some users define HashString overloads and pass inexactly-matching + * values to them -- but an inexactly-matching value would match this overload + * instead! We follow the general rule and don't mix and match template and + * regular overloads to avoid this. + * + * If you have the string's length, call HashStringKnownLength: it may be + * marginally faster. + */ +template <typename Iterator> +[[nodiscard]] constexpr HashNumber HashStringUntilZero(Iterator aIter) { + HashNumber hash = 0; + for (; auto c = *aIter; ++aIter) { + hash = AddToHash(hash, c); + } + return hash; +} + +/** + * Hash successive |aIter[i]| up to |i == aLength|. + */ +template <typename Iterator> +[[nodiscard]] constexpr HashNumber HashStringKnownLength(Iterator aIter, + size_t aLength) { + HashNumber hash = 0; + for (size_t i = 0; i < aLength; i++) { + hash = AddToHash(hash, aIter[i]); + } + return hash; +} + +/** + * The HashString overloads below do just what you'd expect. + * + * These functions are non-template functions so that users can 1) overload them + * with their own types 2) in a way that allows implicit conversions to happen. + */ +[[nodiscard]] inline HashNumber HashString(const char* aStr) { + // Use the |const unsigned char*| version of the above so that all ordinary + // character data hashes identically. + return HashStringUntilZero(reinterpret_cast<const unsigned char*>(aStr)); +} + +[[nodiscard]] inline HashNumber HashString(const char* aStr, size_t aLength) { + // Delegate to the |const unsigned char*| version of the above to share + // template instantiations. + return HashStringKnownLength(reinterpret_cast<const unsigned char*>(aStr), + aLength); +} + +[[nodiscard]] inline HashNumber HashString(const unsigned char* aStr, + size_t aLength) { + return HashStringKnownLength(aStr, aLength); +} + +[[nodiscard]] constexpr HashNumber HashString(const char16_t* aStr) { + return HashStringUntilZero(aStr); +} + +[[nodiscard]] inline HashNumber HashString(const char16_t* aStr, + size_t aLength) { + return HashStringKnownLength(aStr, aLength); +} + +/** + * HashString overloads for |wchar_t| on platforms where it isn't |char16_t|. + */ +template <typename WCharT, typename = typename std::enable_if< + std::is_same<WCharT, wchar_t>::value && + !std::is_same<wchar_t, char16_t>::value>::type> +[[nodiscard]] inline HashNumber HashString(const WCharT* aStr) { + return HashStringUntilZero(aStr); +} + +template <typename WCharT, typename = typename std::enable_if< + std::is_same<WCharT, wchar_t>::value && + !std::is_same<wchar_t, char16_t>::value>::type> +[[nodiscard]] inline HashNumber HashString(const WCharT* aStr, size_t aLength) { + return HashStringKnownLength(aStr, aLength); +} + +/** + * Hash some number of bytes. + * + * This hash walks word-by-word, rather than byte-by-byte, so you won't get the + * same result out of HashBytes as you would out of HashString. + */ +[[nodiscard]] extern MFBT_API HashNumber HashBytes(const void* bytes, + size_t aLength); + +/** + * A pseudorandom function mapping 32-bit integers to 32-bit integers. + * + * This is for when you're feeding private data (like pointer values or credit + * card numbers) to a non-crypto hash function (like HashBytes) and then using + * the hash code for something that untrusted parties could observe (like a JS + * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the + * private data. + * + * By itself, this does not prevent hash-flooding DoS attacks, because an + * attacker can still generate many values with exactly equal hash codes by + * attacking the non-crypto hash function alone. Equal hash codes will, of + * course, still be equal however much you scramble them. + * + * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>. + */ +class HashCodeScrambler { + struct SipHasher; + + uint64_t mK0, mK1; + + public: + /** Creates a new scrambler with the given 128-bit key. */ + constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1) + : mK0(aK0), mK1(aK1) {} + + /** + * Scramble a hash code. Always produces the same result for the same + * combination of key and hash code. + */ + HashNumber scramble(HashNumber aHashCode) const { + SipHasher hasher(mK0, mK1); + return HashNumber(hasher.sipHash(aHashCode)); + } + + static constexpr size_t offsetOfMK0() { + return offsetof(HashCodeScrambler, mK0); + } + + static constexpr size_t offsetOfMK1() { + return offsetof(HashCodeScrambler, mK1); + } + + private: + struct SipHasher { + SipHasher(uint64_t aK0, uint64_t aK1) { + // 1. Initialization. + mV0 = aK0 ^ UINT64_C(0x736f6d6570736575); + mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d); + mV2 = aK0 ^ UINT64_C(0x6c7967656e657261); + mV3 = aK1 ^ UINT64_C(0x7465646279746573); + } + + uint64_t sipHash(uint64_t aM) { + // 2. Compression. + mV3 ^= aM; + sipRound(); + mV0 ^= aM; + + // 3. Finalization. + mV2 ^= 0xff; + for (int i = 0; i < 3; i++) sipRound(); + return mV0 ^ mV1 ^ mV2 ^ mV3; + } + + void sipRound() { + mV0 = WrappingAdd(mV0, mV1); + mV1 = RotateLeft(mV1, 13); + mV1 ^= mV0; + mV0 = RotateLeft(mV0, 32); + mV2 = WrappingAdd(mV2, mV3); + mV3 = RotateLeft(mV3, 16); + mV3 ^= mV2; + mV0 = WrappingAdd(mV0, mV3); + mV3 = RotateLeft(mV3, 21); + mV3 ^= mV0; + mV2 = WrappingAdd(mV2, mV1); + mV1 = RotateLeft(mV1, 17); + mV1 ^= mV2; + mV2 = RotateLeft(mV2, 32); + } + + uint64_t mV0, mV1, mV2, mV3; + }; +}; + +} /* namespace mozilla */ + +#endif /* mozilla_HashFunctions_h */ |