summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/containers/span.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /security/sandbox/chromium/base/containers/span.h
parentInitial commit. (diff)
downloadthunderbird-upstream/1%115.7.0.tar.xz
thunderbird-upstream/1%115.7.0.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/sandbox/chromium/base/containers/span.h')
-rw-r--r--security/sandbox/chromium/base/containers/span.h530
1 files changed, 530 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/containers/span.h b/security/sandbox/chromium/base/containers/span.h
new file mode 100644
index 0000000000..ce2e3c47e5
--- /dev/null
+++ b/security/sandbox/chromium/base/containers/span.h
@@ -0,0 +1,530 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_CONTAINERS_SPAN_H_
+#define BASE_CONTAINERS_SPAN_H_
+
+#include <stddef.h>
+
+#include <algorithm>
+#include <array>
+#include <iterator>
+#include <limits>
+#include <type_traits>
+#include <utility>
+
+#include "base/containers/checked_iterators.h"
+#include "base/logging.h"
+#include "base/macros.h"
+#include "base/stl_util.h"
+
+namespace base {
+
+// [views.constants]
+constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();
+
+template <typename T, size_t Extent = dynamic_extent>
+class span;
+
+namespace internal {
+
+template <typename T>
+struct ExtentImpl : std::integral_constant<size_t, dynamic_extent> {};
+
+template <typename T, size_t N>
+struct ExtentImpl<T[N]> : std::integral_constant<size_t, N> {};
+
+template <typename T, size_t N>
+struct ExtentImpl<std::array<T, N>> : std::integral_constant<size_t, N> {};
+
+template <typename T, size_t N>
+struct ExtentImpl<base::span<T, N>> : std::integral_constant<size_t, N> {};
+
+template <typename T>
+using Extent = ExtentImpl<std::remove_cv_t<std::remove_reference_t<T>>>;
+
+template <typename T>
+struct IsSpanImpl : std::false_type {};
+
+template <typename T, size_t Extent>
+struct IsSpanImpl<span<T, Extent>> : std::true_type {};
+
+template <typename T>
+using IsSpan = IsSpanImpl<std::decay_t<T>>;
+
+template <typename T>
+struct IsStdArrayImpl : std::false_type {};
+
+template <typename T, size_t N>
+struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
+
+template <typename T>
+using IsStdArray = IsStdArrayImpl<std::decay_t<T>>;
+
+template <typename T>
+using IsCArray = std::is_array<std::remove_reference_t<T>>;
+
+template <typename From, typename To>
+using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;
+
+template <typename Container, typename T>
+using ContainerHasConvertibleData = IsLegalDataConversion<
+ std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>,
+ T>;
+
+template <typename Container>
+using ContainerHasIntegralSize =
+ std::is_integral<decltype(base::size(std::declval<Container>()))>;
+
+template <typename From, size_t FromExtent, typename To, size_t ToExtent>
+using EnableIfLegalSpanConversion =
+ std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&
+ IsLegalDataConversion<From, To>::value>;
+
+// SFINAE check if Array can be converted to a span<T>.
+template <typename Array, typename T, size_t Extent>
+using EnableIfSpanCompatibleArray =
+ std::enable_if_t<(Extent == dynamic_extent ||
+ Extent == internal::Extent<Array>::value) &&
+ ContainerHasConvertibleData<Array, T>::value>;
+
+// SFINAE check if Container can be converted to a span<T>.
+template <typename Container, typename T>
+using IsSpanCompatibleContainer =
+ std::conditional_t<!IsSpan<Container>::value &&
+ !IsStdArray<Container>::value &&
+ !IsCArray<Container>::value &&
+ ContainerHasConvertibleData<Container, T>::value &&
+ ContainerHasIntegralSize<Container>::value,
+ std::true_type,
+ std::false_type>;
+
+template <typename Container, typename T>
+using EnableIfSpanCompatibleContainer =
+ std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value>;
+
+template <typename Container, typename T, size_t Extent>
+using EnableIfSpanCompatibleContainerAndSpanIsDynamic =
+ std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value &&
+ Extent == dynamic_extent>;
+
+// A helper template for storing the size of a span. Spans with static extents
+// don't require additional storage, since the extent itself is specified in the
+// template parameter.
+template <size_t Extent>
+class ExtentStorage {
+ public:
+ constexpr explicit ExtentStorage(size_t size) noexcept {}
+ constexpr size_t size() const noexcept { return Extent; }
+};
+
+// Specialization of ExtentStorage for dynamic extents, which do require
+// explicit storage for the size.
+template <>
+struct ExtentStorage<dynamic_extent> {
+ constexpr explicit ExtentStorage(size_t size) noexcept : size_(size) {}
+ constexpr size_t size() const noexcept { return size_; }
+
+ private:
+ size_t size_;
+};
+
+} // namespace internal
+
+// A span is a value type that represents an array of elements of type T. Since
+// it only consists of a pointer to memory with an associated size, it is very
+// light-weight. It is cheap to construct, copy, move and use spans, so that
+// users are encouraged to use it as a pass-by-value parameter. A span does not
+// own the underlying memory, so care must be taken to ensure that a span does
+// not outlive the backing store.
+//
+// span is somewhat analogous to StringPiece, but with arbitrary element types,
+// allowing mutation if T is non-const.
+//
+// span is implicitly convertible from C++ arrays, as well as most [1]
+// container-like types that provide a data() and size() method (such as
+// std::vector<T>). A mutable span<T> can also be implicitly converted to an
+// immutable span<const T>.
+//
+// Consider using a span for functions that take a data pointer and size
+// parameter: it allows the function to still act on an array-like type, while
+// allowing the caller code to be a bit more concise.
+//
+// For read-only data access pass a span<const T>: the caller can supply either
+// a span<const T> or a span<T>, while the callee will have a read-only view.
+// For read-write access a mutable span<T> is required.
+//
+// Without span:
+// Read-Only:
+// // std::string HexEncode(const uint8_t* data, size_t size);
+// std::vector<uint8_t> data_buffer = GenerateData();
+// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
+//
+// Mutable:
+// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
+// char str_buffer[100];
+// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
+//
+// With span:
+// Read-Only:
+// // std::string HexEncode(base::span<const uint8_t> data);
+// std::vector<uint8_t> data_buffer = GenerateData();
+// std::string r = HexEncode(data_buffer);
+//
+// Mutable:
+// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
+// char str_buffer[100];
+// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
+//
+// Spans with "const" and pointers
+// -------------------------------
+//
+// Const and pointers can get confusing. Here are vectors of pointers and their
+// corresponding spans:
+//
+// const std::vector<int*> => base::span<int* const>
+// std::vector<const int*> => base::span<const int*>
+// const std::vector<const int*> => base::span<const int* const>
+//
+// Differences from the C++20 draft
+// --------------------------------
+//
+// http://eel.is/c++draft/views contains the latest C++20 draft of std::span.
+// Chromium tries to follow the draft as close as possible. Differences between
+// the draft and the implementation are documented in subsections below.
+//
+// Differences from [span.objectrep]:
+// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
+// std::byte (std::byte is a C++17 feature)
+//
+// Differences from [span.cons]:
+// - Constructing a static span (i.e. Extent != dynamic_extent) from a dynamic
+// sized container (e.g. std::vector) requires an explicit conversion (in the
+// C++20 draft this is simply UB)
+//
+// Differences from [span.obs]:
+// - empty() is marked with WARN_UNUSED_RESULT instead of [[nodiscard]]
+// ([[nodiscard]] is a C++17 feature)
+//
+// Furthermore, all constructors and methods are marked noexcept due to the lack
+// of exceptions in Chromium.
+//
+// Due to the lack of class template argument deduction guides in C++14
+// appropriate make_span() utility functions are provided.
+
+// [span], class template span
+template <typename T, size_t Extent>
+class span : public internal::ExtentStorage<Extent> {
+ private:
+ using ExtentStorage = internal::ExtentStorage<Extent>;
+
+ public:
+ using element_type = T;
+ using value_type = std::remove_cv_t<T>;
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+ using pointer = T*;
+ using reference = T&;
+ using iterator = CheckedContiguousIterator<T>;
+ using const_iterator = CheckedContiguousConstIterator<T>;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ static constexpr size_t extent = Extent;
+
+ // [span.cons], span constructors, copy, assignment, and destructor
+ constexpr span() noexcept : ExtentStorage(0), data_(nullptr) {
+ static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");
+ }
+
+ constexpr span(T* data, size_t size) noexcept
+ : ExtentStorage(size), data_(data) {
+ CHECK(Extent == dynamic_extent || Extent == size);
+ }
+
+ // Artificially templatized to break ambiguity for span(ptr, 0).
+ template <typename = void>
+ constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) {
+ // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
+ CHECK(begin <= end);
+ }
+
+ template <
+ size_t N,
+ typename = internal::EnableIfSpanCompatibleArray<T (&)[N], T, Extent>>
+ constexpr span(T (&array)[N]) noexcept : span(base::data(array), N) {}
+
+ template <
+ size_t N,
+ typename = internal::
+ EnableIfSpanCompatibleArray<std::array<value_type, N>&, T, Extent>>
+ constexpr span(std::array<value_type, N>& array) noexcept
+ : span(base::data(array), N) {}
+
+ template <size_t N,
+ typename = internal::EnableIfSpanCompatibleArray<
+ const std::array<value_type, N>&,
+ T,
+ Extent>>
+ constexpr span(const std::array<value_type, N>& array) noexcept
+ : span(base::data(array), N) {}
+
+ // Conversion from a container that has compatible base::data() and integral
+ // base::size().
+ template <
+ typename Container,
+ typename =
+ internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<Container&,
+ T,
+ Extent>>
+ constexpr span(Container& container) noexcept
+ : span(base::data(container), base::size(container)) {}
+
+ template <
+ typename Container,
+ typename = internal::EnableIfSpanCompatibleContainerAndSpanIsDynamic<
+ const Container&,
+ T,
+ Extent>>
+ constexpr span(const Container& container) noexcept
+ : span(base::data(container), base::size(container)) {}
+
+ constexpr span(const span& other) noexcept = default;
+
+ // Conversions from spans of compatible types and extents: this allows a
+ // span<T> to be seamlessly used as a span<const T>, but not the other way
+ // around. If extent is not dynamic, OtherExtent has to be equal to Extent.
+ template <
+ typename U,
+ size_t OtherExtent,
+ typename =
+ internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>
+ constexpr span(const span<U, OtherExtent>& other)
+ : span(other.data(), other.size()) {}
+
+ constexpr span& operator=(const span& other) noexcept = default;
+ ~span() noexcept = default;
+
+ // [span.sub], span subviews
+ template <size_t Count>
+ constexpr span<T, Count> first() const noexcept {
+ static_assert(Extent == dynamic_extent || Count <= Extent,
+ "Count must not exceed Extent");
+ CHECK(Extent != dynamic_extent || Count <= size());
+ return {data(), Count};
+ }
+
+ template <size_t Count>
+ constexpr span<T, Count> last() const noexcept {
+ static_assert(Extent == dynamic_extent || Count <= Extent,
+ "Count must not exceed Extent");
+ CHECK(Extent != dynamic_extent || Count <= size());
+ return {data() + (size() - Count), Count};
+ }
+
+ template <size_t Offset, size_t Count = dynamic_extent>
+ constexpr span<T,
+ (Count != dynamic_extent
+ ? Count
+ : (Extent != dynamic_extent ? Extent - Offset
+ : dynamic_extent))>
+ subspan() const noexcept {
+ static_assert(Extent == dynamic_extent || Offset <= Extent,
+ "Offset must not exceed Extent");
+ static_assert(Extent == dynamic_extent || Count == dynamic_extent ||
+ Count <= Extent - Offset,
+ "Count must not exceed Extent - Offset");
+ CHECK(Extent != dynamic_extent || Offset <= size());
+ CHECK(Extent != dynamic_extent || Count == dynamic_extent ||
+ Count <= size() - Offset);
+ return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
+ }
+
+ constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
+ // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
+ CHECK(count <= size());
+ return {data(), count};
+ }
+
+ constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
+ // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
+ CHECK(count <= size());
+ return {data() + (size() - count), count};
+ }
+
+ constexpr span<T, dynamic_extent> subspan(size_t offset,
+ size_t count = dynamic_extent) const
+ noexcept {
+ // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
+ CHECK(offset <= size());
+ CHECK(count == dynamic_extent || count <= size() - offset);
+ return {data() + offset, count != dynamic_extent ? count : size() - offset};
+ }
+
+ // [span.obs], span observers
+ constexpr size_t size() const noexcept { return ExtentStorage::size(); }
+ constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
+ constexpr bool empty() const noexcept WARN_UNUSED_RESULT {
+ return size() == 0;
+ }
+
+ // [span.elem], span element access
+ constexpr T& operator[](size_t idx) const noexcept {
+ // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
+ CHECK(idx < size());
+ return *(data() + idx);
+ }
+
+ constexpr T& front() const noexcept {
+ static_assert(Extent == dynamic_extent || Extent > 0,
+ "Extent must not be 0");
+ CHECK(Extent != dynamic_extent || !empty());
+ return *data();
+ }
+
+ constexpr T& back() const noexcept {
+ static_assert(Extent == dynamic_extent || Extent > 0,
+ "Extent must not be 0");
+ CHECK(Extent != dynamic_extent || !empty());
+ return *(data() + size() - 1);
+ }
+
+ constexpr T* data() const noexcept { return data_; }
+
+ // [span.iter], span iterator support
+ constexpr iterator begin() const noexcept {
+ return iterator(data_, data_ + size());
+ }
+ constexpr iterator end() const noexcept {
+ return iterator(data_, data_ + size(), data_ + size());
+ }
+
+ constexpr const_iterator cbegin() const noexcept { return begin(); }
+ constexpr const_iterator cend() const noexcept { return end(); }
+
+ constexpr reverse_iterator rbegin() const noexcept {
+ return reverse_iterator(end());
+ }
+ constexpr reverse_iterator rend() const noexcept {
+ return reverse_iterator(begin());
+ }
+
+ constexpr const_reverse_iterator crbegin() const noexcept {
+ return const_reverse_iterator(cend());
+ }
+ constexpr const_reverse_iterator crend() const noexcept {
+ return const_reverse_iterator(cbegin());
+ }
+
+ private:
+ T* data_;
+};
+
+// span<T, Extent>::extent can not be declared inline prior to C++17, hence this
+// definition is required.
+template <class T, size_t Extent>
+constexpr size_t span<T, Extent>::extent;
+
+// [span.objectrep], views of object representation
+template <typename T, size_t X>
+span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
+as_bytes(span<T, X> s) noexcept {
+ return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
+}
+
+template <typename T,
+ size_t X,
+ typename = std::enable_if_t<!std::is_const<T>::value>>
+span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
+as_writable_bytes(span<T, X> s) noexcept {
+ return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
+}
+
+// Type-deducing helpers for constructing a span.
+template <int&... ExplicitArgumentBarrier, typename T>
+constexpr span<T> make_span(T* data, size_t size) noexcept {
+ return {data, size};
+}
+
+template <int&... ExplicitArgumentBarrier, typename T>
+constexpr span<T> make_span(T* begin, T* end) noexcept {
+ return {begin, end};
+}
+
+// make_span utility function that deduces both the span's value_type and extent
+// from the passed in argument.
+//
+// Usage: auto span = base::make_span(...);
+template <int&... ExplicitArgumentBarrier, typename Container>
+constexpr auto make_span(Container&& container) noexcept {
+ using T =
+ std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;
+ using Extent = internal::Extent<Container>;
+ return span<T, Extent::value>(std::forward<Container>(container));
+}
+
+// make_span utility function that allows callers to explicit specify the span's
+// extent, the value_type is deduced automatically. This is useful when passing
+// a dynamically sized container to a method expecting static spans, when the
+// container is known to have the correct size.
+//
+// Note: This will CHECK that N indeed matches size(container).
+//
+// Usage: auto static_span = base::make_span<N>(...);
+template <size_t N, int&... ExplicitArgumentBarrier, typename Container>
+constexpr auto make_span(Container&& container) noexcept {
+ using T =
+ std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>;
+ return span<T, N>(base::data(container), base::size(container));
+}
+
+} // namespace base
+
+// Note: std::tuple_size, std::tuple_element and std::get are specialized for
+// static spans, so that they can be used in C++17's structured bindings. While
+// we don't support C++17 yet, there is no harm in providing these
+// specializations already.
+namespace std {
+
+// [span.tuple], tuple interface
+#if defined(__clang__)
+// Due to https://llvm.org/PR39871 and https://llvm.org/PR41331 and their
+// respective fixes different versions of libc++ declare std::tuple_size and
+// std::tuple_element either as classes or structs. In order to be able to
+// specialize std::tuple_size and std::tuple_element for custom base types we
+// thus need to disable -Wmismatched-tags in order to support all build
+// configurations. Note that this is blessed by the standard in
+// https://timsong-cpp.github.io/cppwp/n4140/dcl.type.elab#3.
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wmismatched-tags"
+#endif
+template <typename T, size_t X>
+struct tuple_size<base::span<T, X>> : public integral_constant<size_t, X> {};
+
+template <typename T>
+struct tuple_size<base::span<T, base::dynamic_extent>>; // not defined
+
+template <size_t I, typename T, size_t X>
+struct tuple_element<I, base::span<T, X>> {
+ static_assert(
+ base::dynamic_extent != X,
+ "std::tuple_element<> not supported for base::span<T, dynamic_extent>");
+ static_assert(I < X,
+ "Index out of bounds in std::tuple_element<> (base::span)");
+ using type = T;
+};
+#if defined(__clang__)
+#pragma clang diagnostic pop // -Wmismatched-tags
+#endif
+
+template <size_t I, typename T, size_t X>
+constexpr T& get(base::span<T, X> s) noexcept {
+ static_assert(base::dynamic_extent != X,
+ "std::get<> not supported for base::span<T, dynamic_extent>");
+ static_assert(I < X, "Index out of bounds in std::get<> (base::span)");
+ return s[I];
+}
+
+} // namespace std
+
+#endif // BASE_CONTAINERS_SPAN_H_