summaryrefslogtreecommitdiffstats
path: root/comm/third_party/botan/src/lib/math/bigint/bigint.h
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/botan/src/lib/math/bigint/bigint.h')
-rw-r--r--comm/third_party/botan/src/lib/math/bigint/bigint.h1153
1 files changed, 1153 insertions, 0 deletions
diff --git a/comm/third_party/botan/src/lib/math/bigint/bigint.h b/comm/third_party/botan/src/lib/math/bigint/bigint.h
new file mode 100644
index 0000000000..33e79d0122
--- /dev/null
+++ b/comm/third_party/botan/src/lib/math/bigint/bigint.h
@@ -0,0 +1,1153 @@
+/*
+* BigInt
+* (C) 1999-2008,2012,2018 Jack Lloyd
+* 2007 FlexSecure
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+#ifndef BOTAN_BIGINT_H_
+#define BOTAN_BIGINT_H_
+
+#include <botan/types.h>
+#include <botan/secmem.h>
+#include <botan/exceptn.h>
+#include <iosfwd>
+
+namespace Botan {
+
+class RandomNumberGenerator;
+
+/**
+* Arbitrary precision integer
+*/
+class BOTAN_PUBLIC_API(2,0) BigInt final
+ {
+ public:
+ /**
+ * Base enumerator for encoding and decoding
+ */
+ enum Base { Decimal = 10, Hexadecimal = 16, Binary = 256 };
+
+ /**
+ * Sign symbol definitions for positive and negative numbers
+ */
+ enum Sign { Negative = 0, Positive = 1 };
+
+ /**
+ * DivideByZero Exception
+ *
+ * In a future release this exception will be removed and its usage
+ * replaced by Invalid_Argument
+ */
+ class BOTAN_PUBLIC_API(2,0) DivideByZero final : public Invalid_Argument
+ {
+ public:
+ DivideByZero() : Invalid_Argument("BigInt divide by zero") {}
+ };
+
+ /**
+ * Create empty BigInt
+ */
+ BigInt() = default;
+
+ /**
+ * Create BigInt from 64 bit integer
+ * @param n initial value of this BigInt
+ */
+ BigInt(uint64_t n);
+
+ /**
+ * Copy Constructor
+ * @param other the BigInt to copy
+ */
+ BigInt(const BigInt& other) = default;
+
+ /**
+ * Create BigInt from a string. If the string starts with 0x the
+ * rest of the string will be interpreted as hexadecimal digits.
+ * Otherwise, it will be interpreted as a decimal number.
+ *
+ * @param str the string to parse for an integer value
+ */
+ explicit BigInt(const std::string& str);
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the byte array holding the value
+ * @param length size of buf
+ */
+ BigInt(const uint8_t buf[], size_t length);
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param vec the byte vector holding the value
+ */
+ template<typename Alloc>
+ explicit BigInt(const std::vector<uint8_t, Alloc>& vec) : BigInt(vec.data(), vec.size()) {}
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the byte array holding the value
+ * @param length size of buf
+ * @param base is the number base of the integer in buf
+ */
+ BigInt(const uint8_t buf[], size_t length, Base base);
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the byte array holding the value
+ * @param length size of buf
+ * @param max_bits if the resulting integer is more than max_bits,
+ * it will be shifted so it is at most max_bits in length.
+ */
+ BigInt(const uint8_t buf[], size_t length, size_t max_bits);
+
+ /**
+ * Create a BigInt from an array of words
+ * @param words the words
+ * @param length number of words
+ */
+ BigInt(const word words[], size_t length);
+
+ /**
+ * \brief Create a random BigInt of the specified size
+ *
+ * @param rng random number generator
+ * @param bits size in bits
+ * @param set_high_bit if true, the highest bit is always set
+ *
+ * @see randomize
+ */
+ BigInt(RandomNumberGenerator& rng, size_t bits, bool set_high_bit = true);
+
+ /**
+ * Create BigInt of specified size, all zeros
+ * @param sign the sign
+ * @param n size of the internal register in words
+ */
+ BigInt(Sign sign, size_t n);
+
+ /**
+ * Move constructor
+ */
+ BigInt(BigInt&& other)
+ {
+ this->swap(other);
+ }
+
+ ~BigInt() { const_time_unpoison(); }
+
+ /**
+ * Move assignment
+ */
+ BigInt& operator=(BigInt&& other)
+ {
+ if(this != &other)
+ this->swap(other);
+
+ return (*this);
+ }
+
+ /**
+ * Copy assignment
+ */
+ BigInt& operator=(const BigInt&) = default;
+
+ /**
+ * Swap this value with another
+ * @param other BigInt to swap values with
+ */
+ void swap(BigInt& other)
+ {
+ m_data.swap(other.m_data);
+ std::swap(m_signedness, other.m_signedness);
+ }
+
+ void swap_reg(secure_vector<word>& reg)
+ {
+ m_data.swap(reg);
+ // sign left unchanged
+ }
+
+ /**
+ * += operator
+ * @param y the BigInt to add to this
+ */
+ BigInt& operator+=(const BigInt& y)
+ {
+ return add(y.data(), y.sig_words(), y.sign());
+ }
+
+ /**
+ * += operator
+ * @param y the word to add to this
+ */
+ BigInt& operator+=(word y)
+ {
+ return add(&y, 1, Positive);
+ }
+
+ /**
+ * -= operator
+ * @param y the BigInt to subtract from this
+ */
+ BigInt& operator-=(const BigInt& y)
+ {
+ return sub(y.data(), y.sig_words(), y.sign());
+ }
+
+ /**
+ * -= operator
+ * @param y the word to subtract from this
+ */
+ BigInt& operator-=(word y)
+ {
+ return sub(&y, 1, Positive);
+ }
+
+ /**
+ * *= operator
+ * @param y the BigInt to multiply with this
+ */
+ BigInt& operator*=(const BigInt& y);
+
+ /**
+ * *= operator
+ * @param y the word to multiply with this
+ */
+ BigInt& operator*=(word y);
+
+ /**
+ * /= operator
+ * @param y the BigInt to divide this by
+ */
+ BigInt& operator/=(const BigInt& y);
+
+ /**
+ * Modulo operator
+ * @param y the modulus to reduce this by
+ */
+ BigInt& operator%=(const BigInt& y);
+
+ /**
+ * Modulo operator
+ * @param y the modulus (word) to reduce this by
+ */
+ word operator%=(word y);
+
+ /**
+ * Left shift operator
+ * @param shift the number of bits to shift this left by
+ */
+ BigInt& operator<<=(size_t shift);
+
+ /**
+ * Right shift operator
+ * @param shift the number of bits to shift this right by
+ */
+ BigInt& operator>>=(size_t shift);
+
+ /**
+ * Increment operator
+ */
+ BigInt& operator++() { return (*this += 1); }
+
+ /**
+ * Decrement operator
+ */
+ BigInt& operator--() { return (*this -= 1); }
+
+ /**
+ * Postfix increment operator
+ */
+ BigInt operator++(int) { BigInt x = (*this); ++(*this); return x; }
+
+ /**
+ * Postfix decrement operator
+ */
+ BigInt operator--(int) { BigInt x = (*this); --(*this); return x; }
+
+ /**
+ * Unary negation operator
+ * @return negative this
+ */
+ BigInt operator-() const;
+
+ /**
+ * ! operator
+ * @return true iff this is zero, otherwise false
+ */
+ bool operator !() const { return (!is_nonzero()); }
+
+ static BigInt add2(const BigInt& x, const word y[], size_t y_words, Sign y_sign);
+
+ BigInt& add(const word y[], size_t y_words, Sign sign);
+
+ BigInt& sub(const word y[], size_t y_words, Sign sign)
+ {
+ return add(y, y_words, sign == Positive ? Negative : Positive);
+ }
+
+ /**
+ * Multiply this with y
+ * @param y the BigInt to multiply with this
+ * @param ws a temp workspace
+ */
+ BigInt& mul(const BigInt& y, secure_vector<word>& ws);
+
+ /**
+ * Square value of *this
+ * @param ws a temp workspace
+ */
+ BigInt& square(secure_vector<word>& ws);
+
+ /**
+ * Set *this to y - *this
+ * @param y the BigInt to subtract from as a sequence of words
+ * @param y_words length of y in words
+ * @param ws a temp workspace
+ */
+ BigInt& rev_sub(const word y[], size_t y_words, secure_vector<word>& ws);
+
+ /**
+ * Set *this to (*this + y) % mod
+ * This function assumes *this is >= 0 && < mod
+ * @param y the BigInt to add - assumed y >= 0 and y < mod
+ * @param mod the positive modulus
+ * @param ws a temp workspace
+ */
+ BigInt& mod_add(const BigInt& y, const BigInt& mod, secure_vector<word>& ws);
+
+ /**
+ * Set *this to (*this - y) % mod
+ * This function assumes *this is >= 0 && < mod
+ * @param y the BigInt to subtract - assumed y >= 0 and y < mod
+ * @param mod the positive modulus
+ * @param ws a temp workspace
+ */
+ BigInt& mod_sub(const BigInt& y, const BigInt& mod, secure_vector<word>& ws);
+
+ /**
+ * Set *this to (*this * y) % mod
+ * This function assumes *this is >= 0 && < mod
+ * y should be small, less than 16
+ * @param y the small integer to multiply by
+ * @param mod the positive modulus
+ * @param ws a temp workspace
+ */
+ BigInt& mod_mul(uint8_t y, const BigInt& mod, secure_vector<word>& ws);
+
+ /**
+ * Return *this % mod
+ *
+ * Assumes that *this is (if anything) only slightly larger than
+ * mod and performs repeated subtractions. It should not be used if
+ * *this is much larger than mod, instead use modulo operator.
+ */
+ size_t reduce_below(const BigInt& mod, secure_vector<word> &ws);
+
+ /**
+ * Return *this % mod
+ *
+ * Assumes that *this is (if anything) only slightly larger than mod and
+ * performs repeated subtractions. It should not be used if *this is much
+ * larger than mod, instead use modulo operator.
+ *
+ * Performs exactly bound subtractions, so if *this is >= bound*mod then the
+ * result will not be fully reduced. If bound is zero, nothing happens.
+ */
+ void ct_reduce_below(const BigInt& mod, secure_vector<word> &ws, size_t bound);
+
+ /**
+ * Zeroize the BigInt. The size of the underlying register is not
+ * modified.
+ */
+ void clear() { m_data.set_to_zero(); m_signedness = Positive; }
+
+ /**
+ * Compare this to another BigInt
+ * @param n the BigInt value to compare with
+ * @param check_signs include sign in comparison?
+ * @result if (this<n) return -1, if (this>n) return 1, if both
+ * values are identical return 0 [like Perl's <=> operator]
+ */
+ int32_t cmp(const BigInt& n, bool check_signs = true) const;
+
+ /**
+ * Compare this to another BigInt
+ * @param n the BigInt value to compare with
+ * @result true if this == n or false otherwise
+ */
+ bool is_equal(const BigInt& n) const;
+
+ /**
+ * Compare this to another BigInt
+ * @param n the BigInt value to compare with
+ * @result true if this < n or false otherwise
+ */
+ bool is_less_than(const BigInt& n) const;
+
+ /**
+ * Compare this to an integer
+ * @param n the value to compare with
+ * @result if (this<n) return -1, if (this>n) return 1, if both
+ * values are identical return 0 [like Perl's <=> operator]
+ */
+ int32_t cmp_word(word n) const;
+
+ /**
+ * Test if the integer has an even value
+ * @result true if the integer is even, false otherwise
+ */
+ bool is_even() const { return (get_bit(0) == 0); }
+
+ /**
+ * Test if the integer has an odd value
+ * @result true if the integer is odd, false otherwise
+ */
+ bool is_odd() const { return (get_bit(0) == 1); }
+
+ /**
+ * Test if the integer is not zero
+ * @result true if the integer is non-zero, false otherwise
+ */
+ bool is_nonzero() const { return (!is_zero()); }
+
+ /**
+ * Test if the integer is zero
+ * @result true if the integer is zero, false otherwise
+ */
+ bool is_zero() const
+ {
+ return (sig_words() == 0);
+ }
+
+ /**
+ * Set bit at specified position
+ * @param n bit position to set
+ */
+ void set_bit(size_t n)
+ {
+ conditionally_set_bit(n, true);
+ }
+
+ /**
+ * Conditionally set bit at specified position. Note if set_it is
+ * false, nothing happens, and if the bit is already set, it
+ * remains set.
+ *
+ * @param n bit position to set
+ * @param set_it if the bit should be set
+ */
+ void conditionally_set_bit(size_t n, bool set_it);
+
+ /**
+ * Clear bit at specified position
+ * @param n bit position to clear
+ */
+ void clear_bit(size_t n);
+
+ /**
+ * Clear all but the lowest n bits
+ * @param n amount of bits to keep
+ */
+ void mask_bits(size_t n)
+ {
+ m_data.mask_bits(n);
+ }
+
+ /**
+ * Return bit value at specified position
+ * @param n the bit offset to test
+ * @result true, if the bit at position n is set, false otherwise
+ */
+ bool get_bit(size_t n) const
+ {
+ return ((word_at(n / BOTAN_MP_WORD_BITS) >> (n % BOTAN_MP_WORD_BITS)) & 1);
+ }
+
+ /**
+ * Return (a maximum of) 32 bits of the complete value
+ * @param offset the offset to start extracting
+ * @param length amount of bits to extract (starting at offset)
+ * @result the integer extracted from the register starting at
+ * offset with specified length
+ */
+ uint32_t get_substring(size_t offset, size_t length) const;
+
+ /**
+ * Convert this value into a uint32_t, if it is in the range
+ * [0 ... 2**32-1], or otherwise throw an exception.
+ * @result the value as a uint32_t if conversion is possible
+ */
+ uint32_t to_u32bit() const;
+
+ /**
+ * Convert this value to a decimal string.
+ * Warning: decimal conversions are relatively slow
+ */
+ std::string to_dec_string() const;
+
+ /**
+ * Convert this value to a hexadecimal string.
+ */
+ std::string to_hex_string() const;
+
+ /**
+ * @param n the offset to get a byte from
+ * @result byte at offset n
+ */
+ uint8_t byte_at(size_t n) const;
+
+ /**
+ * Return the word at a specified position of the internal register
+ * @param n position in the register
+ * @return value at position n
+ */
+ word word_at(size_t n) const
+ {
+ return m_data.get_word_at(n);
+ }
+
+ void set_word_at(size_t i, word w)
+ {
+ m_data.set_word_at(i, w);
+ }
+
+ void set_words(const word w[], size_t len)
+ {
+ m_data.set_words(w, len);
+ }
+
+ /**
+ * Tests if the sign of the integer is negative
+ * @result true, iff the integer has a negative sign
+ */
+ bool is_negative() const { return (sign() == Negative); }
+
+ /**
+ * Tests if the sign of the integer is positive
+ * @result true, iff the integer has a positive sign
+ */
+ bool is_positive() const { return (sign() == Positive); }
+
+ /**
+ * Return the sign of the integer
+ * @result the sign of the integer
+ */
+ Sign sign() const { return (m_signedness); }
+
+ /**
+ * @result the opposite sign of the represented integer value
+ */
+ Sign reverse_sign() const
+ {
+ if(sign() == Positive)
+ return Negative;
+ return Positive;
+ }
+
+ /**
+ * Flip the sign of this BigInt
+ */
+ void flip_sign()
+ {
+ set_sign(reverse_sign());
+ }
+
+ /**
+ * Set sign of the integer
+ * @param sign new Sign to set
+ */
+ void set_sign(Sign sign)
+ {
+ if(sign == Negative && is_zero())
+ sign = Positive;
+
+ m_signedness = sign;
+ }
+
+ /**
+ * @result absolute (positive) value of this
+ */
+ BigInt abs() const;
+
+ /**
+ * Give size of internal register
+ * @result size of internal register in words
+ */
+ size_t size() const { return m_data.size(); }
+
+ /**
+ * Return how many words we need to hold this value
+ * @result significant words of the represented integer value
+ */
+ size_t sig_words() const
+ {
+ return m_data.sig_words();
+ }
+
+ /**
+ * Give byte length of the integer
+ * @result byte length of the represented integer value
+ */
+ size_t bytes() const;
+
+ /**
+ * Get the bit length of the integer
+ * @result bit length of the represented integer value
+ */
+ size_t bits() const;
+
+ /**
+ * Get the number of high bits unset in the top (allocated) word
+ * of this integer. Returns BOTAN_MP_WORD_BITS only iff *this is
+ * zero. Ignores sign.
+ */
+ size_t top_bits_free() const;
+
+ /**
+ * Return a mutable pointer to the register
+ * @result a pointer to the start of the internal register
+ */
+ word* mutable_data() { return m_data.mutable_data(); }
+
+ /**
+ * Return a const pointer to the register
+ * @result a pointer to the start of the internal register
+ */
+ const word* data() const { return m_data.const_data(); }
+
+ /**
+ * Don't use this function in application code
+ */
+ secure_vector<word>& get_word_vector() { return m_data.mutable_vector(); }
+
+ /**
+ * Don't use this function in application code
+ */
+ const secure_vector<word>& get_word_vector() const { return m_data.const_vector(); }
+
+ /**
+ * Increase internal register buffer to at least n words
+ * @param n new size of register
+ */
+ void grow_to(size_t n) const { m_data.grow_to(n); }
+
+ /**
+ * Resize the vector to the minimum word size to hold the integer, or
+ * min_size words, whichever is larger
+ */
+ void BOTAN_DEPRECATED("Use resize if required") shrink_to_fit(size_t min_size = 0)
+ {
+ m_data.shrink_to_fit(min_size);
+ }
+
+ void resize(size_t s) { m_data.resize(s); }
+
+ /**
+ * Fill BigInt with a random number with size of bitsize
+ *
+ * If \p set_high_bit is true, the highest bit will be set, which causes
+ * the entropy to be \a bits-1. Otherwise the highest bit is randomly chosen
+ * by the rng, causing the entropy to be \a bits.
+ *
+ * @param rng the random number generator to use
+ * @param bitsize number of bits the created random value should have
+ * @param set_high_bit if true, the highest bit is always set
+ */
+ void randomize(RandomNumberGenerator& rng, size_t bitsize, bool set_high_bit = true);
+
+ /**
+ * Store BigInt-value in a given byte array
+ * @param buf destination byte array for the integer value
+ */
+ void binary_encode(uint8_t buf[]) const;
+
+ /**
+ * Store BigInt-value in a given byte array. If len is less than
+ * the size of the value, then it will be truncated. If len is
+ * greater than the size of the value, it will be zero-padded.
+ * If len exactly equals this->bytes(), this function behaves identically
+ * to binary_encode.
+ *
+ * @param buf destination byte array for the integer value
+ * @param len how many bytes to write
+ */
+ void binary_encode(uint8_t buf[], size_t len) const;
+
+ /**
+ * Read integer value from a byte array with given size
+ * @param buf byte array buffer containing the integer
+ * @param length size of buf
+ */
+ void binary_decode(const uint8_t buf[], size_t length);
+
+ /**
+ * Read integer value from a byte vector
+ * @param buf the vector to load from
+ */
+ template<typename Alloc>
+ void binary_decode(const std::vector<uint8_t, Alloc>& buf)
+ {
+ binary_decode(buf.data(), buf.size());
+ }
+
+ /**
+ * @param base the base to measure the size for
+ * @return size of this integer in base base
+ *
+ * Deprecated. This is only needed when using the `encode` and
+ * `encode_locked` functions, which are also deprecated.
+ */
+ BOTAN_DEPRECATED("See comments on declaration")
+ size_t encoded_size(Base base = Binary) const;
+
+ /**
+ * Place the value into out, zero-padding up to size words
+ * Throw if *this cannot be represented in size words
+ */
+ void encode_words(word out[], size_t size) const;
+
+ /**
+ * If predicate is true assign other to *this
+ * Uses a masked operation to avoid side channels
+ */
+ void ct_cond_assign(bool predicate, const BigInt& other);
+
+ /**
+ * If predicate is true swap *this and other
+ * Uses a masked operation to avoid side channels
+ */
+ void ct_cond_swap(bool predicate, BigInt& other);
+
+ /**
+ * If predicate is true add value to *this
+ */
+ void ct_cond_add(bool predicate, const BigInt& value);
+
+ /**
+ * If predicate is true flip the sign of *this
+ */
+ void cond_flip_sign(bool predicate);
+
+#if defined(BOTAN_HAS_VALGRIND)
+ void const_time_poison() const;
+ void const_time_unpoison() const;
+#else
+ void const_time_poison() const {}
+ void const_time_unpoison() const {}
+#endif
+
+ /**
+ * @param rng a random number generator
+ * @param min the minimum value (must be non-negative)
+ * @param max the maximum value (must be non-negative and > min)
+ * @return random integer in [min,max)
+ */
+ static BigInt random_integer(RandomNumberGenerator& rng,
+ const BigInt& min,
+ const BigInt& max);
+
+ /**
+ * Create a power of two
+ * @param n the power of two to create
+ * @return bigint representing 2^n
+ */
+ static BigInt power_of_2(size_t n)
+ {
+ BigInt b;
+ b.set_bit(n);
+ return b;
+ }
+
+ /**
+ * Encode the integer value from a BigInt to a std::vector of bytes
+ * @param n the BigInt to use as integer source
+ * @result secure_vector of bytes containing the bytes of the integer
+ */
+ static std::vector<uint8_t> encode(const BigInt& n)
+ {
+ std::vector<uint8_t> output(n.bytes());
+ n.binary_encode(output.data());
+ return output;
+ }
+
+ /**
+ * Encode the integer value from a BigInt to a secure_vector of bytes
+ * @param n the BigInt to use as integer source
+ * @result secure_vector of bytes containing the bytes of the integer
+ */
+ static secure_vector<uint8_t> encode_locked(const BigInt& n)
+ {
+ secure_vector<uint8_t> output(n.bytes());
+ n.binary_encode(output.data());
+ return output;
+ }
+
+ /**
+ * Encode the integer value from a BigInt to a byte array
+ * @param buf destination byte array for the encoded integer
+ * @param n the BigInt to use as integer source
+ */
+ static BOTAN_DEPRECATED("Use n.binary_encode") void encode(uint8_t buf[], const BigInt& n)
+ {
+ n.binary_encode(buf);
+ }
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the binary value to load
+ * @param length size of buf
+ * @result BigInt representing the integer in the byte array
+ */
+ static BigInt decode(const uint8_t buf[], size_t length)
+ {
+ return BigInt(buf, length);
+ }
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the binary value to load
+ * @result BigInt representing the integer in the byte array
+ */
+ template<typename Alloc>
+ static BigInt decode(const std::vector<uint8_t, Alloc>& buf)
+ {
+ return BigInt(buf);
+ }
+
+ /**
+ * Encode the integer value from a BigInt to a std::vector of bytes
+ * @param n the BigInt to use as integer source
+ * @param base number-base of resulting byte array representation
+ * @result secure_vector of bytes containing the integer with given base
+ *
+ * Deprecated. If you need Binary, call the version of encode that doesn't
+ * take a Base. If you need Hex or Decimal output, use to_hex_string or
+ * to_dec_string resp.
+ */
+ BOTAN_DEPRECATED("See comments on declaration")
+ static std::vector<uint8_t> encode(const BigInt& n, Base base);
+
+ /**
+ * Encode the integer value from a BigInt to a secure_vector of bytes
+ * @param n the BigInt to use as integer source
+ * @param base number-base of resulting byte array representation
+ * @result secure_vector of bytes containing the integer with given base
+ *
+ * Deprecated. If you need Binary, call the version of encode_locked that
+ * doesn't take a Base. If you need Hex or Decimal output, use to_hex_string
+ * or to_dec_string resp.
+ */
+ BOTAN_DEPRECATED("See comments on declaration")
+ static secure_vector<uint8_t> encode_locked(const BigInt& n,
+ Base base);
+
+ /**
+ * Encode the integer value from a BigInt to a byte array
+ * @param buf destination byte array for the encoded integer
+ * value with given base
+ * @param n the BigInt to use as integer source
+ * @param base number-base of resulting byte array representation
+ *
+ * Deprecated. If you need Binary, call binary_encode. If you need
+ * Hex or Decimal output, use to_hex_string or to_dec_string resp.
+ */
+ BOTAN_DEPRECATED("See comments on declaration")
+ static void encode(uint8_t buf[], const BigInt& n, Base base);
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the binary value to load
+ * @param length size of buf
+ * @param base number-base of the integer in buf
+ * @result BigInt representing the integer in the byte array
+ */
+ static BigInt decode(const uint8_t buf[], size_t length,
+ Base base);
+
+ /**
+ * Create a BigInt from an integer in a byte array
+ * @param buf the binary value to load
+ * @param base number-base of the integer in buf
+ * @result BigInt representing the integer in the byte array
+ */
+ template<typename Alloc>
+ static BigInt decode(const std::vector<uint8_t, Alloc>& buf, Base base)
+ {
+ if(base == Binary)
+ return BigInt(buf);
+ return BigInt::decode(buf.data(), buf.size(), base);
+ }
+
+ /**
+ * Encode a BigInt to a byte array according to IEEE 1363
+ * @param n the BigInt to encode
+ * @param bytes the length of the resulting secure_vector<uint8_t>
+ * @result a secure_vector<uint8_t> containing the encoded BigInt
+ */
+ static secure_vector<uint8_t> encode_1363(const BigInt& n, size_t bytes);
+
+ static void encode_1363(uint8_t out[], size_t bytes, const BigInt& n);
+
+ /**
+ * Encode two BigInt to a byte array according to IEEE 1363
+ * @param n1 the first BigInt to encode
+ * @param n2 the second BigInt to encode
+ * @param bytes the length of the encoding of each single BigInt
+ * @result a secure_vector<uint8_t> containing the concatenation of the two encoded BigInt
+ */
+ static secure_vector<uint8_t> encode_fixed_length_int_pair(const BigInt& n1, const BigInt& n2, size_t bytes);
+
+ /**
+ * Set output = vec[idx].m_reg in constant time
+ *
+ * All elements of vec must have the same size, and output must be
+ * pre-allocated with the same size.
+ */
+ static void BOTAN_DEPRECATED("No longer in use") const_time_lookup(
+ secure_vector<word>& output,
+ const std::vector<BigInt>& vec,
+ size_t idx);
+
+ private:
+
+ class Data
+ {
+ public:
+ word* mutable_data()
+ {
+ invalidate_sig_words();
+ return m_reg.data();
+ }
+
+ const word* const_data() const
+ {
+ return m_reg.data();
+ }
+
+ secure_vector<word>& mutable_vector()
+ {
+ invalidate_sig_words();
+ return m_reg;
+ }
+
+ const secure_vector<word>& const_vector() const
+ {
+ return m_reg;
+ }
+
+ word get_word_at(size_t n) const
+ {
+ if(n < m_reg.size())
+ return m_reg[n];
+ return 0;
+ }
+
+ void set_word_at(size_t i, word w)
+ {
+ invalidate_sig_words();
+ if(i >= m_reg.size())
+ {
+ if(w == 0)
+ return;
+ grow_to(i + 1);
+ }
+ m_reg[i] = w;
+ }
+
+ void set_words(const word w[], size_t len)
+ {
+ invalidate_sig_words();
+ m_reg.assign(w, w + len);
+ }
+
+ void set_to_zero()
+ {
+ m_reg.resize(m_reg.capacity());
+ clear_mem(m_reg.data(), m_reg.size());
+ m_sig_words = 0;
+ }
+
+ void set_size(size_t s)
+ {
+ invalidate_sig_words();
+ clear_mem(m_reg.data(), m_reg.size());
+ m_reg.resize(s + (8 - (s % 8)));
+ }
+
+ void mask_bits(size_t n)
+ {
+ if(n == 0) { return set_to_zero(); }
+
+ const size_t top_word = n / BOTAN_MP_WORD_BITS;
+
+ // if(top_word < sig_words()) ?
+ if(top_word < size())
+ {
+ const word mask = (static_cast<word>(1) << (n % BOTAN_MP_WORD_BITS)) - 1;
+ const size_t len = size() - (top_word + 1);
+ if(len > 0)
+ {
+ clear_mem(&m_reg[top_word+1], len);
+ }
+ m_reg[top_word] &= mask;
+ invalidate_sig_words();
+ }
+ }
+
+ void grow_to(size_t n) const
+ {
+ if(n > size())
+ {
+ if(n <= m_reg.capacity())
+ m_reg.resize(n);
+ else
+ m_reg.resize(n + (8 - (n % 8)));
+ }
+ }
+
+ size_t size() const { return m_reg.size(); }
+
+ void shrink_to_fit(size_t min_size = 0)
+ {
+ const size_t words = std::max(min_size, sig_words());
+ m_reg.resize(words);
+ }
+
+ void resize(size_t s)
+ {
+ m_reg.resize(s);
+ }
+
+ void swap(Data& other)
+ {
+ m_reg.swap(other.m_reg);
+ std::swap(m_sig_words, other.m_sig_words);
+ }
+
+ void swap(secure_vector<word>& reg)
+ {
+ m_reg.swap(reg);
+ invalidate_sig_words();
+ }
+
+ void invalidate_sig_words() const
+ {
+ m_sig_words = sig_words_npos;
+ }
+
+ size_t sig_words() const
+ {
+ if(m_sig_words == sig_words_npos)
+ {
+ m_sig_words = calc_sig_words();
+ }
+ else
+ {
+ BOTAN_DEBUG_ASSERT(m_sig_words == calc_sig_words());
+ }
+ return m_sig_words;
+ }
+ private:
+ static const size_t sig_words_npos = static_cast<size_t>(-1);
+
+ size_t calc_sig_words() const;
+
+ mutable secure_vector<word> m_reg;
+ mutable size_t m_sig_words = sig_words_npos;
+ };
+
+ Data m_data;
+ Sign m_signedness = Positive;
+ };
+
+/*
+* Arithmetic Operators
+*/
+inline BigInt operator+(const BigInt& x, const BigInt& y)
+ {
+ return BigInt::add2(x, y.data(), y.sig_words(), y.sign());
+ }
+
+inline BigInt operator+(const BigInt& x, word y)
+ {
+ return BigInt::add2(x, &y, 1, BigInt::Positive);
+ }
+
+inline BigInt operator+(word x, const BigInt& y)
+ {
+ return y + x;
+ }
+
+inline BigInt operator-(const BigInt& x, const BigInt& y)
+ {
+ return BigInt::add2(x, y.data(), y.sig_words(), y.reverse_sign());
+ }
+
+inline BigInt operator-(const BigInt& x, word y)
+ {
+ return BigInt::add2(x, &y, 1, BigInt::Negative);
+ }
+
+BigInt BOTAN_PUBLIC_API(2,0) operator*(const BigInt& x, const BigInt& y);
+BigInt BOTAN_PUBLIC_API(2,8) operator*(const BigInt& x, word y);
+inline BigInt operator*(word x, const BigInt& y) { return y*x; }
+
+BigInt BOTAN_PUBLIC_API(2,0) operator/(const BigInt& x, const BigInt& d);
+BigInt BOTAN_PUBLIC_API(2,0) operator/(const BigInt& x, word m);
+BigInt BOTAN_PUBLIC_API(2,0) operator%(const BigInt& x, const BigInt& m);
+word BOTAN_PUBLIC_API(2,0) operator%(const BigInt& x, word m);
+BigInt BOTAN_PUBLIC_API(2,0) operator<<(const BigInt& x, size_t n);
+BigInt BOTAN_PUBLIC_API(2,0) operator>>(const BigInt& x, size_t n);
+
+/*
+* Comparison Operators
+*/
+inline bool operator==(const BigInt& a, const BigInt& b)
+ { return a.is_equal(b); }
+inline bool operator!=(const BigInt& a, const BigInt& b)
+ { return !a.is_equal(b); }
+inline bool operator<=(const BigInt& a, const BigInt& b)
+ { return (a.cmp(b) <= 0); }
+inline bool operator>=(const BigInt& a, const BigInt& b)
+ { return (a.cmp(b) >= 0); }
+inline bool operator<(const BigInt& a, const BigInt& b)
+ { return a.is_less_than(b); }
+inline bool operator>(const BigInt& a, const BigInt& b)
+ { return b.is_less_than(a); }
+
+inline bool operator==(const BigInt& a, word b)
+ { return (a.cmp_word(b) == 0); }
+inline bool operator!=(const BigInt& a, word b)
+ { return (a.cmp_word(b) != 0); }
+inline bool operator<=(const BigInt& a, word b)
+ { return (a.cmp_word(b) <= 0); }
+inline bool operator>=(const BigInt& a, word b)
+ { return (a.cmp_word(b) >= 0); }
+inline bool operator<(const BigInt& a, word b)
+ { return (a.cmp_word(b) < 0); }
+inline bool operator>(const BigInt& a, word b)
+ { return (a.cmp_word(b) > 0); }
+
+/*
+* I/O Operators
+*/
+BOTAN_PUBLIC_API(2,0) std::ostream& operator<<(std::ostream&, const BigInt&);
+BOTAN_PUBLIC_API(2,0) std::istream& operator>>(std::istream&, BigInt&);
+
+}
+
+namespace std {
+
+template<>
+inline void swap<Botan::BigInt>(Botan::BigInt& x, Botan::BigInt& y)
+ {
+ x.swap(y);
+ }
+
+}
+
+#endif