summaryrefslogtreecommitdiffstats
path: root/comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp')
-rw-r--r--comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp386
1 files changed, 386 insertions, 0 deletions
diff --git a/comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp b/comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp
new file mode 100644
index 0000000000..283421be40
--- /dev/null
+++ b/comm/third_party/botan/src/lib/pubkey/mce/mceliece_key.cpp
@@ -0,0 +1,386 @@
+/*
+ * (C) Copyright Projet SECRET, INRIA, Rocquencourt
+ * (C) Bhaskar Biswas and Nicolas Sendrier
+ *
+ * (C) 2014 cryptosource GmbH
+ * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de
+ * (C) 2015 Jack Lloyd
+ *
+ * Botan is released under the Simplified BSD License (see license.txt)
+ *
+ */
+
+#include <botan/mceliece.h>
+#include <botan/polyn_gf2m.h>
+#include <botan/internal/mce_internal.h>
+#include <botan/internal/bit_ops.h>
+#include <botan/internal/code_based_util.h>
+#include <botan/internal/pk_ops_impl.h>
+#include <botan/loadstor.h>
+#include <botan/der_enc.h>
+#include <botan/ber_dec.h>
+#include <botan/rng.h>
+
+namespace Botan {
+
+McEliece_PrivateKey::McEliece_PrivateKey(polyn_gf2m const& goppa_polyn,
+ std::vector<uint32_t> const& parity_check_matrix_coeffs,
+ std::vector<polyn_gf2m> const& square_root_matrix,
+ std::vector<gf2m> const& inverse_support,
+ std::vector<uint8_t> const& public_matrix) :
+ McEliece_PublicKey(public_matrix, goppa_polyn.get_degree(), inverse_support.size()),
+ m_g{goppa_polyn},
+ m_sqrtmod(square_root_matrix),
+ m_Linv(inverse_support),
+ m_coeffs(parity_check_matrix_coeffs),
+ m_codimension(static_cast<size_t>(ceil_log2(inverse_support.size())) * goppa_polyn.get_degree()),
+ m_dimension(inverse_support.size() - m_codimension)
+ {
+ }
+
+McEliece_PrivateKey::McEliece_PrivateKey(RandomNumberGenerator& rng, size_t code_length, size_t t)
+ {
+ uint32_t ext_deg = ceil_log2(code_length);
+ *this = generate_mceliece_key(rng, ext_deg, code_length, t);
+ }
+
+McEliece_PrivateKey::~McEliece_PrivateKey() = default;
+
+const polyn_gf2m& McEliece_PrivateKey::get_goppa_polyn() const
+ {
+ return m_g[0];
+ }
+
+size_t McEliece_PublicKey::get_message_word_bit_length() const
+ {
+ size_t codimension = ceil_log2(m_code_length) * m_t;
+ return m_code_length - codimension;
+ }
+
+secure_vector<uint8_t> McEliece_PublicKey::random_plaintext_element(RandomNumberGenerator& rng) const
+ {
+ const size_t bits = get_message_word_bit_length();
+
+ secure_vector<uint8_t> plaintext((bits+7)/8);
+ rng.randomize(plaintext.data(), plaintext.size());
+
+ // unset unused bits in the last plaintext byte
+ if(uint32_t used = bits % 8)
+ {
+ const uint8_t mask = (1 << used) - 1;
+ plaintext[plaintext.size() - 1] &= mask;
+ }
+
+ return plaintext;
+ }
+
+AlgorithmIdentifier McEliece_PublicKey::algorithm_identifier() const
+ {
+ return AlgorithmIdentifier(get_oid(), AlgorithmIdentifier::USE_EMPTY_PARAM);
+ }
+
+std::vector<uint8_t> McEliece_PublicKey::public_key_bits() const
+ {
+ std::vector<uint8_t> output;
+ DER_Encoder(output)
+ .start_cons(SEQUENCE)
+ .start_cons(SEQUENCE)
+ .encode(static_cast<size_t>(get_code_length()))
+ .encode(static_cast<size_t>(get_t()))
+ .end_cons()
+ .encode(m_public_matrix, OCTET_STRING)
+ .end_cons();
+ return output;
+ }
+
+size_t McEliece_PublicKey::key_length() const
+ {
+ return m_code_length;
+ }
+
+size_t McEliece_PublicKey::estimated_strength() const
+ {
+ return mceliece_work_factor(m_code_length, m_t);
+ }
+
+McEliece_PublicKey::McEliece_PublicKey(const std::vector<uint8_t>& key_bits)
+ {
+ BER_Decoder dec(key_bits);
+ size_t n;
+ size_t t;
+ dec.start_cons(SEQUENCE)
+ .start_cons(SEQUENCE)
+ .decode(n)
+ .decode(t)
+ .end_cons()
+ .decode(m_public_matrix, OCTET_STRING)
+ .end_cons();
+ m_t = t;
+ m_code_length = n;
+ }
+
+secure_vector<uint8_t> McEliece_PrivateKey::private_key_bits() const
+ {
+ DER_Encoder enc;
+ enc.start_cons(SEQUENCE)
+ .start_cons(SEQUENCE)
+ .encode(static_cast<size_t>(get_code_length()))
+ .encode(static_cast<size_t>(get_t()))
+ .end_cons()
+ .encode(m_public_matrix, OCTET_STRING)
+ .encode(m_g[0].encode(), OCTET_STRING); // g as octet string
+ enc.start_cons(SEQUENCE);
+ for(size_t i = 0; i < m_sqrtmod.size(); i++)
+ {
+ enc.encode(m_sqrtmod[i].encode(), OCTET_STRING);
+ }
+ enc.end_cons();
+ secure_vector<uint8_t> enc_support;
+
+ for(uint16_t Linv : m_Linv)
+ {
+ enc_support.push_back(get_byte(0, Linv));
+ enc_support.push_back(get_byte(1, Linv));
+ }
+ enc.encode(enc_support, OCTET_STRING);
+ secure_vector<uint8_t> enc_H;
+ for(uint32_t coef : m_coeffs)
+ {
+ enc_H.push_back(get_byte(0, coef));
+ enc_H.push_back(get_byte(1, coef));
+ enc_H.push_back(get_byte(2, coef));
+ enc_H.push_back(get_byte(3, coef));
+ }
+ enc.encode(enc_H, OCTET_STRING);
+ enc.end_cons();
+ return enc.get_contents();
+ }
+
+bool McEliece_PrivateKey::check_key(RandomNumberGenerator& rng, bool) const
+ {
+ const secure_vector<uint8_t> plaintext = this->random_plaintext_element(rng);
+
+ secure_vector<uint8_t> ciphertext;
+ secure_vector<uint8_t> errors;
+ mceliece_encrypt(ciphertext, errors, plaintext, *this, rng);
+
+ secure_vector<uint8_t> plaintext_out;
+ secure_vector<uint8_t> errors_out;
+ mceliece_decrypt(plaintext_out, errors_out, ciphertext, *this);
+
+ if(errors != errors_out || plaintext != plaintext_out)
+ return false;
+
+ return true;
+ }
+
+McEliece_PrivateKey::McEliece_PrivateKey(const secure_vector<uint8_t>& key_bits)
+ {
+ size_t n, t;
+ secure_vector<uint8_t> enc_g;
+ BER_Decoder dec_base(key_bits);
+ BER_Decoder dec = dec_base.start_cons(SEQUENCE)
+ .start_cons(SEQUENCE)
+ .decode(n)
+ .decode(t)
+ .end_cons()
+ .decode(m_public_matrix, OCTET_STRING)
+ .decode(enc_g, OCTET_STRING);
+
+ if(t == 0 || n == 0)
+ throw Decoding_Error("invalid McEliece parameters");
+
+ uint32_t ext_deg = ceil_log2(n);
+ m_code_length = n;
+ m_t = t;
+ m_codimension = (ext_deg * t);
+ m_dimension = (n - m_codimension);
+
+ std::shared_ptr<GF2m_Field> sp_field(new GF2m_Field(ext_deg));
+ m_g = { polyn_gf2m(enc_g, sp_field) };
+ if(m_g[0].get_degree() != static_cast<int>(t))
+ {
+ throw Decoding_Error("degree of decoded Goppa polynomial is incorrect");
+ }
+ BER_Decoder dec2 = dec.start_cons(SEQUENCE);
+ for(uint32_t i = 0; i < t/2; i++)
+ {
+ secure_vector<uint8_t> sqrt_enc;
+ dec2.decode(sqrt_enc, OCTET_STRING);
+ while(sqrt_enc.size() < (t*2))
+ {
+ // ensure that the length is always t
+ sqrt_enc.push_back(0);
+ sqrt_enc.push_back(0);
+ }
+ if(sqrt_enc.size() != t*2)
+ {
+ throw Decoding_Error("length of square root polynomial entry is too large");
+ }
+ m_sqrtmod.push_back(polyn_gf2m(sqrt_enc, sp_field));
+ }
+ secure_vector<uint8_t> enc_support;
+ BER_Decoder dec3 = dec2.end_cons()
+ .decode(enc_support, OCTET_STRING);
+ if(enc_support.size() % 2)
+ {
+ throw Decoding_Error("encoded support has odd length");
+ }
+ if(enc_support.size() / 2 != n)
+ {
+ throw Decoding_Error("encoded support has length different from code length");
+ }
+ for(uint32_t i = 0; i < n*2; i+=2)
+ {
+ gf2m el = (enc_support[i] << 8) | enc_support[i+1];
+ m_Linv.push_back(el);
+ }
+ secure_vector<uint8_t> enc_H;
+ dec3.decode(enc_H, OCTET_STRING)
+ .end_cons();
+ if(enc_H.size() % 4)
+ {
+ throw Decoding_Error("encoded parity check matrix has length which is not a multiple of four");
+ }
+ if(enc_H.size() / 4 != bit_size_to_32bit_size(m_codimension) * m_code_length)
+ {
+ throw Decoding_Error("encoded parity check matrix has wrong length");
+ }
+
+ for(uint32_t i = 0; i < enc_H.size(); i+=4)
+ {
+ uint32_t coeff = (enc_H[i] << 24) | (enc_H[i+1] << 16) | (enc_H[i+2] << 8) | enc_H[i+3];
+ m_coeffs.push_back(coeff);
+ }
+
+ }
+
+bool McEliece_PrivateKey::operator==(const McEliece_PrivateKey & other) const
+ {
+ if(*static_cast<const McEliece_PublicKey*>(this) != *static_cast<const McEliece_PublicKey*>(&other))
+ {
+ return false;
+ }
+ if(m_g != other.m_g)
+ {
+ return false;
+ }
+
+ if( m_sqrtmod != other.m_sqrtmod)
+ {
+ return false;
+ }
+ if( m_Linv != other.m_Linv)
+ {
+ return false;
+ }
+ if( m_coeffs != other.m_coeffs)
+ {
+ return false;
+ }
+
+ if(m_codimension != other.m_codimension || m_dimension != other.m_dimension)
+ {
+ return false;
+ }
+
+ return true;
+ }
+
+bool McEliece_PublicKey::operator==(const McEliece_PublicKey& other) const
+ {
+ if(m_public_matrix != other.m_public_matrix)
+ {
+ return false;
+ }
+ if(m_t != other.m_t)
+ {
+ return false;
+ }
+ if( m_code_length != other.m_code_length)
+ {
+ return false;
+ }
+ return true;
+ }
+
+namespace {
+
+class MCE_KEM_Encryptor final : public PK_Ops::KEM_Encryption_with_KDF
+ {
+ public:
+
+ MCE_KEM_Encryptor(const McEliece_PublicKey& key,
+ const std::string& kdf) :
+ KEM_Encryption_with_KDF(kdf), m_key(key) {}
+
+ private:
+ void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
+ secure_vector<uint8_t>& raw_shared_key,
+ Botan::RandomNumberGenerator& rng) override
+ {
+ secure_vector<uint8_t> plaintext = m_key.random_plaintext_element(rng);
+
+ secure_vector<uint8_t> ciphertext, error_mask;
+ mceliece_encrypt(ciphertext, error_mask, plaintext, m_key, rng);
+
+ raw_shared_key.clear();
+ raw_shared_key += plaintext;
+ raw_shared_key += error_mask;
+
+ out_encapsulated_key.swap(ciphertext);
+ }
+
+ const McEliece_PublicKey& m_key;
+ };
+
+class MCE_KEM_Decryptor final : public PK_Ops::KEM_Decryption_with_KDF
+ {
+ public:
+
+ MCE_KEM_Decryptor(const McEliece_PrivateKey& key,
+ const std::string& kdf) :
+ KEM_Decryption_with_KDF(kdf), m_key(key) {}
+
+ private:
+ secure_vector<uint8_t>
+ raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
+ {
+ secure_vector<uint8_t> plaintext, error_mask;
+ mceliece_decrypt(plaintext, error_mask, encap_key, len, m_key);
+
+ secure_vector<uint8_t> output;
+ output.reserve(plaintext.size() + error_mask.size());
+ output.insert(output.end(), plaintext.begin(), plaintext.end());
+ output.insert(output.end(), error_mask.begin(), error_mask.end());
+ return output;
+ }
+
+ const McEliece_PrivateKey& m_key;
+ };
+
+}
+
+std::unique_ptr<PK_Ops::KEM_Encryption>
+McEliece_PublicKey::create_kem_encryption_op(RandomNumberGenerator& /*rng*/,
+ const std::string& params,
+ const std::string& provider) const
+ {
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::KEM_Encryption>(new MCE_KEM_Encryptor(*this, params));
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::KEM_Decryption>
+McEliece_PrivateKey::create_kem_decryption_op(RandomNumberGenerator& /*rng*/,
+ const std::string& params,
+ const std::string& provider) const
+ {
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::KEM_Decryption>(new MCE_KEM_Decryptor(*this, params));
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+}
+
+