diff options
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/elgamal.c')
-rw-r--r-- | comm/third_party/libgcrypt/cipher/elgamal.c | 1149 |
1 files changed, 1149 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/elgamal.c b/comm/third_party/libgcrypt/cipher/elgamal.c new file mode 100644 index 0000000000..4eb52d620b --- /dev/null +++ b/comm/third_party/libgcrypt/cipher/elgamal.c @@ -0,0 +1,1149 @@ +/* Elgamal.c - Elgamal Public Key encryption + * Copyright (C) 1998, 2000, 2001, 2002, 2003, + * 2008 Free Software Foundation, Inc. + * Copyright (C) 2013 g10 Code GmbH + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see <http://www.gnu.org/licenses/>. + * + * For a description of the algorithm, see: + * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. + * ISBN 0-471-11709-9. Pages 476 ff. + */ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "g10lib.h" +#include "mpi.h" +#include "cipher.h" +#include "pubkey-internal.h" + + +/* Blinding is used to mitigate side-channel attacks. You may undef + this to speed up the operation in case the system is secured + against physical and network mounted side-channel attacks. */ +#define USE_BLINDING 1 + + +typedef struct +{ + gcry_mpi_t p; /* prime */ + gcry_mpi_t g; /* group generator */ + gcry_mpi_t y; /* g^x mod p */ +} ELG_public_key; + + +typedef struct +{ + gcry_mpi_t p; /* prime */ + gcry_mpi_t g; /* group generator */ + gcry_mpi_t y; /* g^x mod p */ + gcry_mpi_t x; /* secret exponent */ +} ELG_secret_key; + + +static const char *elg_names[] = + { + "elg", + "openpgp-elg", + "openpgp-elg-sig", + NULL, + }; + + +static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie); +static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k); +static gcry_err_code_t generate (ELG_secret_key *sk, unsigned nbits, + gcry_mpi_t **factors); +static int check_secret_key (ELG_secret_key *sk); +static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, + ELG_public_key *pkey); +static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, + ELG_secret_key *skey); +static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, + ELG_secret_key *skey); +static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, + ELG_public_key *pkey); +static unsigned int elg_get_nbits (gcry_sexp_t parms); + + +static void (*progress_cb) (void *, const char *, int, int, int); +static void *progress_cb_data; + +void +_gcry_register_pk_elg_progress (void (*cb) (void *, const char *, + int, int, int), + void *cb_data) +{ + progress_cb = cb; + progress_cb_data = cb_data; +} + + +static void +progress (int c) +{ + if (progress_cb) + progress_cb (progress_cb_data, "pk_elg", c, 0, 0); +} + + +/**************** + * Michael Wiener's table on subgroup sizes to match field sizes. + * (floating around somewhere, probably based on the paper from + * Eurocrypt 96, page 332) + */ +static unsigned int +wiener_map( unsigned int n ) +{ + static struct { unsigned int p_n, q_n; } t[] = + { /* p q attack cost */ + { 512, 119 }, /* 9 x 10^17 */ + { 768, 145 }, /* 6 x 10^21 */ + { 1024, 165 }, /* 7 x 10^24 */ + { 1280, 183 }, /* 3 x 10^27 */ + { 1536, 198 }, /* 7 x 10^29 */ + { 1792, 212 }, /* 9 x 10^31 */ + { 2048, 225 }, /* 8 x 10^33 */ + { 2304, 237 }, /* 5 x 10^35 */ + { 2560, 249 }, /* 3 x 10^37 */ + { 2816, 259 }, /* 1 x 10^39 */ + { 3072, 269 }, /* 3 x 10^40 */ + { 3328, 279 }, /* 8 x 10^41 */ + { 3584, 288 }, /* 2 x 10^43 */ + { 3840, 296 }, /* 4 x 10^44 */ + { 4096, 305 }, /* 7 x 10^45 */ + { 4352, 313 }, /* 1 x 10^47 */ + { 4608, 320 }, /* 2 x 10^48 */ + { 4864, 328 }, /* 2 x 10^49 */ + { 5120, 335 }, /* 3 x 10^50 */ + { 0, 0 } + }; + int i; + + for(i=0; t[i].p_n; i++ ) + { + if( n <= t[i].p_n ) + return t[i].q_n; + } + /* Not in table - use an arbitrary high number. */ + return n / 8 + 200; +} + +static int +test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie ) +{ + ELG_public_key pk; + gcry_mpi_t test = mpi_new ( 0 ); + gcry_mpi_t out1_a = mpi_new ( nbits ); + gcry_mpi_t out1_b = mpi_new ( nbits ); + gcry_mpi_t out2 = mpi_new ( nbits ); + int failed = 0; + + pk.p = sk->p; + pk.g = sk->g; + pk.y = sk->y; + + _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM ); + + do_encrypt ( out1_a, out1_b, test, &pk ); + decrypt ( out2, out1_a, out1_b, sk ); + if ( mpi_cmp( test, out2 ) ) + failed |= 1; + + sign ( out1_a, out1_b, test, sk ); + if ( !verify( out1_a, out1_b, test, &pk ) ) + failed |= 2; + + _gcry_mpi_release ( test ); + _gcry_mpi_release ( out1_a ); + _gcry_mpi_release ( out1_b ); + _gcry_mpi_release ( out2 ); + + if (failed && !nodie) + log_fatal ("Elgamal test key for %s %s failed\n", + (failed & 1)? "encrypt+decrypt":"", + (failed & 2)? "sign+verify":""); + if (failed && DBG_CIPHER) + log_debug ("Elgamal test key for %s %s failed\n", + (failed & 1)? "encrypt+decrypt":"", + (failed & 2)? "sign+verify":""); + + return failed; +} + + +/**************** + * Generate a random secret exponent k from prime p, so that k is + * relatively prime to p-1. With SMALL_K set, k will be selected for + * better encryption performance - this must never be used signing! + */ +static gcry_mpi_t +gen_k( gcry_mpi_t p, int small_k ) +{ + gcry_mpi_t k = mpi_alloc_secure( 0 ); + gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) ); + gcry_mpi_t p_1 = mpi_copy(p); + unsigned int orig_nbits = mpi_get_nbits(p); + unsigned int nbits, nbytes; + char *rndbuf = NULL; + + if (small_k) + { + /* Using a k much lesser than p is sufficient for encryption and + * it greatly improves the encryption performance. We use + * Wiener's table and add a large safety margin. */ + nbits = wiener_map( orig_nbits ) * 3 / 2; + if( nbits >= orig_nbits ) + BUG(); + } + else + nbits = orig_nbits; + + + nbytes = (nbits+7)/8; + if( DBG_CIPHER ) + log_debug("choosing a random k\n"); + mpi_sub_ui( p_1, p, 1); + for(;;) + { + if( !rndbuf || nbits < 32 ) + { + xfree(rndbuf); + rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM ); + } + else + { + /* Change only some of the higher bits. We could improve + this by directly requesting more memory at the first call + to get_random_bytes() and use this the here maybe it is + easier to do this directly in random.c Anyway, it is + highly inlikely that we will ever reach this code. */ + char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM ); + memcpy( rndbuf, pp, 4 ); + xfree(pp); + } + _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 ); + + for(;;) + { + if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */ + { + if( DBG_CIPHER ) + progress('+'); + break; /* no */ + } + if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */ + { + if( DBG_CIPHER ) + progress('-'); + break; /* no */ + } + if (mpi_gcd( temp, k, p_1 )) + goto found; /* okay, k is relative prime to (p-1) */ + mpi_add_ui( k, k, 1 ); + if( DBG_CIPHER ) + progress('.'); + } + } + found: + xfree (rndbuf); + if( DBG_CIPHER ) + progress('\n'); + mpi_free(p_1); + mpi_free(temp); + + return k; +} + +/**************** + * Generate a key pair with a key of size NBITS + * Returns: 2 structures filled with all needed values + * and an array with n-1 factors of (p-1) + */ +static gcry_err_code_t +generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors ) +{ + gcry_err_code_t rc; + gcry_mpi_t p; /* the prime */ + gcry_mpi_t p_min1; + gcry_mpi_t g; + gcry_mpi_t x; /* the secret exponent */ + gcry_mpi_t y; + unsigned int qbits; + unsigned int xbits; + byte *rndbuf; + + p_min1 = mpi_new ( nbits ); + qbits = wiener_map( nbits ); + if( qbits & 1 ) /* better have a even one */ + qbits++; + g = mpi_alloc(1); + rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors); + if (rc) + { + mpi_free (p_min1); + mpi_free (g); + return rc; + } + mpi_sub_ui(p_min1, p, 1); + + + /* Select a random number which has these properties: + * 0 < x < p-1 + * This must be a very good random number because this is the + * secret part. The prime is public and may be shared anyway, + * so a random generator level of 1 is used for the prime. + * + * I don't see a reason to have a x of about the same size + * as the p. It should be sufficient to have one about the size + * of q or the later used k plus a large safety margin. Decryption + * will be much faster with such an x. + */ + xbits = qbits * 3 / 2; + if( xbits >= nbits ) + BUG(); + x = mpi_snew ( xbits ); + if( DBG_CIPHER ) + log_debug("choosing a random x of size %u\n", xbits ); + rndbuf = NULL; + do + { + if( DBG_CIPHER ) + progress('.'); + if( rndbuf ) + { /* Change only some of the higher bits */ + if( xbits < 16 ) /* should never happen ... */ + { + xfree(rndbuf); + rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, + GCRY_VERY_STRONG_RANDOM); + } + else + { + char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM); + memcpy(rndbuf, r, 2 ); + xfree (r); + } + } + else + { + rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, + GCRY_VERY_STRONG_RANDOM ); + } + _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 ); + mpi_clear_highbit( x, xbits+1 ); + } + while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) ); + xfree(rndbuf); + + y = mpi_new (nbits); + mpi_powm( y, g, x, p ); + + if( DBG_CIPHER ) + { + progress ('\n'); + log_mpidump ("elg p", p ); + log_mpidump ("elg g", g ); + log_mpidump ("elg y", y ); + log_mpidump ("elg x", x ); + } + + /* Copy the stuff to the key structures */ + sk->p = p; + sk->g = g; + sk->y = y; + sk->x = x; + + _gcry_mpi_release ( p_min1 ); + + /* Now we can test our keys (this should never fail!) */ + test_keys ( sk, nbits - 64, 0 ); + + return 0; +} + + +/* Generate a key pair with a key of size NBITS not using a random + value for the secret key but the one given as X. This is useful to + implement a passphrase based decryption for a public key based + encryption. It has appliactions in backup systems. + + Returns: A structure filled with all needed values and an array + with n-1 factors of (p-1). */ +static gcry_err_code_t +generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x, + gcry_mpi_t **ret_factors ) +{ + gcry_err_code_t rc; + gcry_mpi_t p; /* The prime. */ + gcry_mpi_t p_min1; /* The prime minus 1. */ + gcry_mpi_t g; /* The generator. */ + gcry_mpi_t y; /* g^x mod p. */ + unsigned int qbits; + unsigned int xbits; + + sk->p = NULL; + sk->g = NULL; + sk->y = NULL; + sk->x = NULL; + + /* Do a quick check to see whether X is suitable. */ + xbits = mpi_get_nbits (x); + if ( xbits < 64 || xbits >= nbits ) + return GPG_ERR_INV_VALUE; + + p_min1 = mpi_new ( nbits ); + qbits = wiener_map ( nbits ); + if ( (qbits & 1) ) /* Better have an even one. */ + qbits++; + g = mpi_alloc (1); + rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors ); + if (rc) + { + mpi_free (p_min1); + mpi_free (g); + return rc; + } + mpi_sub_ui (p_min1, p, 1); + + if (DBG_CIPHER) + log_debug ("using a supplied x of size %u", xbits ); + if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) ) + { + _gcry_mpi_release ( p_min1 ); + _gcry_mpi_release ( p ); + _gcry_mpi_release ( g ); + return GPG_ERR_INV_VALUE; + } + + y = mpi_new (nbits); + mpi_powm ( y, g, x, p ); + + if ( DBG_CIPHER ) + { + progress ('\n'); + log_mpidump ("elg p", p ); + log_mpidump ("elg g", g ); + log_mpidump ("elg y", y ); + log_mpidump ("elg x", x ); + } + + /* Copy the stuff to the key structures */ + sk->p = p; + sk->g = g; + sk->y = y; + sk->x = mpi_copy (x); + + _gcry_mpi_release ( p_min1 ); + + /* Now we can test our keys. */ + if ( test_keys ( sk, nbits - 64, 1 ) ) + { + _gcry_mpi_release ( sk->p ); sk->p = NULL; + _gcry_mpi_release ( sk->g ); sk->g = NULL; + _gcry_mpi_release ( sk->y ); sk->y = NULL; + _gcry_mpi_release ( sk->x ); sk->x = NULL; + return GPG_ERR_BAD_SECKEY; + } + + return 0; +} + + +/**************** + * Test whether the secret key is valid. + * Returns: if this is a valid key. + */ +static int +check_secret_key( ELG_secret_key *sk ) +{ + int rc; + gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) ); + + mpi_powm (y, sk->g, sk->x, sk->p); + rc = !mpi_cmp( y, sk->y ); + mpi_free( y ); + return rc; +} + + +static void +do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) +{ + gcry_mpi_t k; + + /* Note: maybe we should change the interface, so that it + * is possible to check that input is < p and return an + * error code. + */ + + k = gen_k( pkey->p, 1 ); + mpi_powm (a, pkey->g, k, pkey->p); + + /* b = (y^k * input) mod p + * = ((y^k mod p) * (input mod p)) mod p + * and because input is < p + * = ((y^k mod p) * input) mod p + */ + mpi_powm (b, pkey->y, k, pkey->p); + mpi_mulm (b, b, input, pkey->p); +#if 0 + if( DBG_CIPHER ) + { + log_mpidump("elg encrypted y", pkey->y); + log_mpidump("elg encrypted p", pkey->p); + log_mpidump("elg encrypted k", k); + log_mpidump("elg encrypted M", input); + log_mpidump("elg encrypted a", a); + log_mpidump("elg encrypted b", b); + } +#endif + mpi_free(k); +} + + + + +static void +decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey ) +{ + gcry_mpi_t t1, t2, r; + unsigned int nbits = mpi_get_nbits (skey->p); + + mpi_normalize (a); + mpi_normalize (b); + + t1 = mpi_snew (nbits); + +#ifdef USE_BLINDING + + t2 = mpi_snew (nbits); + r = mpi_new (nbits); + + /* We need a random number of about the prime size. The random + number merely needs to be unpredictable; thus we use level 0. */ + _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM); + + /* t1 = r^x mod p */ + mpi_powm (t1, r, skey->x, skey->p); + /* t2 = (a * r)^-x mod p */ + mpi_mulm (t2, a, r, skey->p); + mpi_powm (t2, t2, skey->x, skey->p); + mpi_invm (t2, t2, skey->p); + /* t1 = (t1 * t2) mod p*/ + mpi_mulm (t1, t1, t2, skey->p); + + mpi_free (r); + mpi_free (t2); + +#else /*!USE_BLINDING*/ + + /* output = b/(a^x) mod p */ + mpi_powm (t1, a, skey->x, skey->p); + mpi_invm (t1, t1, skey->p); + +#endif /*!USE_BLINDING*/ + + mpi_mulm (output, b, t1, skey->p); + +#if 0 + if( DBG_CIPHER ) + { + log_mpidump ("elg decrypted x", skey->x); + log_mpidump ("elg decrypted p", skey->p); + log_mpidump ("elg decrypted a", a); + log_mpidump ("elg decrypted b", b); + log_mpidump ("elg decrypted M", output); + } +#endif + mpi_free (t1); +} + + +/**************** + * Make an Elgamal signature out of INPUT + */ + +static void +sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey ) +{ + gcry_mpi_t k; + gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) ); + gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) ); + gcry_mpi_t p_1 = mpi_copy(skey->p); + + /* + * b = (t * inv) mod (p-1) + * b = (t * inv(k,(p-1),(p-1)) mod (p-1) + * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1) + * + */ + mpi_sub_ui(p_1, p_1, 1); + k = gen_k( skey->p, 0 /* no small K ! */ ); + mpi_powm( a, skey->g, k, skey->p ); + mpi_mul(t, skey->x, a ); + mpi_subm(t, input, t, p_1 ); + mpi_invm(inv, k, p_1 ); + mpi_mulm(b, t, inv, p_1 ); + +#if 0 + if( DBG_CIPHER ) + { + log_mpidump ("elg sign p", skey->p); + log_mpidump ("elg sign g", skey->g); + log_mpidump ("elg sign y", skey->y); + log_mpidump ("elg sign x", skey->x); + log_mpidump ("elg sign k", k); + log_mpidump ("elg sign M", input); + log_mpidump ("elg sign a", a); + log_mpidump ("elg sign b", b); + } +#endif + mpi_free(k); + mpi_free(t); + mpi_free(inv); + mpi_free(p_1); +} + + +/**************** + * Returns true if the signature composed of A and B is valid. + */ +static int +verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) +{ + int rc; + gcry_mpi_t t1; + gcry_mpi_t t2; + gcry_mpi_t base[4]; + gcry_mpi_t ex[4]; + + if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) ) + return 0; /* assertion 0 < a < p failed */ + + t1 = mpi_alloc( mpi_get_nlimbs(a) ); + t2 = mpi_alloc( mpi_get_nlimbs(a) ); + +#if 0 + /* t1 = (y^a mod p) * (a^b mod p) mod p */ + gcry_mpi_powm( t1, pkey->y, a, pkey->p ); + gcry_mpi_powm( t2, a, b, pkey->p ); + mpi_mulm( t1, t1, t2, pkey->p ); + + /* t2 = g ^ input mod p */ + gcry_mpi_powm( t2, pkey->g, input, pkey->p ); + + rc = !mpi_cmp( t1, t2 ); +#elif 0 + /* t1 = (y^a mod p) * (a^b mod p) mod p */ + base[0] = pkey->y; ex[0] = a; + base[1] = a; ex[1] = b; + base[2] = NULL; ex[2] = NULL; + mpi_mulpowm( t1, base, ex, pkey->p ); + + /* t2 = g ^ input mod p */ + gcry_mpi_powm( t2, pkey->g, input, pkey->p ); + + rc = !mpi_cmp( t1, t2 ); +#else + /* t1 = g ^ - input * y ^ a * a ^ b mod p */ + mpi_invm(t2, pkey->g, pkey->p ); + base[0] = t2 ; ex[0] = input; + base[1] = pkey->y; ex[1] = a; + base[2] = a; ex[2] = b; + base[3] = NULL; ex[3] = NULL; + mpi_mulpowm( t1, base, ex, pkey->p ); + rc = !mpi_cmp_ui( t1, 1 ); + +#endif + + mpi_free(t1); + mpi_free(t2); + return rc; +} + +/********************************************* + ************** interface ****************** + *********************************************/ + +static gpg_err_code_t +elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) +{ + gpg_err_code_t rc; + unsigned int nbits; + ELG_secret_key sk; + gcry_mpi_t xvalue = NULL; + gcry_sexp_t l1; + gcry_mpi_t *factors = NULL; + gcry_sexp_t misc_info = NULL; + + memset (&sk, 0, sizeof sk); + + rc = _gcry_pk_util_get_nbits (genparms, &nbits); + if (rc) + return rc; + + /* Parse the optional xvalue element. */ + l1 = sexp_find_token (genparms, "xvalue", 0); + if (l1) + { + xvalue = sexp_nth_mpi (l1, 1, 0); + sexp_release (l1); + if (!xvalue) + return GPG_ERR_BAD_MPI; + } + + if (xvalue) + { + rc = generate_using_x (&sk, nbits, xvalue, &factors); + mpi_free (xvalue); + } + else + { + rc = generate (&sk, nbits, &factors); + } + if (rc) + goto leave; + + if (factors && factors[0]) + { + int nfac; + void **arg_list; + char *buffer, *p; + + for (nfac = 0; factors[nfac]; nfac++) + ; + arg_list = xtrycalloc (nfac+1, sizeof *arg_list); + if (!arg_list) + { + rc = gpg_err_code_from_syserror (); + goto leave; + } + buffer = xtrymalloc (30 + nfac*2 + 2 + 1); + if (!buffer) + { + rc = gpg_err_code_from_syserror (); + xfree (arg_list); + goto leave; + } + p = stpcpy (buffer, "(misc-key-info(pm1-factors"); + for(nfac = 0; factors[nfac]; nfac++) + { + p = stpcpy (p, "%m"); + arg_list[nfac] = factors + nfac; + } + p = stpcpy (p, "))"); + rc = sexp_build_array (&misc_info, NULL, buffer, arg_list); + xfree (arg_list); + xfree (buffer); + if (rc) + goto leave; + } + + rc = sexp_build (r_skey, NULL, + "(key-data" + " (public-key" + " (elg(p%m)(g%m)(y%m)))" + " (private-key" + " (elg(p%m)(g%m)(y%m)(x%m)))" + " %S)", + sk.p, sk.g, sk.y, + sk.p, sk.g, sk.y, sk.x, + misc_info); + + leave: + mpi_free (sk.p); + mpi_free (sk.g); + mpi_free (sk.y); + mpi_free (sk.x); + sexp_release (misc_info); + if (factors) + { + gcry_mpi_t *mp; + for (mp = factors; *mp; mp++) + mpi_free (*mp); + xfree (factors); + } + + return rc; +} + + +static gcry_err_code_t +elg_check_secret_key (gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + ELG_secret_key sk = {NULL, NULL, NULL, NULL}; + + rc = sexp_extract_param (keyparms, NULL, "pgyx", + &sk.p, &sk.g, &sk.y, &sk.x, + NULL); + if (rc) + goto leave; + + if (!check_secret_key (&sk)) + rc = GPG_ERR_BAD_SECKEY; + + leave: + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.g); + _gcry_mpi_release (sk.y); + _gcry_mpi_release (sk.x); + if (DBG_CIPHER) + log_debug ("elg_testkey => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_mpi_t mpi_a = NULL; + gcry_mpi_t mpi_b = NULL; + gcry_mpi_t data = NULL; + ELG_public_key pk = { NULL, NULL, NULL }; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, + elg_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_mpidump ("elg_encrypt data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "pgy", + &pk.p, &pk.g, &pk.y, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_mpidump ("elg_encrypt p", pk.p); + log_mpidump ("elg_encrypt g", pk.g); + log_mpidump ("elg_encrypt y", pk.y); + } + + /* Do Elgamal computation and build result. */ + mpi_a = mpi_new (0); + mpi_b = mpi_new (0); + do_encrypt (mpi_a, mpi_b, data, &pk); + rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b); + + leave: + _gcry_mpi_release (mpi_a); + _gcry_mpi_release (mpi_b); + _gcry_mpi_release (pk.p); + _gcry_mpi_release (pk.g); + _gcry_mpi_release (pk.y); + _gcry_mpi_release (data); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("elg_encrypt => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gpg_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_sexp_t l1 = NULL; + gcry_mpi_t data_a = NULL; + gcry_mpi_t data_b = NULL; + ELG_secret_key sk = {NULL, NULL, NULL, NULL}; + gcry_mpi_t plain = NULL; + unsigned char *unpad = NULL; + size_t unpadlen = 0; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, + elg_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx); + if (rc) + goto leave; + rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_printmpi ("elg_decrypt d_a", data_a); + log_printmpi ("elg_decrypt d_b", data_b); + } + if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "pgyx", + &sk.p, &sk.g, &sk.y, &sk.x, + NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_printmpi ("elg_decrypt p", sk.p); + log_printmpi ("elg_decrypt g", sk.g); + log_printmpi ("elg_decrypt y", sk.y); + if (!fips_mode ()) + log_printmpi ("elg_decrypt x", sk.x); + } + + plain = mpi_snew (ctx.nbits); + decrypt (plain, data_a, data_b, &sk); + if (DBG_CIPHER) + log_printmpi ("elg_decrypt res", plain); + + /* Reverse the encoding and build the s-expression. */ + switch (ctx.encoding) + { + case PUBKEY_ENC_PKCS1: + rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain); + mpi_free (plain); plain = NULL; + if (!rc) + rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); + break; + + case PUBKEY_ENC_OAEP: + rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen, + ctx.nbits, ctx.hash_algo, plain, + ctx.label, ctx.labellen); + mpi_free (plain); plain = NULL; + if (!rc) + rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); + break; + + default: + /* Raw format. For backward compatibility we need to assume a + signed mpi by using the sexp format string "%m". */ + rc = sexp_build (r_plain, NULL, + (ctx.flags & PUBKEY_FLAG_LEGACYRESULT) + ? "%m" : "(value %m)", + plain); + break; + } + + + leave: + xfree (unpad); + _gcry_mpi_release (plain); + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.g); + _gcry_mpi_release (sk.y); + _gcry_mpi_release (sk.x); + _gcry_mpi_release (data_a); + _gcry_mpi_release (data_b); + sexp_release (l1); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("elg_decrypt => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_mpi_t data = NULL; + ELG_secret_key sk = {NULL, NULL, NULL, NULL}; + gcry_mpi_t sig_r = NULL; + gcry_mpi_t sig_s = NULL; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, + elg_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_mpidump ("elg_sign data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "pgyx", + &sk.p, &sk.g, &sk.y, &sk.x, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_mpidump ("elg_sign p", sk.p); + log_mpidump ("elg_sign g", sk.g); + log_mpidump ("elg_sign y", sk.y); + if (!fips_mode ()) + log_mpidump ("elg_sign x", sk.x); + } + + sig_r = mpi_new (0); + sig_s = mpi_new (0); + sign (sig_r, sig_s, data, &sk); + if (DBG_CIPHER) + { + log_mpidump ("elg_sign sig_r", sig_r); + log_mpidump ("elg_sign sig_s", sig_s); + } + rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s); + + leave: + _gcry_mpi_release (sig_r); + _gcry_mpi_release (sig_s); + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.g); + _gcry_mpi_release (sk.y); + _gcry_mpi_release (sk.x); + _gcry_mpi_release (data); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("elg_sign => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms) +{ + gcry_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_sexp_t l1 = NULL; + gcry_mpi_t sig_r = NULL; + gcry_mpi_t sig_s = NULL; + gcry_mpi_t data = NULL; + ELG_public_key pk = { NULL, NULL, NULL }; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, + elg_get_nbits (s_keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_mpidump ("elg_verify data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the signature value. */ + rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL); + if (rc) + goto leave; + rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_mpidump ("elg_verify s_r", sig_r); + log_mpidump ("elg_verify s_s", sig_s); + } + + /* Extract the key. */ + rc = sexp_extract_param (s_keyparms, NULL, "pgy", + &pk.p, &pk.g, &pk.y, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_mpidump ("elg_verify p", pk.p); + log_mpidump ("elg_verify g", pk.g); + log_mpidump ("elg_verify y", pk.y); + } + + /* Verify the signature. */ + if (!verify (sig_r, sig_s, data, &pk)) + rc = GPG_ERR_BAD_SIGNATURE; + + leave: + _gcry_mpi_release (pk.p); + _gcry_mpi_release (pk.g); + _gcry_mpi_release (pk.y); + _gcry_mpi_release (data); + _gcry_mpi_release (sig_r); + _gcry_mpi_release (sig_s); + sexp_release (l1); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("elg_verify => %s\n", rc?gpg_strerror (rc):"Good"); + return rc; +} + + +/* Return the number of bits for the key described by PARMS. On error + * 0 is returned. The format of PARMS starts with the algorithm name; + * for example: + * + * (dsa + * (p <mpi>) + * (g <mpi>) + * (y <mpi>)) + * + * More parameters may be given but we only need P here. + */ +static unsigned int +elg_get_nbits (gcry_sexp_t parms) +{ + gcry_sexp_t l1; + gcry_mpi_t p; + unsigned int nbits; + + l1 = sexp_find_token (parms, "p", 1); + if (!l1) + return 0; /* Parameter P not found. */ + + p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); + sexp_release (l1); + nbits = p? mpi_get_nbits (p) : 0; + _gcry_mpi_release (p); + return nbits; +} + + + +gcry_pk_spec_t _gcry_pubkey_spec_elg = + { + GCRY_PK_ELG, { 0, 0 }, + (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR), + "ELG", elg_names, + "pgy", "pgyx", "ab", "rs", "pgy", + elg_generate, + elg_check_secret_key, + elg_encrypt, + elg_decrypt, + elg_sign, + elg_verify, + elg_get_nbits, + }; |