diff options
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/rsa.c')
-rw-r--r-- | comm/third_party/libgcrypt/cipher/rsa.c | 2035 |
1 files changed, 2035 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/rsa.c b/comm/third_party/libgcrypt/cipher/rsa.c new file mode 100644 index 0000000000..575ea94924 --- /dev/null +++ b/comm/third_party/libgcrypt/cipher/rsa.c @@ -0,0 +1,2035 @@ +/* rsa.c - RSA implementation + * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn) + * Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc. + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +/* This code uses an algorithm protected by U.S. Patent #4,405,829 + which expired on September 20, 2000. The patent holder placed that + patent into the public domain on Sep 6th, 2000. +*/ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> + +#include "g10lib.h" +#include "mpi.h" +#include "cipher.h" +#include "pubkey-internal.h" + + +typedef struct +{ + gcry_mpi_t n; /* modulus */ + gcry_mpi_t e; /* exponent */ +} RSA_public_key; + + +typedef struct +{ + gcry_mpi_t n; /* public modulus */ + gcry_mpi_t e; /* public exponent */ + gcry_mpi_t d; /* exponent */ + gcry_mpi_t p; /* prime p. */ + gcry_mpi_t q; /* prime q. */ + gcry_mpi_t u; /* inverse of p mod q. */ +} RSA_secret_key; + + +static const char *rsa_names[] = + { + "rsa", + "openpgp-rsa", + "oid.1.2.840.113549.1.1.1", + NULL, + }; + + +/* A sample 2048 bit RSA key used for the selftests. */ +static const char sample_secret_key[] = +" (private-key" +" (rsa" +" (n #009F56231A3D82E3E7D613D59D53E9AB921BEF9F08A782AED0B6E46ADBC853EC" +" 7C71C422435A3CD8FA0DB9EFD55CD3295BADC4E8E2E2B94E15AE82866AB8ADE8" +" 7E469FAE76DC3577DE87F1F419C4EB41123DFAF8D16922D5EDBAD6E9076D5A1C" +" 958106F0AE5E2E9193C6B49124C64C2A241C4075D4AF16299EB87A6585BAE917" +" DEF27FCDD165764D069BC18D16527B29DAAB549F7BBED4A7C6A842D203ED6613" +" 6E2411744E432CD26D940132F25874483DCAEECDFD95744819CBCF1EA810681C" +" 42907EBCB1C7EAFBE75C87EC32C5413EA10476545D3FC7B2ADB1B66B7F200918" +" 664B0E5261C2895AA28B0DE321E921B3F877172CCCAB81F43EF98002916156F6CB#)" +" (e #010001#)" +" (d #07EF82500C403899934FE993AC5A36F14FF2DF38CF1EF315F205EE4C83EDAA19" +" 8890FC23DE9AA933CAFB37B6A8A8DBA675411958337287310D3FF2F1DDC0CB93" +" 7E70F57F75F833C021852B631D2B9A520E4431A03C5C3FCB5742DCD841D9FB12" +" 771AA1620DCEC3F1583426066ED9DC3F7028C5B59202C88FDF20396E2FA0EC4F" +" 5A22D9008F3043673931BC14A5046D6327398327900867E39CC61B2D1AFE2F48" +" EC8E1E3861C68D257D7425F4E6F99ABD77D61F10CA100EFC14389071831B33DD" +" 69CC8EABEF860D1DC2AAA84ABEAE5DFC91BC124DAF0F4C8EF5BBEA436751DE84" +" 3A8063E827A024466F44C28614F93B0732A100D4A0D86D532FE1E22C7725E401#)" +" (p #00C29D438F115825779631CD665A5739367F3E128ADC29766483A46CA80897E0" +" 79B32881860B8F9A6A04C2614A904F6F2578DAE13EA67CD60AE3D0AA00A1FF9B" +" 441485E44B2DC3D0B60260FBFE073B5AC72FAF67964DE15C8212C389D20DB9CF" +" 54AF6AEF5C4196EAA56495DD30CF709F499D5AB30CA35E086C2A1589D6283F1783#)" +" (q #00D1984135231CB243FE959C0CBEF551EDD986AD7BEDF71EDF447BE3DA27AF46" +" 79C974A6FA69E4D52FE796650623DE70622862713932AA2FD9F2EC856EAEAA77" +" 88B4EA6084DC81C902F014829B18EA8B2666EC41586818E0589E18876065F97E" +" 8D22CE2DA53A05951EC132DCEF41E70A9C35F4ACC268FFAC2ADF54FA1DA110B919#)" +" (u #67CF0FD7635205DD80FA814EE9E9C267C17376BF3209FB5D1BC42890D2822A04" +" 479DAF4D5B6ED69D0F8D1AF94164D07F8CD52ECEFE880641FA0F41DDAB1785E4" +" A37A32F997A516480B4CD4F6482B9466A1765093ED95023CA32D5EDC1E34CEE9" +" AF595BC51FE43C4BF810FA225AF697FB473B83815966188A4312C048B885E3F7#)))"; + +/* A sample 2048 bit RSA key used for the selftests (public only). */ +static const char sample_public_key[] = +" (public-key" +" (rsa" +" (n #009F56231A3D82E3E7D613D59D53E9AB921BEF9F08A782AED0B6E46ADBC853EC" +" 7C71C422435A3CD8FA0DB9EFD55CD3295BADC4E8E2E2B94E15AE82866AB8ADE8" +" 7E469FAE76DC3577DE87F1F419C4EB41123DFAF8D16922D5EDBAD6E9076D5A1C" +" 958106F0AE5E2E9193C6B49124C64C2A241C4075D4AF16299EB87A6585BAE917" +" DEF27FCDD165764D069BC18D16527B29DAAB549F7BBED4A7C6A842D203ED6613" +" 6E2411744E432CD26D940132F25874483DCAEECDFD95744819CBCF1EA810681C" +" 42907EBCB1C7EAFBE75C87EC32C5413EA10476545D3FC7B2ADB1B66B7F200918" +" 664B0E5261C2895AA28B0DE321E921B3F877172CCCAB81F43EF98002916156F6CB#)" +" (e #010001#)))"; + + +static int test_keys (RSA_secret_key *sk, unsigned nbits); +static int check_secret_key (RSA_secret_key *sk); +static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey); +static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey); +static unsigned int rsa_get_nbits (gcry_sexp_t parms); + + +/* Check that a freshly generated key actually works. Returns 0 on success. */ +static int +test_keys (RSA_secret_key *sk, unsigned int nbits) +{ + int result = -1; /* Default to failure. */ + RSA_public_key pk; + gcry_mpi_t plaintext = mpi_new (nbits); + gcry_mpi_t ciphertext = mpi_new (nbits); + gcry_mpi_t decr_plaintext = mpi_new (nbits); + gcry_mpi_t signature = mpi_new (nbits); + + /* Put the relevant parameters into a public key structure. */ + pk.n = sk->n; + pk.e = sk->e; + + /* Create a random plaintext. */ + _gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM); + + /* Encrypt using the public key. */ + public (ciphertext, plaintext, &pk); + + /* Check that the cipher text does not match the plaintext. */ + if (!mpi_cmp (ciphertext, plaintext)) + goto leave; /* Ciphertext is identical to the plaintext. */ + + /* Decrypt using the secret key. */ + secret (decr_plaintext, ciphertext, sk); + + /* Check that the decrypted plaintext matches the original plaintext. */ + if (mpi_cmp (decr_plaintext, plaintext)) + goto leave; /* Plaintext does not match. */ + + /* Create another random plaintext as data for signature checking. */ + _gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM); + + /* Use the RSA secret function to create a signature of the plaintext. */ + secret (signature, plaintext, sk); + + /* Use the RSA public function to verify this signature. */ + public (decr_plaintext, signature, &pk); + if (mpi_cmp (decr_plaintext, plaintext)) + goto leave; /* Signature does not match. */ + + /* Modify the signature and check that the signing fails. */ + mpi_add_ui (signature, signature, 1); + public (decr_plaintext, signature, &pk); + if (!mpi_cmp (decr_plaintext, plaintext)) + goto leave; /* Signature matches but should not. */ + + result = 0; /* All tests succeeded. */ + + leave: + _gcry_mpi_release (signature); + _gcry_mpi_release (decr_plaintext); + _gcry_mpi_release (ciphertext); + _gcry_mpi_release (plaintext); + return result; +} + + +/* Callback used by the prime generation to test whether the exponent + is suitable. Returns 0 if the test has been passed. */ +static int +check_exponent (void *arg, gcry_mpi_t a) +{ + gcry_mpi_t e = arg; + gcry_mpi_t tmp; + int result; + + mpi_sub_ui (a, a, 1); + tmp = _gcry_mpi_alloc_like (a); + result = !mpi_gcd(tmp, e, a); /* GCD is not 1. */ + _gcry_mpi_release (tmp); + mpi_add_ui (a, a, 1); + return result; +} + +/**************** + * Generate a key pair with a key of size NBITS. + * USE_E = 0 let Libcgrypt decide what exponent to use. + * = 1 request the use of a "secure" exponent; this is required by some + * specification to be 65537. + * > 2 Use this public exponent. If the given exponent + * is not odd one is internally added to it. + * TRANSIENT_KEY: If true, generate the primes using the standard RNG. + * Returns: 2 structures filled with all needed values + */ +static gpg_err_code_t +generate_std (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e, + int transient_key) +{ + gcry_mpi_t p, q; /* the two primes */ + gcry_mpi_t d; /* the private key */ + gcry_mpi_t u; + gcry_mpi_t t1, t2; + gcry_mpi_t n; /* the public key */ + gcry_mpi_t e; /* the exponent */ + gcry_mpi_t phi; /* helper: (p-1)(q-1) */ + gcry_mpi_t g; + gcry_mpi_t f; + gcry_random_level_t random_level; + + if (fips_mode ()) + { + if (nbits < 1024) + return GPG_ERR_INV_VALUE; + if (transient_key) + return GPG_ERR_INV_VALUE; + } + + /* The random quality depends on the transient_key flag. */ + random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM; + + /* Make sure that nbits is even so that we generate p, q of equal size. */ + if ( (nbits&1) ) + nbits++; + + if (use_e == 1) /* Alias for a secure value */ + use_e = 65537; /* as demanded by Sphinx. */ + + /* Public exponent: + In general we use 41 as this is quite fast and more secure than the + commonly used 17. Benchmarking the RSA verify function + with a 1024 bit key yields (2001-11-08): + e=17 0.54 ms + e=41 0.75 ms + e=257 0.95 ms + e=65537 1.80 ms + */ + e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + if (!use_e) + mpi_set_ui (e, 41); /* This is a reasonable secure and fast value */ + else + { + use_e |= 1; /* make sure this is odd */ + mpi_set_ui (e, use_e); + } + + n = mpi_new (nbits); + + p = q = NULL; + do + { + /* select two (very secret) primes */ + if (p) + _gcry_mpi_release (p); + if (q) + _gcry_mpi_release (q); + if (use_e) + { /* Do an extra test to ensure that the given exponent is + suitable. */ + p = _gcry_generate_secret_prime (nbits/2, random_level, + check_exponent, e); + q = _gcry_generate_secret_prime (nbits/2, random_level, + check_exponent, e); + } + else + { /* We check the exponent later. */ + p = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL); + q = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL); + } + if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/ + mpi_swap(p,q); + /* calculate the modulus */ + mpi_mul( n, p, q ); + } + while ( mpi_get_nbits(n) != nbits ); + + /* calculate Euler totient: phi = (p-1)(q-1) */ + t1 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + t2 = mpi_alloc_secure( mpi_get_nlimbs(p) ); + phi = mpi_snew ( nbits ); + g = mpi_snew ( nbits ); + f = mpi_snew ( nbits ); + mpi_sub_ui( t1, p, 1 ); + mpi_sub_ui( t2, q, 1 ); + mpi_mul( phi, t1, t2 ); + mpi_gcd (g, t1, t2); + mpi_fdiv_q(f, phi, g); + + while (!mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */ + { + if (use_e) + BUG (); /* The prime generator already made sure that we + never can get to here. */ + mpi_add_ui (e, e, 2); + } + + /* calculate the secret key d = e^-1 mod phi */ + d = mpi_snew ( nbits ); + mpi_invm (d, e, f ); + /* calculate the inverse of p and q (used for chinese remainder theorem)*/ + u = mpi_snew ( nbits ); + mpi_invm(u, p, q ); + + if( DBG_CIPHER ) + { + log_mpidump(" p= ", p ); + log_mpidump(" q= ", q ); + log_mpidump("phi= ", phi ); + log_mpidump(" g= ", g ); + log_mpidump(" f= ", f ); + log_mpidump(" n= ", n ); + log_mpidump(" e= ", e ); + log_mpidump(" d= ", d ); + log_mpidump(" u= ", u ); + } + + _gcry_mpi_release (t1); + _gcry_mpi_release (t2); + _gcry_mpi_release (phi); + _gcry_mpi_release (f); + _gcry_mpi_release (g); + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* Now we can test our keys. */ + if (test_keys (sk, nbits - 64)) + { + _gcry_mpi_release (sk->n); sk->n = NULL; + _gcry_mpi_release (sk->e); sk->e = NULL; + _gcry_mpi_release (sk->p); sk->p = NULL; + _gcry_mpi_release (sk->q); sk->q = NULL; + _gcry_mpi_release (sk->d); sk->d = NULL; + _gcry_mpi_release (sk->u); sk->u = NULL; + fips_signal_error ("self-test after key generation failed"); + return GPG_ERR_SELFTEST_FAILED; + } + + return 0; +} + + +/**************** + * Generate a key pair with a key of size NBITS. + * USE_E = 0 let Libcgrypt decide what exponent to use. + * = 1 request the use of a "secure" exponent; this is required by some + * specification to be 65537. + * > 2 Use this public exponent. If the given exponent + * is not odd one is internally added to it. + * TESTPARMS: If set, do not generate but test whether the p,q is probably prime + * Returns key with zeroes to not break code calling this function. + * TRANSIENT_KEY: If true, generate the primes using the standard RNG. + * Returns: 2 structures filled with all needed values + */ +static gpg_err_code_t +generate_fips (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e, + gcry_sexp_t testparms, int transient_key) +{ + gcry_mpi_t p, q; /* the two primes */ + gcry_mpi_t d; /* the private key */ + gcry_mpi_t u; + gcry_mpi_t p1, q1; + gcry_mpi_t n; /* the public key */ + gcry_mpi_t e; /* the exponent */ + gcry_mpi_t g; + gcry_mpi_t minp; + gcry_mpi_t diff, mindiff; + gcry_random_level_t random_level; + unsigned int pbits = nbits/2; + unsigned int i; + int pqswitch; + gpg_err_code_t ec = GPG_ERR_NO_PRIME; + + if (nbits < 1024 || (nbits & 0x1FF)) + return GPG_ERR_INV_VALUE; + if (_gcry_enforced_fips_mode() && nbits != 2048 && nbits != 3072) + return GPG_ERR_INV_VALUE; + + /* The random quality depends on the transient_key flag. */ + random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM; + + if (testparms) + { + /* Parameters to derive the key are given. */ + /* Note that we explicitly need to setup the values of tbl + because some compilers (e.g. OpenWatcom, IRIX) don't allow to + initialize a structure with automatic variables. */ + struct { const char *name; gcry_mpi_t *value; } tbl[] = { + { "e" }, + { "p" }, + { "q" }, + { NULL } + }; + int idx; + gcry_sexp_t oneparm; + + tbl[0].value = &e; + tbl[1].value = &p; + tbl[2].value = &q; + + for (idx=0; tbl[idx].name; idx++) + { + oneparm = sexp_find_token (testparms, tbl[idx].name, 0); + if (oneparm) + { + *tbl[idx].value = sexp_nth_mpi (oneparm, 1, GCRYMPI_FMT_USG); + sexp_release (oneparm); + } + } + for (idx=0; tbl[idx].name; idx++) + if (!*tbl[idx].value) + break; + if (tbl[idx].name) + { + /* At least one parameter is missing. */ + for (idx=0; tbl[idx].name; idx++) + _gcry_mpi_release (*tbl[idx].value); + return GPG_ERR_MISSING_VALUE; + } + } + else + { + if (use_e < 65537) + use_e = 65537; /* This is the smallest value allowed by FIPS */ + + e = mpi_alloc ((32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB); + + use_e |= 1; /* make sure this is odd */ + mpi_set_ui (e, use_e); + + p = mpi_snew (pbits); + q = mpi_snew (pbits); + } + + n = mpi_new (nbits); + d = mpi_snew (nbits); + u = mpi_snew (nbits); + + /* prepare approximate minimum p and q */ + minp = mpi_new (pbits); + mpi_set_ui (minp, 0xB504F334); + mpi_lshift (minp, minp, pbits - 32); + + /* prepare minimum p and q difference */ + diff = mpi_new (pbits); + mindiff = mpi_new (pbits - 99); + mpi_set_ui (mindiff, 1); + mpi_lshift (mindiff, mindiff, pbits - 100); + + p1 = mpi_snew (pbits); + q1 = mpi_snew (pbits); + g = mpi_snew (pbits); + + retry: + /* generate p and q */ + for (i = 0; i < 5 * pbits; i++) + { + ploop: + if (!testparms) + { + _gcry_mpi_randomize (p, pbits, random_level); + } + if (mpi_cmp (p, minp) < 0) + { + if (testparms) + goto err; + goto ploop; + } + + mpi_sub_ui (p1, p, 1); + if (mpi_gcd (g, p1, e)) + { + if (_gcry_fips186_4_prime_check (p, pbits) != GPG_ERR_NO_ERROR) + { + /* not a prime */ + if (testparms) + goto err; + } + else + break; + } + else if (testparms) + goto err; + } + if (i >= 5 * pbits) + goto err; + + for (i = 0; i < 5 * pbits; i++) + { + qloop: + if (!testparms) + { + _gcry_mpi_randomize (q, pbits, random_level); + } + if (mpi_cmp (q, minp) < 0) + { + if (testparms) + goto err; + goto qloop; + } + if (mpi_cmp (p, q) > 0) + { + pqswitch = 1; + mpi_sub (diff, p, q); + } + else + { + pqswitch = 0; + mpi_sub (diff, q, p); + } + if (mpi_cmp (diff, mindiff) < 0) + { + if (testparms) + goto err; + goto qloop; + } + + mpi_sub_ui (q1, q, 1); + if (mpi_gcd (g, q1, e)) + { + if (_gcry_fips186_4_prime_check (q, pbits) != GPG_ERR_NO_ERROR) + { + /* not a prime */ + if (testparms) + goto err; + } + else + break; + } + else if (testparms) + goto err; + } + if (i >= 5 * pbits) + goto err; + + if (testparms) + { + mpi_clear (p); + mpi_clear (q); + } + else + { + gcry_mpi_t f; + + if (pqswitch) + { + gcry_mpi_t tmp; + + tmp = p; + p = q; + q = tmp; + } + + f = mpi_snew (nbits); + + /* calculate the modulus */ + mpi_mul (n, p, q); + + /* calculate the secret key d = e^1 mod phi */ + mpi_gcd (g, p1, q1); + mpi_fdiv_q (f, p1, g); + mpi_mul (f, f, q1); + + mpi_invm (d, e, f); + + _gcry_mpi_release (f); + + if (mpi_get_nbits (d) < pbits) + goto retry; + + /* calculate the inverse of p and q (used for chinese remainder theorem)*/ + mpi_invm (u, p, q ); + } + + ec = 0; + + if (DBG_CIPHER) + { + log_mpidump(" p= ", p ); + log_mpidump(" q= ", q ); + log_mpidump(" n= ", n ); + log_mpidump(" e= ", e ); + log_mpidump(" d= ", d ); + log_mpidump(" u= ", u ); + } + + err: + + _gcry_mpi_release (p1); + _gcry_mpi_release (q1); + _gcry_mpi_release (g); + _gcry_mpi_release (minp); + _gcry_mpi_release (mindiff); + _gcry_mpi_release (diff); + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* Now we can test our keys. */ + if (ec || (!testparms && test_keys (sk, nbits - 64))) + { + _gcry_mpi_release (sk->n); sk->n = NULL; + _gcry_mpi_release (sk->e); sk->e = NULL; + _gcry_mpi_release (sk->p); sk->p = NULL; + _gcry_mpi_release (sk->q); sk->q = NULL; + _gcry_mpi_release (sk->d); sk->d = NULL; + _gcry_mpi_release (sk->u); sk->u = NULL; + if (!ec) + { + fips_signal_error ("self-test after key generation failed"); + return GPG_ERR_SELFTEST_FAILED; + } + } + + return ec; +} + + +/* Helper for generate_x931. */ +static gcry_mpi_t +gen_x931_parm_xp (unsigned int nbits) +{ + gcry_mpi_t xp; + + xp = mpi_snew (nbits); + _gcry_mpi_randomize (xp, nbits, GCRY_VERY_STRONG_RANDOM); + + /* The requirement for Xp is: + + sqrt{2}*2^{nbits-1} <= xp <= 2^{nbits} - 1 + + We set the two high order bits to 1 to satisfy the lower bound. + By using mpi_set_highbit we make sure that the upper bound is + satisfied as well. */ + mpi_set_highbit (xp, nbits-1); + mpi_set_bit (xp, nbits-2); + gcry_assert ( mpi_get_nbits (xp) == nbits ); + + return xp; +} + + +/* Helper for generate_x931. */ +static gcry_mpi_t +gen_x931_parm_xi (void) +{ + gcry_mpi_t xi; + + xi = mpi_snew (101); + _gcry_mpi_randomize (xi, 101, GCRY_VERY_STRONG_RANDOM); + mpi_set_highbit (xi, 100); + gcry_assert ( mpi_get_nbits (xi) == 101 ); + + return xi; +} + + + +/* Variant of the standard key generation code using the algorithm + from X9.31. Using this algorithm has the advantage that the + generation can be made deterministic which is required for CAVS + testing. */ +static gpg_err_code_t +generate_x931 (RSA_secret_key *sk, unsigned int nbits, unsigned long e_value, + gcry_sexp_t deriveparms, int *swapped) +{ + gcry_mpi_t p, q; /* The two primes. */ + gcry_mpi_t e; /* The public exponent. */ + gcry_mpi_t n; /* The public key. */ + gcry_mpi_t d; /* The private key */ + gcry_mpi_t u; /* The inverse of p and q. */ + gcry_mpi_t pm1; /* p - 1 */ + gcry_mpi_t qm1; /* q - 1 */ + gcry_mpi_t phi; /* Euler totient. */ + gcry_mpi_t f, g; /* Helper. */ + + *swapped = 0; + + if (e_value == 1) /* Alias for a secure value. */ + e_value = 65537; + + /* Point 1 of section 4.1: k = 1024 + 256s with S >= 0 */ + if (nbits < 1024 || (nbits % 256)) + return GPG_ERR_INV_VALUE; + + /* Point 2: 2 <= bitlength(e) < 2^{k-2} + Note that we do not need to check the upper bound because we use + an unsigned long for E and thus there is no way for E to reach + that limit. */ + if (e_value < 3) + return GPG_ERR_INV_VALUE; + + /* Our implementation requires E to be odd. */ + if (!(e_value & 1)) + return GPG_ERR_INV_VALUE; + + /* Point 3: e > 0 or e 0 if it is to be randomly generated. + We support only a fixed E and thus there is no need for an extra test. */ + + + /* Compute or extract the derive parameters. */ + { + gcry_mpi_t xp1 = NULL; + gcry_mpi_t xp2 = NULL; + gcry_mpi_t xp = NULL; + gcry_mpi_t xq1 = NULL; + gcry_mpi_t xq2 = NULL; + gcry_mpi_t xq = NULL; + gcry_mpi_t tmpval; + + if (!deriveparms) + { + /* Not given: Generate them. */ + xp = gen_x931_parm_xp (nbits/2); + /* Make sure that |xp - xq| > 2^{nbits - 100} holds. */ + tmpval = mpi_snew (nbits/2); + do + { + _gcry_mpi_release (xq); + xq = gen_x931_parm_xp (nbits/2); + mpi_sub (tmpval, xp, xq); + } + while (mpi_get_nbits (tmpval) <= (nbits/2 - 100)); + _gcry_mpi_release (tmpval); + + xp1 = gen_x931_parm_xi (); + xp2 = gen_x931_parm_xi (); + xq1 = gen_x931_parm_xi (); + xq2 = gen_x931_parm_xi (); + + } + else + { + /* Parameters to derive the key are given. */ + /* Note that we explicitly need to setup the values of tbl + because some compilers (e.g. OpenWatcom, IRIX) don't allow + to initialize a structure with automatic variables. */ + struct { const char *name; gcry_mpi_t *value; } tbl[] = { + { "Xp1" }, + { "Xp2" }, + { "Xp" }, + { "Xq1" }, + { "Xq2" }, + { "Xq" }, + { NULL } + }; + int idx; + gcry_sexp_t oneparm; + + tbl[0].value = &xp1; + tbl[1].value = &xp2; + tbl[2].value = &xp; + tbl[3].value = &xq1; + tbl[4].value = &xq2; + tbl[5].value = &xq; + + for (idx=0; tbl[idx].name; idx++) + { + oneparm = sexp_find_token (deriveparms, tbl[idx].name, 0); + if (oneparm) + { + *tbl[idx].value = sexp_nth_mpi (oneparm, 1, GCRYMPI_FMT_USG); + sexp_release (oneparm); + } + } + for (idx=0; tbl[idx].name; idx++) + if (!*tbl[idx].value) + break; + if (tbl[idx].name) + { + /* At least one parameter is missing. */ + for (idx=0; tbl[idx].name; idx++) + _gcry_mpi_release (*tbl[idx].value); + return GPG_ERR_MISSING_VALUE; + } + } + + e = mpi_alloc_set_ui (e_value); + + /* Find two prime numbers. */ + p = _gcry_derive_x931_prime (xp, xp1, xp2, e, NULL, NULL); + q = _gcry_derive_x931_prime (xq, xq1, xq2, e, NULL, NULL); + _gcry_mpi_release (xp); xp = NULL; + _gcry_mpi_release (xp1); xp1 = NULL; + _gcry_mpi_release (xp2); xp2 = NULL; + _gcry_mpi_release (xq); xq = NULL; + _gcry_mpi_release (xq1); xq1 = NULL; + _gcry_mpi_release (xq2); xq2 = NULL; + if (!p || !q) + { + _gcry_mpi_release (p); + _gcry_mpi_release (q); + _gcry_mpi_release (e); + return GPG_ERR_NO_PRIME; + } + } + + + /* Compute the public modulus. We make sure that p is smaller than + q to allow the use of the CRT. */ + if (mpi_cmp (p, q) > 0 ) + { + mpi_swap (p, q); + *swapped = 1; + } + n = mpi_new (nbits); + mpi_mul (n, p, q); + + /* Compute the Euler totient: phi = (p-1)(q-1) */ + pm1 = mpi_snew (nbits/2); + qm1 = mpi_snew (nbits/2); + phi = mpi_snew (nbits); + mpi_sub_ui (pm1, p, 1); + mpi_sub_ui (qm1, q, 1); + mpi_mul (phi, pm1, qm1); + + g = mpi_snew (nbits); + gcry_assert (mpi_gcd (g, e, phi)); + + /* Compute: f = lcm(p-1,q-1) = phi / gcd(p-1,q-1) */ + mpi_gcd (g, pm1, qm1); + f = pm1; pm1 = NULL; + _gcry_mpi_release (qm1); qm1 = NULL; + mpi_fdiv_q (f, phi, g); + _gcry_mpi_release (phi); phi = NULL; + d = g; g = NULL; + /* Compute the secret key: d = e^{-1} mod lcm(p-1,q-1) */ + mpi_invm (d, e, f); + + /* Compute the inverse of p and q. */ + u = f; f = NULL; + mpi_invm (u, p, q ); + + if( DBG_CIPHER ) + { + if (*swapped) + log_debug ("p and q are swapped\n"); + log_mpidump(" p", p ); + log_mpidump(" q", q ); + log_mpidump(" n", n ); + log_mpidump(" e", e ); + log_mpidump(" d", d ); + log_mpidump(" u", u ); + } + + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* Now we can test our keys. */ + if (test_keys (sk, nbits - 64)) + { + _gcry_mpi_release (sk->n); sk->n = NULL; + _gcry_mpi_release (sk->e); sk->e = NULL; + _gcry_mpi_release (sk->p); sk->p = NULL; + _gcry_mpi_release (sk->q); sk->q = NULL; + _gcry_mpi_release (sk->d); sk->d = NULL; + _gcry_mpi_release (sk->u); sk->u = NULL; + fips_signal_error ("self-test after key generation failed"); + return GPG_ERR_SELFTEST_FAILED; + } + + return 0; +} + + +/**************** + * Test whether the secret key is valid. + * Returns: true if this is a valid key. + */ +static int +check_secret_key( RSA_secret_key *sk ) +{ + int rc; + gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 ); + + mpi_mul(temp, sk->p, sk->q ); + rc = mpi_cmp( temp, sk->n ); + mpi_free(temp); + return !rc; +} + + + +/**************** + * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT. + * + * c = m^e mod n + * + * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY. + */ +static void +public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey ) +{ + if( output == input ) /* powm doesn't like output and input the same */ + { + gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 ); + mpi_powm( x, input, pkey->e, pkey->n ); + mpi_set(output, x); + mpi_free(x); + } + else + mpi_powm( output, input, pkey->e, pkey->n ); +} + +#if 0 +static void +stronger_key_check ( RSA_secret_key *skey ) +{ + gcry_mpi_t t = mpi_alloc_secure ( 0 ); + gcry_mpi_t t1 = mpi_alloc_secure ( 0 ); + gcry_mpi_t t2 = mpi_alloc_secure ( 0 ); + gcry_mpi_t phi = mpi_alloc_secure ( 0 ); + + /* check that n == p * q */ + mpi_mul( t, skey->p, skey->q); + if (mpi_cmp( t, skey->n) ) + log_info ( "RSA Oops: n != p * q\n" ); + + /* check that p is less than q */ + if( mpi_cmp( skey->p, skey->q ) > 0 ) + { + log_info ("RSA Oops: p >= q - fixed\n"); + _gcry_mpi_swap ( skey->p, skey->q); + } + + /* check that e divides neither p-1 nor q-1 */ + mpi_sub_ui(t, skey->p, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides p-1\n" ); + mpi_sub_ui(t, skey->q, 1 ); + mpi_fdiv_r(t, t, skey->e ); + if ( !mpi_cmp_ui( t, 0) ) + log_info ( "RSA Oops: e divides q-1\n" ); + + /* check that d is correct */ + mpi_sub_ui( t1, skey->p, 1 ); + mpi_sub_ui( t2, skey->q, 1 ); + mpi_mul( phi, t1, t2 ); + gcry_mpi_gcd(t, t1, t2); + mpi_fdiv_q(t, phi, t); + mpi_invm(t, skey->e, t ); + if ( mpi_cmp(t, skey->d ) ) + { + log_info ( "RSA Oops: d is wrong - fixed\n"); + mpi_set (skey->d, t); + log_printmpi (" fixed d", skey->d); + } + + /* check for correctness of u */ + mpi_invm(t, skey->p, skey->q ); + if ( mpi_cmp(t, skey->u ) ) + { + log_info ( "RSA Oops: u is wrong - fixed\n"); + mpi_set (skey->u, t); + log_printmpi (" fixed u", skey->u); + } + + log_info ( "RSA secret key check finished\n"); + + mpi_free (t); + mpi_free (t1); + mpi_free (t2); + mpi_free (phi); +} +#endif + + + +/* Secret key operation - standard version. + * + * m = c^d mod n + */ +static void +secret_core_std (gcry_mpi_t M, gcry_mpi_t C, + gcry_mpi_t D, gcry_mpi_t N) +{ + mpi_powm (M, C, D, N); +} + + +/* Secret key operation - using the CRT. + * + * m1 = c ^ (d mod (p-1)) mod p + * m2 = c ^ (d mod (q-1)) mod q + * h = u * (m2 - m1) mod q + * m = m1 + h * p + */ +static void +secret_core_crt (gcry_mpi_t M, gcry_mpi_t C, + gcry_mpi_t D, unsigned int Nlimbs, + gcry_mpi_t P, gcry_mpi_t Q, gcry_mpi_t U) +{ + gcry_mpi_t m1 = mpi_alloc_secure ( Nlimbs + 1 ); + gcry_mpi_t m2 = mpi_alloc_secure ( Nlimbs + 1 ); + gcry_mpi_t h = mpi_alloc_secure ( Nlimbs + 1 ); + gcry_mpi_t D_blind = mpi_alloc_secure ( Nlimbs + 1 ); + gcry_mpi_t r; + unsigned int r_nbits; + + r_nbits = mpi_get_nbits (P) / 4; + if (r_nbits < 96) + r_nbits = 96; + r = mpi_secure_new (r_nbits); + + /* d_blind = (d mod (p-1)) + (p-1) * r */ + /* m1 = c ^ d_blind mod p */ + _gcry_mpi_randomize (r, r_nbits, GCRY_WEAK_RANDOM); + mpi_set_highbit (r, r_nbits - 1); + mpi_sub_ui ( h, P, 1 ); + mpi_mul ( D_blind, h, r ); + mpi_fdiv_r ( h, D, h ); + mpi_add ( D_blind, D_blind, h ); + mpi_powm ( m1, C, D_blind, P ); + + /* d_blind = (d mod (q-1)) + (q-1) * r */ + /* m2 = c ^ d_blind mod q */ + _gcry_mpi_randomize (r, r_nbits, GCRY_WEAK_RANDOM); + mpi_set_highbit (r, r_nbits - 1); + mpi_sub_ui ( h, Q, 1 ); + mpi_mul ( D_blind, h, r ); + mpi_fdiv_r ( h, D, h ); + mpi_add ( D_blind, D_blind, h ); + mpi_powm ( m2, C, D_blind, Q ); + + mpi_free ( r ); + mpi_free ( D_blind ); + + /* h = u * ( m2 - m1 ) mod q */ + mpi_sub ( h, m2, m1 ); + if ( mpi_has_sign ( h ) ) + mpi_add ( h, h, Q ); + mpi_mulm ( h, U, h, Q ); + + /* m = m1 + h * p */ + mpi_mul ( h, h, P ); + mpi_add ( M, m1, h ); + + mpi_free ( h ); + mpi_free ( m1 ); + mpi_free ( m2 ); +} + + +/* Secret key operation. + * Encrypt INPUT with SKEY and put result into + * OUTPUT. SKEY has the secret key parameters. + */ +static void +secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey ) +{ + /* Remove superfluous leading zeroes from INPUT. */ + mpi_normalize (input); + + if (!skey->p || !skey->q || !skey->u) + { + secret_core_std (output, input, skey->d, skey->n); + } + else + { + secret_core_crt (output, input, skey->d, mpi_get_nlimbs (skey->n), + skey->p, skey->q, skey->u); + } +} + + +static void +secret_blinded (gcry_mpi_t output, gcry_mpi_t input, + RSA_secret_key *sk, unsigned int nbits) +{ + gcry_mpi_t r; /* Random number needed for blinding. */ + gcry_mpi_t ri; /* Modular multiplicative inverse of r. */ + gcry_mpi_t bldata; /* Blinded data to decrypt. */ + + /* First, we need a random number r between 0 and n - 1, which is + * relatively prime to n (i.e. it is neither p nor q). The random + * number needs to be only unpredictable, thus we employ the + * gcry_create_nonce function by using GCRY_WEAK_RANDOM with + * gcry_mpi_randomize. */ + r = mpi_snew (nbits); + ri = mpi_snew (nbits); + bldata = mpi_snew (nbits); + + do + { + _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM); + mpi_mod (r, r, sk->n); + } + while (!mpi_invm (ri, r, sk->n)); + + /* Do blinding. We calculate: y = (x * r^e) mod n, where r is the + * random number, e is the public exponent, x is the non-blinded + * input data and n is the RSA modulus. */ + mpi_powm (bldata, r, sk->e, sk->n); + mpi_mulm (bldata, bldata, input, sk->n); + + /* Perform decryption. */ + secret (output, bldata, sk); + _gcry_mpi_release (bldata); + + /* Undo blinding. Here we calculate: y = (x * r^-1) mod n, where x + * is the blinded decrypted data, ri is the modular multiplicative + * inverse of r and n is the RSA modulus. */ + mpi_mulm (output, output, ri, sk->n); + + _gcry_mpi_release (r); + _gcry_mpi_release (ri); +} + + +/********************************************* + ************** interface ****************** + *********************************************/ + +static gcry_err_code_t +rsa_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) +{ + gpg_err_code_t ec; + unsigned int nbits; + unsigned long evalue; + RSA_secret_key sk; + gcry_sexp_t deriveparms; + int flags = 0; + gcry_sexp_t l1; + gcry_sexp_t swap_info = NULL; + + memset (&sk, 0, sizeof sk); + + ec = _gcry_pk_util_get_nbits (genparms, &nbits); + if (ec) + return ec; + + ec = _gcry_pk_util_get_rsa_use_e (genparms, &evalue); + if (ec) + return ec; + + /* Parse the optional flags list. */ + l1 = sexp_find_token (genparms, "flags", 0); + if (l1) + { + ec = _gcry_pk_util_parse_flaglist (l1, &flags, NULL); + sexp_release (l1); + if (ec) + return ec; + } + + deriveparms = (genparms? + sexp_find_token (genparms, "derive-parms", 0) : NULL); + if (!deriveparms) + { + /* Parse the optional "use-x931" flag. */ + l1 = sexp_find_token (genparms, "use-x931", 0); + if (l1) + { + flags |= PUBKEY_FLAG_USE_X931; + sexp_release (l1); + } + } + + if (deriveparms || (flags & PUBKEY_FLAG_USE_X931)) + { + int swapped; + ec = generate_x931 (&sk, nbits, evalue, deriveparms, &swapped); + sexp_release (deriveparms); + if (!ec && swapped) + ec = sexp_new (&swap_info, "(misc-key-info(p-q-swapped))", 0, 1); + } + else + { + /* Parse the optional "transient-key" flag. */ + if (!(flags & PUBKEY_FLAG_TRANSIENT_KEY)) + { + l1 = sexp_find_token (genparms, "transient-key", 0); + if (l1) + { + flags |= PUBKEY_FLAG_TRANSIENT_KEY; + sexp_release (l1); + } + } + deriveparms = (genparms? sexp_find_token (genparms, "test-parms", 0) + /**/ : NULL); + + /* Generate. */ + if (deriveparms || fips_mode()) + { + ec = generate_fips (&sk, nbits, evalue, deriveparms, + !!(flags & PUBKEY_FLAG_TRANSIENT_KEY)); + } + else + { + ec = generate_std (&sk, nbits, evalue, + !!(flags & PUBKEY_FLAG_TRANSIENT_KEY)); + } + sexp_release (deriveparms); + } + + if (!ec) + { + ec = sexp_build (r_skey, NULL, + "(key-data" + " (public-key" + " (rsa(n%m)(e%m)))" + " (private-key" + " (rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))" + " %S)", + sk.n, sk.e, + sk.n, sk.e, sk.d, sk.p, sk.q, sk.u, + swap_info); + } + + mpi_free (sk.n); + mpi_free (sk.e); + mpi_free (sk.p); + mpi_free (sk.q); + mpi_free (sk.d); + mpi_free (sk.u); + sexp_release (swap_info); + + return ec; +} + + +static gcry_err_code_t +rsa_check_secret_key (gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL}; + + /* To check the key we need the optional parameters. */ + rc = sexp_extract_param (keyparms, NULL, "nedpqu", + &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u, + NULL); + if (rc) + goto leave; + + if (!check_secret_key (&sk)) + rc = GPG_ERR_BAD_SECKEY; + + leave: + _gcry_mpi_release (sk.n); + _gcry_mpi_release (sk.e); + _gcry_mpi_release (sk.d); + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.q); + _gcry_mpi_release (sk.u); + if (DBG_CIPHER) + log_debug ("rsa_testkey => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +rsa_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_mpi_t data = NULL; + RSA_public_key pk = {NULL, NULL}; + gcry_mpi_t ciph = NULL; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, + rsa_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_mpidump ("rsa_encrypt data", data); + if (!data || mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "ne", &pk.n, &pk.e, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_mpidump ("rsa_encrypt n", pk.n); + log_mpidump ("rsa_encrypt e", pk.e); + } + + /* Do RSA computation and build result. */ + ciph = mpi_new (0); + public (ciph, data, &pk); + if (DBG_CIPHER) + log_mpidump ("rsa_encrypt res", ciph); + if ((ctx.flags & PUBKEY_FLAG_FIXEDLEN)) + { + /* We need to make sure to return the correct length to avoid + problems with missing leading zeroes. */ + unsigned char *em; + size_t emlen = (mpi_get_nbits (pk.n)+7)/8; + + rc = _gcry_mpi_to_octet_string (&em, NULL, ciph, emlen); + if (!rc) + { + rc = sexp_build (r_ciph, NULL, "(enc-val(rsa(a%b)))", (int)emlen, em); + xfree (em); + } + } + else + rc = sexp_build (r_ciph, NULL, "(enc-val(rsa(a%m)))", ciph); + + leave: + _gcry_mpi_release (ciph); + _gcry_mpi_release (pk.n); + _gcry_mpi_release (pk.e); + _gcry_mpi_release (data); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("rsa_encrypt => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +rsa_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms) + +{ + gpg_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_sexp_t l1 = NULL; + gcry_mpi_t data = NULL; + RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL}; + gcry_mpi_t plain = NULL; + unsigned char *unpad = NULL; + size_t unpadlen = 0; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, + rsa_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_preparse_encval (s_data, rsa_names, &l1, &ctx); + if (rc) + goto leave; + rc = sexp_extract_param (l1, NULL, "a", &data, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + log_printmpi ("rsa_decrypt data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "nedp?q?u?", + &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u, + NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_printmpi ("rsa_decrypt n", sk.n); + log_printmpi ("rsa_decrypt e", sk.e); + if (!fips_mode ()) + { + log_printmpi ("rsa_decrypt d", sk.d); + log_printmpi ("rsa_decrypt p", sk.p); + log_printmpi ("rsa_decrypt q", sk.q); + log_printmpi ("rsa_decrypt u", sk.u); + } + } + + /* Better make sure that there are no superfluous leading zeroes in + the input and it has not been "padded" using multiples of N. + This mitigates side-channel attacks (CVE-2013-4576). */ + mpi_normalize (data); + mpi_fdiv_r (data, data, sk.n); + + /* Allocate MPI for the plaintext. */ + plain = mpi_snew (ctx.nbits); + + /* We use blinding by default to mitigate timing attacks which can + be practically mounted over the network as shown by Brumley and + Boney in 2003. */ + if ((ctx.flags & PUBKEY_FLAG_NO_BLINDING)) + secret (plain, data, &sk); + else + secret_blinded (plain, data, &sk, ctx.nbits); + + if (DBG_CIPHER) + log_printmpi ("rsa_decrypt res", plain); + + /* Reverse the encoding and build the s-expression. */ + switch (ctx.encoding) + { + case PUBKEY_ENC_PKCS1: + rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain); + mpi_free (plain); + plain = NULL; + if (!rc) + rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); + break; + + case PUBKEY_ENC_OAEP: + rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen, + ctx.nbits, ctx.hash_algo, + plain, ctx.label, ctx.labellen); + mpi_free (plain); + plain = NULL; + if (!rc) + rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); + break; + + default: + /* Raw format. For backward compatibility we need to assume a + signed mpi by using the sexp format string "%m". */ + rc = sexp_build (r_plain, NULL, + (ctx.flags & PUBKEY_FLAG_LEGACYRESULT) + ? "%m":"(value %m)", plain); + break; + } + + leave: + xfree (unpad); + _gcry_mpi_release (plain); + _gcry_mpi_release (sk.n); + _gcry_mpi_release (sk.e); + _gcry_mpi_release (sk.d); + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.q); + _gcry_mpi_release (sk.u); + _gcry_mpi_release (data); + sexp_release (l1); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("rsa_decrypt => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +rsa_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gpg_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_mpi_t data = NULL; + RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL}; + RSA_public_key pk; + gcry_mpi_t sig = NULL; + gcry_mpi_t result = NULL; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, + rsa_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_printmpi ("rsa_sign data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "nedp?q?u?", + &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u, + NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_printmpi ("rsa_sign n", sk.n); + log_printmpi ("rsa_sign e", sk.e); + if (!fips_mode ()) + { + log_printmpi ("rsa_sign d", sk.d); + log_printmpi ("rsa_sign p", sk.p); + log_printmpi ("rsa_sign q", sk.q); + log_printmpi ("rsa_sign u", sk.u); + } + } + + /* Do RSA computation. */ + sig = mpi_new (0); + if ((ctx.flags & PUBKEY_FLAG_NO_BLINDING)) + secret (sig, data, &sk); + else + secret_blinded (sig, data, &sk, ctx.nbits); + if (DBG_CIPHER) + log_printmpi ("rsa_sign res", sig); + + /* Check that the created signature is good. This detects a failure + of the CRT algorithm (Lenstra's attack on RSA's use of the CRT). */ + result = mpi_new (0); + pk.n = sk.n; + pk.e = sk.e; + public (result, sig, &pk); + if (mpi_cmp (result, data)) + { + rc = GPG_ERR_BAD_SIGNATURE; + goto leave; + } + + /* Convert the result. */ + if ((ctx.flags & PUBKEY_FLAG_FIXEDLEN)) + { + /* We need to make sure to return the correct length to avoid + problems with missing leading zeroes. */ + unsigned char *em; + size_t emlen = (mpi_get_nbits (sk.n)+7)/8; + + rc = _gcry_mpi_to_octet_string (&em, NULL, sig, emlen); + if (!rc) + { + rc = sexp_build (r_sig, NULL, "(sig-val(rsa(s%b)))", (int)emlen, em); + xfree (em); + } + } + else + rc = sexp_build (r_sig, NULL, "(sig-val(rsa(s%M)))", sig); + + + leave: + _gcry_mpi_release (result); + _gcry_mpi_release (sig); + _gcry_mpi_release (sk.n); + _gcry_mpi_release (sk.e); + _gcry_mpi_release (sk.d); + _gcry_mpi_release (sk.p); + _gcry_mpi_release (sk.q); + _gcry_mpi_release (sk.u); + _gcry_mpi_release (data); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("rsa_sign => %s\n", gpg_strerror (rc)); + return rc; +} + + +static gcry_err_code_t +rsa_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) +{ + gcry_err_code_t rc; + struct pk_encoding_ctx ctx; + gcry_sexp_t l1 = NULL; + gcry_mpi_t sig = NULL; + gcry_mpi_t data = NULL; + RSA_public_key pk = { NULL, NULL }; + gcry_mpi_t result = NULL; + + _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, + rsa_get_nbits (keyparms)); + + /* Extract the data. */ + rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); + if (rc) + goto leave; + if (DBG_CIPHER) + log_printmpi ("rsa_verify data", data); + if (mpi_is_opaque (data)) + { + rc = GPG_ERR_INV_DATA; + goto leave; + } + + /* Extract the signature value. */ + rc = _gcry_pk_util_preparse_sigval (s_sig, rsa_names, &l1, NULL); + if (rc) + goto leave; + rc = sexp_extract_param (l1, NULL, "s", &sig, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + log_printmpi ("rsa_verify sig", sig); + + /* Extract the key. */ + rc = sexp_extract_param (keyparms, NULL, "ne", &pk.n, &pk.e, NULL); + if (rc) + goto leave; + if (DBG_CIPHER) + { + log_printmpi ("rsa_verify n", pk.n); + log_printmpi ("rsa_verify e", pk.e); + } + + /* Do RSA computation and compare. */ + result = mpi_new (0); + public (result, sig, &pk); + if (DBG_CIPHER) + log_printmpi ("rsa_verify cmp", result); + if (ctx.verify_cmp) + rc = ctx.verify_cmp (&ctx, result); + else + rc = mpi_cmp (result, data) ? GPG_ERR_BAD_SIGNATURE : 0; + + leave: + _gcry_mpi_release (result); + _gcry_mpi_release (pk.n); + _gcry_mpi_release (pk.e); + _gcry_mpi_release (data); + _gcry_mpi_release (sig); + sexp_release (l1); + _gcry_pk_util_free_encoding_ctx (&ctx); + if (DBG_CIPHER) + log_debug ("rsa_verify => %s\n", rc?gpg_strerror (rc):"Good"); + return rc; +} + + + +/* Return the number of bits for the key described by PARMS. On error + * 0 is returned. The format of PARMS starts with the algorithm name; + * for example: + * + * (rsa + * (n <mpi>) + * (e <mpi>)) + * + * More parameters may be given but we only need N here. + */ +static unsigned int +rsa_get_nbits (gcry_sexp_t parms) +{ + gcry_sexp_t l1; + gcry_mpi_t n; + unsigned int nbits; + + l1 = sexp_find_token (parms, "n", 1); + if (!l1) + return 0; /* Parameter N not found. */ + + n = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); + sexp_release (l1); + nbits = n? mpi_get_nbits (n) : 0; + _gcry_mpi_release (n); + return nbits; +} + + +/* Compute a keygrip. MD is the hash context which we are going to + update. KEYPARAM is an S-expression with the key parameters, this + is usually a public key but may also be a secret key. An example + of such an S-expression is: + + (rsa + (n #00B...#) + (e #010001#)) + + PKCS-15 says that for RSA only the modulus should be hashed - + however, it is not clear whether this is meant to use the raw bytes + (assuming this is an unsigned integer) or whether the DER required + 0 should be prefixed. We hash the raw bytes. */ +static gpg_err_code_t +compute_keygrip (gcry_md_hd_t md, gcry_sexp_t keyparam) +{ + gcry_sexp_t l1; + const char *data; + size_t datalen; + + l1 = sexp_find_token (keyparam, "n", 1); + if (!l1) + return GPG_ERR_NO_OBJ; + + data = sexp_nth_data (l1, 1, &datalen); + if (!data) + { + sexp_release (l1); + return GPG_ERR_NO_OBJ; + } + + _gcry_md_write (md, data, datalen); + sexp_release (l1); + + return 0; +} + + + + +/* + Self-test section. + */ + +static const char * +selftest_sign_2048 (gcry_sexp_t pkey, gcry_sexp_t skey) +{ + static const char sample_data[] = + "(data (flags pkcs1)" + " (hash sha256 #11223344556677889900aabbccddeeff" + /**/ "102030405060708090a0b0c0d0f01121#))"; + static const char sample_data_bad[] = + "(data (flags pkcs1)" + " (hash sha256 #11223344556677889900aabbccddeeff" + /**/ "802030405060708090a0b0c0d0f01121#))"; + + const char *errtxt = NULL; + gcry_error_t err; + gcry_sexp_t data = NULL; + gcry_sexp_t data_bad = NULL; + gcry_sexp_t sig = NULL; + /* raw signature data reference */ + const char ref_data[] = + "6252a19a11e1d5155ed9376036277193d644fa239397fff03e9b92d6f86415d6" + "d30da9273775f290e580d038295ff8ff89522becccfa6ae870bf76b76df402a8" + "54f69347e3db3de8e1e7d4dada281ec556810c7a8ecd0b5f51f9b1c0e7aa7557" + "61aa2b8ba5f811304acc6af0eca41fe49baf33bf34eddaf44e21e036ac7f0b68" + "03cdef1c60021fb7b5b97ebacdd88ab755ce29af568dbc5728cc6e6eff42618d" + "62a0386ca8beed46402bdeeef29b6a3feded906bace411a06a39192bf516ae10" + "67e4320fa8ea113968525f4574d022a3ceeaafdc41079efe1f22cc94bf59d8d3" + "328085da9674857db56de5978a62394aab48aa3b72e23a1b16260cfd9daafe65"; + gcry_mpi_t ref_mpi = NULL; + gcry_mpi_t sig_mpi = NULL; + + err = sexp_sscan (&data, NULL, sample_data, strlen (sample_data)); + if (!err) + err = sexp_sscan (&data_bad, NULL, + sample_data_bad, strlen (sample_data_bad)); + if (err) + { + errtxt = "converting data failed"; + goto leave; + } + + err = _gcry_pk_sign (&sig, data, skey); + if (err) + { + errtxt = "signing failed"; + goto leave; + } + + err = _gcry_mpi_scan(&ref_mpi, GCRYMPI_FMT_HEX, ref_data, 0, NULL); + if (err) + { + errtxt = "converting ref_data to mpi failed"; + goto leave; + } + + err = _gcry_sexp_extract_param(sig, "sig-val!rsa", "s", &sig_mpi, NULL); + if (err) + { + errtxt = "extracting signature data failed"; + goto leave; + } + + if (mpi_cmp (sig_mpi, ref_mpi)) + { + errtxt = "signature does not match reference data"; + goto leave; + } + + err = _gcry_pk_verify (sig, data, pkey); + if (err) + { + errtxt = "verify failed"; + goto leave; + } + err = _gcry_pk_verify (sig, data_bad, pkey); + if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE) + { + errtxt = "bad signature not detected"; + goto leave; + } + + + leave: + sexp_release (sig); + sexp_release (data_bad); + sexp_release (data); + _gcry_mpi_release (ref_mpi); + _gcry_mpi_release (sig_mpi); + return errtxt; +} + + + +/* Given an S-expression ENCR_DATA of the form: + + (enc-val + (rsa + (a a-value))) + + as returned by gcry_pk_decrypt, return the the A-VALUE. On error, + return NULL. */ +static gcry_mpi_t +extract_a_from_sexp (gcry_sexp_t encr_data) +{ + gcry_sexp_t l1, l2, l3; + gcry_mpi_t a_value; + + l1 = sexp_find_token (encr_data, "enc-val", 0); + if (!l1) + return NULL; + l2 = sexp_find_token (l1, "rsa", 0); + sexp_release (l1); + if (!l2) + return NULL; + l3 = sexp_find_token (l2, "a", 0); + sexp_release (l2); + if (!l3) + return NULL; + a_value = sexp_nth_mpi (l3, 1, 0); + sexp_release (l3); + + return a_value; +} + + +static const char * +selftest_encr_2048 (gcry_sexp_t pkey, gcry_sexp_t skey) +{ + const char *errtxt = NULL; + gcry_error_t err; + static const char plaintext[] = + "Jim quickly realized that the beautiful gowns are expensive."; + gcry_sexp_t plain = NULL; + gcry_sexp_t encr = NULL; + gcry_mpi_t ciphertext = NULL; + gcry_sexp_t decr = NULL; + char *decr_plaintext = NULL; + gcry_sexp_t tmplist = NULL; + /* expected result of encrypting the plaintext with sample_secret_key */ + static const char ref_data[] = + "18022e2593a402a737caaa93b4c7e750e20ca265452980e1d6b7710fbd3e" + "7dce72be5c2110fb47691cb38f42170ee3b4a37f2498d4a51567d762585e" + "4cb81d04fbc7df4144f8e5eac2d4b8688521b64011f11d7ad53f4c874004" + "819856f2e2a6f83d1c9c4e73ac26089789c14482b0b8d44139133c88c4a5" + "2dba9dd6d6ffc622666b7d129168333d999706af30a2d7d272db7734e5ed" + "fb8c64ea3018af3ad20f4a013a5060cb0f5e72753967bebe294280a6ed0d" + "dbd3c4f11d0a8696e9d32a0dc03deb0b5e49b2cbd1503392642d4e1211f3" + "e8e2ee38abaa3671ccd57fcde8ca76e85fd2cb77c35706a970a213a27352" + "cec92a9604d543ddb5fc478ff50e0622"; + gcry_mpi_t ref_mpi = NULL; + + /* Put the plaintext into an S-expression. */ + err = sexp_build (&plain, NULL, "(data (flags raw) (value %s))", plaintext); + if (err) + { + errtxt = "converting data failed"; + goto leave; + } + + /* Encrypt. */ + err = _gcry_pk_encrypt (&encr, plain, pkey); + if (err) + { + errtxt = "encrypt failed"; + goto leave; + } + + err = _gcry_mpi_scan(&ref_mpi, GCRYMPI_FMT_HEX, ref_data, 0, NULL); + if (err) + { + errtxt = "converting encrydata to mpi failed"; + goto leave; + } + + /* Extraxt the ciphertext from the returned S-expression. */ + /*sexp_dump (encr);*/ + ciphertext = extract_a_from_sexp (encr); + if (!ciphertext) + { + errtxt = "gcry_pk_decrypt returned garbage"; + goto leave; + } + + /* Check that the ciphertext does no match the plaintext. */ + /* _gcry_log_printmpi ("plaintext", plaintext); */ + /* _gcry_log_printmpi ("ciphertxt", ciphertext); */ + if (mpi_cmp (ref_mpi, ciphertext)) + { + errtxt = "ciphertext doesn't match reference data"; + goto leave; + } + + /* Decrypt. */ + err = _gcry_pk_decrypt (&decr, encr, skey); + if (err) + { + errtxt = "decrypt failed"; + goto leave; + } + + /* Extract the decrypted data from the S-expression. Note that the + output of gcry_pk_decrypt depends on whether a flags lists occurs + in its input data. Because we passed the output of + gcry_pk_encrypt directly to gcry_pk_decrypt, such a flag value + won't be there as of today. To be prepared for future changes we + take care of it anyway. */ + tmplist = sexp_find_token (decr, "value", 0); + if (tmplist) + decr_plaintext = sexp_nth_string (tmplist, 1); + else + decr_plaintext = sexp_nth_string (decr, 0); + if (!decr_plaintext) + { + errtxt = "decrypt returned no plaintext"; + goto leave; + } + + /* Check that the decrypted plaintext matches the original plaintext. */ + if (strcmp (plaintext, decr_plaintext)) + { + errtxt = "mismatch"; + goto leave; + } + + leave: + sexp_release (tmplist); + xfree (decr_plaintext); + sexp_release (decr); + _gcry_mpi_release (ciphertext); + _gcry_mpi_release (ref_mpi); + sexp_release (encr); + sexp_release (plain); + return errtxt; +} + + +static gpg_err_code_t +selftests_rsa (selftest_report_func_t report) +{ + const char *what; + const char *errtxt; + gcry_error_t err; + gcry_sexp_t skey = NULL; + gcry_sexp_t pkey = NULL; + + /* Convert the S-expressions into the internal representation. */ + what = "convert"; + err = sexp_sscan (&skey, NULL, sample_secret_key, strlen (sample_secret_key)); + if (!err) + err = sexp_sscan (&pkey, NULL, + sample_public_key, strlen (sample_public_key)); + if (err) + { + errtxt = _gcry_strerror (err); + goto failed; + } + + what = "key consistency"; + err = _gcry_pk_testkey (skey); + if (err) + { + errtxt = _gcry_strerror (err); + goto failed; + } + + what = "sign"; + errtxt = selftest_sign_2048 (pkey, skey); + if (errtxt) + goto failed; + + what = "encrypt"; + errtxt = selftest_encr_2048 (pkey, skey); + if (errtxt) + goto failed; + + sexp_release (pkey); + sexp_release (skey); + return 0; /* Succeeded. */ + + failed: + sexp_release (pkey); + sexp_release (skey); + if (report) + report ("pubkey", GCRY_PK_RSA, what, errtxt); + return GPG_ERR_SELFTEST_FAILED; +} + + +/* Run a full self-test for ALGO and return 0 on success. */ +static gpg_err_code_t +run_selftests (int algo, int extended, selftest_report_func_t report) +{ + gpg_err_code_t ec; + + (void)extended; + + switch (algo) + { + case GCRY_PK_RSA: + ec = selftests_rsa (report); + break; + default: + ec = GPG_ERR_PUBKEY_ALGO; + break; + + } + return ec; +} + + + + +gcry_pk_spec_t _gcry_pubkey_spec_rsa = + { + GCRY_PK_RSA, { 0, 1 }, + (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR), + "RSA", rsa_names, + "ne", "nedpqu", "a", "s", "n", + rsa_generate, + rsa_check_secret_key, + rsa_encrypt, + rsa_decrypt, + rsa_sign, + rsa_verify, + rsa_get_nbits, + run_selftests, + compute_keygrip + }; |