summaryrefslogtreecommitdiffstats
path: root/comm/third_party/libgcrypt/cipher/rsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/rsa.c')
-rw-r--r--comm/third_party/libgcrypt/cipher/rsa.c2035
1 files changed, 2035 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/rsa.c b/comm/third_party/libgcrypt/cipher/rsa.c
new file mode 100644
index 0000000000..575ea94924
--- /dev/null
+++ b/comm/third_party/libgcrypt/cipher/rsa.c
@@ -0,0 +1,2035 @@
+/* rsa.c - RSA implementation
+ * Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
+ * Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* This code uses an algorithm protected by U.S. Patent #4,405,829
+ which expired on September 20, 2000. The patent holder placed that
+ patent into the public domain on Sep 6th, 2000.
+*/
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+
+#include "g10lib.h"
+#include "mpi.h"
+#include "cipher.h"
+#include "pubkey-internal.h"
+
+
+typedef struct
+{
+ gcry_mpi_t n; /* modulus */
+ gcry_mpi_t e; /* exponent */
+} RSA_public_key;
+
+
+typedef struct
+{
+ gcry_mpi_t n; /* public modulus */
+ gcry_mpi_t e; /* public exponent */
+ gcry_mpi_t d; /* exponent */
+ gcry_mpi_t p; /* prime p. */
+ gcry_mpi_t q; /* prime q. */
+ gcry_mpi_t u; /* inverse of p mod q. */
+} RSA_secret_key;
+
+
+static const char *rsa_names[] =
+ {
+ "rsa",
+ "openpgp-rsa",
+ "oid.1.2.840.113549.1.1.1",
+ NULL,
+ };
+
+
+/* A sample 2048 bit RSA key used for the selftests. */
+static const char sample_secret_key[] =
+" (private-key"
+" (rsa"
+" (n #009F56231A3D82E3E7D613D59D53E9AB921BEF9F08A782AED0B6E46ADBC853EC"
+" 7C71C422435A3CD8FA0DB9EFD55CD3295BADC4E8E2E2B94E15AE82866AB8ADE8"
+" 7E469FAE76DC3577DE87F1F419C4EB41123DFAF8D16922D5EDBAD6E9076D5A1C"
+" 958106F0AE5E2E9193C6B49124C64C2A241C4075D4AF16299EB87A6585BAE917"
+" DEF27FCDD165764D069BC18D16527B29DAAB549F7BBED4A7C6A842D203ED6613"
+" 6E2411744E432CD26D940132F25874483DCAEECDFD95744819CBCF1EA810681C"
+" 42907EBCB1C7EAFBE75C87EC32C5413EA10476545D3FC7B2ADB1B66B7F200918"
+" 664B0E5261C2895AA28B0DE321E921B3F877172CCCAB81F43EF98002916156F6CB#)"
+" (e #010001#)"
+" (d #07EF82500C403899934FE993AC5A36F14FF2DF38CF1EF315F205EE4C83EDAA19"
+" 8890FC23DE9AA933CAFB37B6A8A8DBA675411958337287310D3FF2F1DDC0CB93"
+" 7E70F57F75F833C021852B631D2B9A520E4431A03C5C3FCB5742DCD841D9FB12"
+" 771AA1620DCEC3F1583426066ED9DC3F7028C5B59202C88FDF20396E2FA0EC4F"
+" 5A22D9008F3043673931BC14A5046D6327398327900867E39CC61B2D1AFE2F48"
+" EC8E1E3861C68D257D7425F4E6F99ABD77D61F10CA100EFC14389071831B33DD"
+" 69CC8EABEF860D1DC2AAA84ABEAE5DFC91BC124DAF0F4C8EF5BBEA436751DE84"
+" 3A8063E827A024466F44C28614F93B0732A100D4A0D86D532FE1E22C7725E401#)"
+" (p #00C29D438F115825779631CD665A5739367F3E128ADC29766483A46CA80897E0"
+" 79B32881860B8F9A6A04C2614A904F6F2578DAE13EA67CD60AE3D0AA00A1FF9B"
+" 441485E44B2DC3D0B60260FBFE073B5AC72FAF67964DE15C8212C389D20DB9CF"
+" 54AF6AEF5C4196EAA56495DD30CF709F499D5AB30CA35E086C2A1589D6283F1783#)"
+" (q #00D1984135231CB243FE959C0CBEF551EDD986AD7BEDF71EDF447BE3DA27AF46"
+" 79C974A6FA69E4D52FE796650623DE70622862713932AA2FD9F2EC856EAEAA77"
+" 88B4EA6084DC81C902F014829B18EA8B2666EC41586818E0589E18876065F97E"
+" 8D22CE2DA53A05951EC132DCEF41E70A9C35F4ACC268FFAC2ADF54FA1DA110B919#)"
+" (u #67CF0FD7635205DD80FA814EE9E9C267C17376BF3209FB5D1BC42890D2822A04"
+" 479DAF4D5B6ED69D0F8D1AF94164D07F8CD52ECEFE880641FA0F41DDAB1785E4"
+" A37A32F997A516480B4CD4F6482B9466A1765093ED95023CA32D5EDC1E34CEE9"
+" AF595BC51FE43C4BF810FA225AF697FB473B83815966188A4312C048B885E3F7#)))";
+
+/* A sample 2048 bit RSA key used for the selftests (public only). */
+static const char sample_public_key[] =
+" (public-key"
+" (rsa"
+" (n #009F56231A3D82E3E7D613D59D53E9AB921BEF9F08A782AED0B6E46ADBC853EC"
+" 7C71C422435A3CD8FA0DB9EFD55CD3295BADC4E8E2E2B94E15AE82866AB8ADE8"
+" 7E469FAE76DC3577DE87F1F419C4EB41123DFAF8D16922D5EDBAD6E9076D5A1C"
+" 958106F0AE5E2E9193C6B49124C64C2A241C4075D4AF16299EB87A6585BAE917"
+" DEF27FCDD165764D069BC18D16527B29DAAB549F7BBED4A7C6A842D203ED6613"
+" 6E2411744E432CD26D940132F25874483DCAEECDFD95744819CBCF1EA810681C"
+" 42907EBCB1C7EAFBE75C87EC32C5413EA10476545D3FC7B2ADB1B66B7F200918"
+" 664B0E5261C2895AA28B0DE321E921B3F877172CCCAB81F43EF98002916156F6CB#)"
+" (e #010001#)))";
+
+
+static int test_keys (RSA_secret_key *sk, unsigned nbits);
+static int check_secret_key (RSA_secret_key *sk);
+static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
+static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey);
+static unsigned int rsa_get_nbits (gcry_sexp_t parms);
+
+
+/* Check that a freshly generated key actually works. Returns 0 on success. */
+static int
+test_keys (RSA_secret_key *sk, unsigned int nbits)
+{
+ int result = -1; /* Default to failure. */
+ RSA_public_key pk;
+ gcry_mpi_t plaintext = mpi_new (nbits);
+ gcry_mpi_t ciphertext = mpi_new (nbits);
+ gcry_mpi_t decr_plaintext = mpi_new (nbits);
+ gcry_mpi_t signature = mpi_new (nbits);
+
+ /* Put the relevant parameters into a public key structure. */
+ pk.n = sk->n;
+ pk.e = sk->e;
+
+ /* Create a random plaintext. */
+ _gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
+
+ /* Encrypt using the public key. */
+ public (ciphertext, plaintext, &pk);
+
+ /* Check that the cipher text does not match the plaintext. */
+ if (!mpi_cmp (ciphertext, plaintext))
+ goto leave; /* Ciphertext is identical to the plaintext. */
+
+ /* Decrypt using the secret key. */
+ secret (decr_plaintext, ciphertext, sk);
+
+ /* Check that the decrypted plaintext matches the original plaintext. */
+ if (mpi_cmp (decr_plaintext, plaintext))
+ goto leave; /* Plaintext does not match. */
+
+ /* Create another random plaintext as data for signature checking. */
+ _gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
+
+ /* Use the RSA secret function to create a signature of the plaintext. */
+ secret (signature, plaintext, sk);
+
+ /* Use the RSA public function to verify this signature. */
+ public (decr_plaintext, signature, &pk);
+ if (mpi_cmp (decr_plaintext, plaintext))
+ goto leave; /* Signature does not match. */
+
+ /* Modify the signature and check that the signing fails. */
+ mpi_add_ui (signature, signature, 1);
+ public (decr_plaintext, signature, &pk);
+ if (!mpi_cmp (decr_plaintext, plaintext))
+ goto leave; /* Signature matches but should not. */
+
+ result = 0; /* All tests succeeded. */
+
+ leave:
+ _gcry_mpi_release (signature);
+ _gcry_mpi_release (decr_plaintext);
+ _gcry_mpi_release (ciphertext);
+ _gcry_mpi_release (plaintext);
+ return result;
+}
+
+
+/* Callback used by the prime generation to test whether the exponent
+ is suitable. Returns 0 if the test has been passed. */
+static int
+check_exponent (void *arg, gcry_mpi_t a)
+{
+ gcry_mpi_t e = arg;
+ gcry_mpi_t tmp;
+ int result;
+
+ mpi_sub_ui (a, a, 1);
+ tmp = _gcry_mpi_alloc_like (a);
+ result = !mpi_gcd(tmp, e, a); /* GCD is not 1. */
+ _gcry_mpi_release (tmp);
+ mpi_add_ui (a, a, 1);
+ return result;
+}
+
+/****************
+ * Generate a key pair with a key of size NBITS.
+ * USE_E = 0 let Libcgrypt decide what exponent to use.
+ * = 1 request the use of a "secure" exponent; this is required by some
+ * specification to be 65537.
+ * > 2 Use this public exponent. If the given exponent
+ * is not odd one is internally added to it.
+ * TRANSIENT_KEY: If true, generate the primes using the standard RNG.
+ * Returns: 2 structures filled with all needed values
+ */
+static gpg_err_code_t
+generate_std (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e,
+ int transient_key)
+{
+ gcry_mpi_t p, q; /* the two primes */
+ gcry_mpi_t d; /* the private key */
+ gcry_mpi_t u;
+ gcry_mpi_t t1, t2;
+ gcry_mpi_t n; /* the public key */
+ gcry_mpi_t e; /* the exponent */
+ gcry_mpi_t phi; /* helper: (p-1)(q-1) */
+ gcry_mpi_t g;
+ gcry_mpi_t f;
+ gcry_random_level_t random_level;
+
+ if (fips_mode ())
+ {
+ if (nbits < 1024)
+ return GPG_ERR_INV_VALUE;
+ if (transient_key)
+ return GPG_ERR_INV_VALUE;
+ }
+
+ /* The random quality depends on the transient_key flag. */
+ random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM;
+
+ /* Make sure that nbits is even so that we generate p, q of equal size. */
+ if ( (nbits&1) )
+ nbits++;
+
+ if (use_e == 1) /* Alias for a secure value */
+ use_e = 65537; /* as demanded by Sphinx. */
+
+ /* Public exponent:
+ In general we use 41 as this is quite fast and more secure than the
+ commonly used 17. Benchmarking the RSA verify function
+ with a 1024 bit key yields (2001-11-08):
+ e=17 0.54 ms
+ e=41 0.75 ms
+ e=257 0.95 ms
+ e=65537 1.80 ms
+ */
+ e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
+ if (!use_e)
+ mpi_set_ui (e, 41); /* This is a reasonable secure and fast value */
+ else
+ {
+ use_e |= 1; /* make sure this is odd */
+ mpi_set_ui (e, use_e);
+ }
+
+ n = mpi_new (nbits);
+
+ p = q = NULL;
+ do
+ {
+ /* select two (very secret) primes */
+ if (p)
+ _gcry_mpi_release (p);
+ if (q)
+ _gcry_mpi_release (q);
+ if (use_e)
+ { /* Do an extra test to ensure that the given exponent is
+ suitable. */
+ p = _gcry_generate_secret_prime (nbits/2, random_level,
+ check_exponent, e);
+ q = _gcry_generate_secret_prime (nbits/2, random_level,
+ check_exponent, e);
+ }
+ else
+ { /* We check the exponent later. */
+ p = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
+ q = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
+ }
+ if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/
+ mpi_swap(p,q);
+ /* calculate the modulus */
+ mpi_mul( n, p, q );
+ }
+ while ( mpi_get_nbits(n) != nbits );
+
+ /* calculate Euler totient: phi = (p-1)(q-1) */
+ t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
+ phi = mpi_snew ( nbits );
+ g = mpi_snew ( nbits );
+ f = mpi_snew ( nbits );
+ mpi_sub_ui( t1, p, 1 );
+ mpi_sub_ui( t2, q, 1 );
+ mpi_mul( phi, t1, t2 );
+ mpi_gcd (g, t1, t2);
+ mpi_fdiv_q(f, phi, g);
+
+ while (!mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */
+ {
+ if (use_e)
+ BUG (); /* The prime generator already made sure that we
+ never can get to here. */
+ mpi_add_ui (e, e, 2);
+ }
+
+ /* calculate the secret key d = e^-1 mod phi */
+ d = mpi_snew ( nbits );
+ mpi_invm (d, e, f );
+ /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+ u = mpi_snew ( nbits );
+ mpi_invm(u, p, q );
+
+ if( DBG_CIPHER )
+ {
+ log_mpidump(" p= ", p );
+ log_mpidump(" q= ", q );
+ log_mpidump("phi= ", phi );
+ log_mpidump(" g= ", g );
+ log_mpidump(" f= ", f );
+ log_mpidump(" n= ", n );
+ log_mpidump(" e= ", e );
+ log_mpidump(" d= ", d );
+ log_mpidump(" u= ", u );
+ }
+
+ _gcry_mpi_release (t1);
+ _gcry_mpi_release (t2);
+ _gcry_mpi_release (phi);
+ _gcry_mpi_release (f);
+ _gcry_mpi_release (g);
+
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* Now we can test our keys. */
+ if (test_keys (sk, nbits - 64))
+ {
+ _gcry_mpi_release (sk->n); sk->n = NULL;
+ _gcry_mpi_release (sk->e); sk->e = NULL;
+ _gcry_mpi_release (sk->p); sk->p = NULL;
+ _gcry_mpi_release (sk->q); sk->q = NULL;
+ _gcry_mpi_release (sk->d); sk->d = NULL;
+ _gcry_mpi_release (sk->u); sk->u = NULL;
+ fips_signal_error ("self-test after key generation failed");
+ return GPG_ERR_SELFTEST_FAILED;
+ }
+
+ return 0;
+}
+
+
+/****************
+ * Generate a key pair with a key of size NBITS.
+ * USE_E = 0 let Libcgrypt decide what exponent to use.
+ * = 1 request the use of a "secure" exponent; this is required by some
+ * specification to be 65537.
+ * > 2 Use this public exponent. If the given exponent
+ * is not odd one is internally added to it.
+ * TESTPARMS: If set, do not generate but test whether the p,q is probably prime
+ * Returns key with zeroes to not break code calling this function.
+ * TRANSIENT_KEY: If true, generate the primes using the standard RNG.
+ * Returns: 2 structures filled with all needed values
+ */
+static gpg_err_code_t
+generate_fips (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e,
+ gcry_sexp_t testparms, int transient_key)
+{
+ gcry_mpi_t p, q; /* the two primes */
+ gcry_mpi_t d; /* the private key */
+ gcry_mpi_t u;
+ gcry_mpi_t p1, q1;
+ gcry_mpi_t n; /* the public key */
+ gcry_mpi_t e; /* the exponent */
+ gcry_mpi_t g;
+ gcry_mpi_t minp;
+ gcry_mpi_t diff, mindiff;
+ gcry_random_level_t random_level;
+ unsigned int pbits = nbits/2;
+ unsigned int i;
+ int pqswitch;
+ gpg_err_code_t ec = GPG_ERR_NO_PRIME;
+
+ if (nbits < 1024 || (nbits & 0x1FF))
+ return GPG_ERR_INV_VALUE;
+ if (_gcry_enforced_fips_mode() && nbits != 2048 && nbits != 3072)
+ return GPG_ERR_INV_VALUE;
+
+ /* The random quality depends on the transient_key flag. */
+ random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM;
+
+ if (testparms)
+ {
+ /* Parameters to derive the key are given. */
+ /* Note that we explicitly need to setup the values of tbl
+ because some compilers (e.g. OpenWatcom, IRIX) don't allow to
+ initialize a structure with automatic variables. */
+ struct { const char *name; gcry_mpi_t *value; } tbl[] = {
+ { "e" },
+ { "p" },
+ { "q" },
+ { NULL }
+ };
+ int idx;
+ gcry_sexp_t oneparm;
+
+ tbl[0].value = &e;
+ tbl[1].value = &p;
+ tbl[2].value = &q;
+
+ for (idx=0; tbl[idx].name; idx++)
+ {
+ oneparm = sexp_find_token (testparms, tbl[idx].name, 0);
+ if (oneparm)
+ {
+ *tbl[idx].value = sexp_nth_mpi (oneparm, 1, GCRYMPI_FMT_USG);
+ sexp_release (oneparm);
+ }
+ }
+ for (idx=0; tbl[idx].name; idx++)
+ if (!*tbl[idx].value)
+ break;
+ if (tbl[idx].name)
+ {
+ /* At least one parameter is missing. */
+ for (idx=0; tbl[idx].name; idx++)
+ _gcry_mpi_release (*tbl[idx].value);
+ return GPG_ERR_MISSING_VALUE;
+ }
+ }
+ else
+ {
+ if (use_e < 65537)
+ use_e = 65537; /* This is the smallest value allowed by FIPS */
+
+ e = mpi_alloc ((32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB);
+
+ use_e |= 1; /* make sure this is odd */
+ mpi_set_ui (e, use_e);
+
+ p = mpi_snew (pbits);
+ q = mpi_snew (pbits);
+ }
+
+ n = mpi_new (nbits);
+ d = mpi_snew (nbits);
+ u = mpi_snew (nbits);
+
+ /* prepare approximate minimum p and q */
+ minp = mpi_new (pbits);
+ mpi_set_ui (minp, 0xB504F334);
+ mpi_lshift (minp, minp, pbits - 32);
+
+ /* prepare minimum p and q difference */
+ diff = mpi_new (pbits);
+ mindiff = mpi_new (pbits - 99);
+ mpi_set_ui (mindiff, 1);
+ mpi_lshift (mindiff, mindiff, pbits - 100);
+
+ p1 = mpi_snew (pbits);
+ q1 = mpi_snew (pbits);
+ g = mpi_snew (pbits);
+
+ retry:
+ /* generate p and q */
+ for (i = 0; i < 5 * pbits; i++)
+ {
+ ploop:
+ if (!testparms)
+ {
+ _gcry_mpi_randomize (p, pbits, random_level);
+ }
+ if (mpi_cmp (p, minp) < 0)
+ {
+ if (testparms)
+ goto err;
+ goto ploop;
+ }
+
+ mpi_sub_ui (p1, p, 1);
+ if (mpi_gcd (g, p1, e))
+ {
+ if (_gcry_fips186_4_prime_check (p, pbits) != GPG_ERR_NO_ERROR)
+ {
+ /* not a prime */
+ if (testparms)
+ goto err;
+ }
+ else
+ break;
+ }
+ else if (testparms)
+ goto err;
+ }
+ if (i >= 5 * pbits)
+ goto err;
+
+ for (i = 0; i < 5 * pbits; i++)
+ {
+ qloop:
+ if (!testparms)
+ {
+ _gcry_mpi_randomize (q, pbits, random_level);
+ }
+ if (mpi_cmp (q, minp) < 0)
+ {
+ if (testparms)
+ goto err;
+ goto qloop;
+ }
+ if (mpi_cmp (p, q) > 0)
+ {
+ pqswitch = 1;
+ mpi_sub (diff, p, q);
+ }
+ else
+ {
+ pqswitch = 0;
+ mpi_sub (diff, q, p);
+ }
+ if (mpi_cmp (diff, mindiff) < 0)
+ {
+ if (testparms)
+ goto err;
+ goto qloop;
+ }
+
+ mpi_sub_ui (q1, q, 1);
+ if (mpi_gcd (g, q1, e))
+ {
+ if (_gcry_fips186_4_prime_check (q, pbits) != GPG_ERR_NO_ERROR)
+ {
+ /* not a prime */
+ if (testparms)
+ goto err;
+ }
+ else
+ break;
+ }
+ else if (testparms)
+ goto err;
+ }
+ if (i >= 5 * pbits)
+ goto err;
+
+ if (testparms)
+ {
+ mpi_clear (p);
+ mpi_clear (q);
+ }
+ else
+ {
+ gcry_mpi_t f;
+
+ if (pqswitch)
+ {
+ gcry_mpi_t tmp;
+
+ tmp = p;
+ p = q;
+ q = tmp;
+ }
+
+ f = mpi_snew (nbits);
+
+ /* calculate the modulus */
+ mpi_mul (n, p, q);
+
+ /* calculate the secret key d = e^1 mod phi */
+ mpi_gcd (g, p1, q1);
+ mpi_fdiv_q (f, p1, g);
+ mpi_mul (f, f, q1);
+
+ mpi_invm (d, e, f);
+
+ _gcry_mpi_release (f);
+
+ if (mpi_get_nbits (d) < pbits)
+ goto retry;
+
+ /* calculate the inverse of p and q (used for chinese remainder theorem)*/
+ mpi_invm (u, p, q );
+ }
+
+ ec = 0;
+
+ if (DBG_CIPHER)
+ {
+ log_mpidump(" p= ", p );
+ log_mpidump(" q= ", q );
+ log_mpidump(" n= ", n );
+ log_mpidump(" e= ", e );
+ log_mpidump(" d= ", d );
+ log_mpidump(" u= ", u );
+ }
+
+ err:
+
+ _gcry_mpi_release (p1);
+ _gcry_mpi_release (q1);
+ _gcry_mpi_release (g);
+ _gcry_mpi_release (minp);
+ _gcry_mpi_release (mindiff);
+ _gcry_mpi_release (diff);
+
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* Now we can test our keys. */
+ if (ec || (!testparms && test_keys (sk, nbits - 64)))
+ {
+ _gcry_mpi_release (sk->n); sk->n = NULL;
+ _gcry_mpi_release (sk->e); sk->e = NULL;
+ _gcry_mpi_release (sk->p); sk->p = NULL;
+ _gcry_mpi_release (sk->q); sk->q = NULL;
+ _gcry_mpi_release (sk->d); sk->d = NULL;
+ _gcry_mpi_release (sk->u); sk->u = NULL;
+ if (!ec)
+ {
+ fips_signal_error ("self-test after key generation failed");
+ return GPG_ERR_SELFTEST_FAILED;
+ }
+ }
+
+ return ec;
+}
+
+
+/* Helper for generate_x931. */
+static gcry_mpi_t
+gen_x931_parm_xp (unsigned int nbits)
+{
+ gcry_mpi_t xp;
+
+ xp = mpi_snew (nbits);
+ _gcry_mpi_randomize (xp, nbits, GCRY_VERY_STRONG_RANDOM);
+
+ /* The requirement for Xp is:
+
+ sqrt{2}*2^{nbits-1} <= xp <= 2^{nbits} - 1
+
+ We set the two high order bits to 1 to satisfy the lower bound.
+ By using mpi_set_highbit we make sure that the upper bound is
+ satisfied as well. */
+ mpi_set_highbit (xp, nbits-1);
+ mpi_set_bit (xp, nbits-2);
+ gcry_assert ( mpi_get_nbits (xp) == nbits );
+
+ return xp;
+}
+
+
+/* Helper for generate_x931. */
+static gcry_mpi_t
+gen_x931_parm_xi (void)
+{
+ gcry_mpi_t xi;
+
+ xi = mpi_snew (101);
+ _gcry_mpi_randomize (xi, 101, GCRY_VERY_STRONG_RANDOM);
+ mpi_set_highbit (xi, 100);
+ gcry_assert ( mpi_get_nbits (xi) == 101 );
+
+ return xi;
+}
+
+
+
+/* Variant of the standard key generation code using the algorithm
+ from X9.31. Using this algorithm has the advantage that the
+ generation can be made deterministic which is required for CAVS
+ testing. */
+static gpg_err_code_t
+generate_x931 (RSA_secret_key *sk, unsigned int nbits, unsigned long e_value,
+ gcry_sexp_t deriveparms, int *swapped)
+{
+ gcry_mpi_t p, q; /* The two primes. */
+ gcry_mpi_t e; /* The public exponent. */
+ gcry_mpi_t n; /* The public key. */
+ gcry_mpi_t d; /* The private key */
+ gcry_mpi_t u; /* The inverse of p and q. */
+ gcry_mpi_t pm1; /* p - 1 */
+ gcry_mpi_t qm1; /* q - 1 */
+ gcry_mpi_t phi; /* Euler totient. */
+ gcry_mpi_t f, g; /* Helper. */
+
+ *swapped = 0;
+
+ if (e_value == 1) /* Alias for a secure value. */
+ e_value = 65537;
+
+ /* Point 1 of section 4.1: k = 1024 + 256s with S >= 0 */
+ if (nbits < 1024 || (nbits % 256))
+ return GPG_ERR_INV_VALUE;
+
+ /* Point 2: 2 <= bitlength(e) < 2^{k-2}
+ Note that we do not need to check the upper bound because we use
+ an unsigned long for E and thus there is no way for E to reach
+ that limit. */
+ if (e_value < 3)
+ return GPG_ERR_INV_VALUE;
+
+ /* Our implementation requires E to be odd. */
+ if (!(e_value & 1))
+ return GPG_ERR_INV_VALUE;
+
+ /* Point 3: e > 0 or e 0 if it is to be randomly generated.
+ We support only a fixed E and thus there is no need for an extra test. */
+
+
+ /* Compute or extract the derive parameters. */
+ {
+ gcry_mpi_t xp1 = NULL;
+ gcry_mpi_t xp2 = NULL;
+ gcry_mpi_t xp = NULL;
+ gcry_mpi_t xq1 = NULL;
+ gcry_mpi_t xq2 = NULL;
+ gcry_mpi_t xq = NULL;
+ gcry_mpi_t tmpval;
+
+ if (!deriveparms)
+ {
+ /* Not given: Generate them. */
+ xp = gen_x931_parm_xp (nbits/2);
+ /* Make sure that |xp - xq| > 2^{nbits - 100} holds. */
+ tmpval = mpi_snew (nbits/2);
+ do
+ {
+ _gcry_mpi_release (xq);
+ xq = gen_x931_parm_xp (nbits/2);
+ mpi_sub (tmpval, xp, xq);
+ }
+ while (mpi_get_nbits (tmpval) <= (nbits/2 - 100));
+ _gcry_mpi_release (tmpval);
+
+ xp1 = gen_x931_parm_xi ();
+ xp2 = gen_x931_parm_xi ();
+ xq1 = gen_x931_parm_xi ();
+ xq2 = gen_x931_parm_xi ();
+
+ }
+ else
+ {
+ /* Parameters to derive the key are given. */
+ /* Note that we explicitly need to setup the values of tbl
+ because some compilers (e.g. OpenWatcom, IRIX) don't allow
+ to initialize a structure with automatic variables. */
+ struct { const char *name; gcry_mpi_t *value; } tbl[] = {
+ { "Xp1" },
+ { "Xp2" },
+ { "Xp" },
+ { "Xq1" },
+ { "Xq2" },
+ { "Xq" },
+ { NULL }
+ };
+ int idx;
+ gcry_sexp_t oneparm;
+
+ tbl[0].value = &xp1;
+ tbl[1].value = &xp2;
+ tbl[2].value = &xp;
+ tbl[3].value = &xq1;
+ tbl[4].value = &xq2;
+ tbl[5].value = &xq;
+
+ for (idx=0; tbl[idx].name; idx++)
+ {
+ oneparm = sexp_find_token (deriveparms, tbl[idx].name, 0);
+ if (oneparm)
+ {
+ *tbl[idx].value = sexp_nth_mpi (oneparm, 1, GCRYMPI_FMT_USG);
+ sexp_release (oneparm);
+ }
+ }
+ for (idx=0; tbl[idx].name; idx++)
+ if (!*tbl[idx].value)
+ break;
+ if (tbl[idx].name)
+ {
+ /* At least one parameter is missing. */
+ for (idx=0; tbl[idx].name; idx++)
+ _gcry_mpi_release (*tbl[idx].value);
+ return GPG_ERR_MISSING_VALUE;
+ }
+ }
+
+ e = mpi_alloc_set_ui (e_value);
+
+ /* Find two prime numbers. */
+ p = _gcry_derive_x931_prime (xp, xp1, xp2, e, NULL, NULL);
+ q = _gcry_derive_x931_prime (xq, xq1, xq2, e, NULL, NULL);
+ _gcry_mpi_release (xp); xp = NULL;
+ _gcry_mpi_release (xp1); xp1 = NULL;
+ _gcry_mpi_release (xp2); xp2 = NULL;
+ _gcry_mpi_release (xq); xq = NULL;
+ _gcry_mpi_release (xq1); xq1 = NULL;
+ _gcry_mpi_release (xq2); xq2 = NULL;
+ if (!p || !q)
+ {
+ _gcry_mpi_release (p);
+ _gcry_mpi_release (q);
+ _gcry_mpi_release (e);
+ return GPG_ERR_NO_PRIME;
+ }
+ }
+
+
+ /* Compute the public modulus. We make sure that p is smaller than
+ q to allow the use of the CRT. */
+ if (mpi_cmp (p, q) > 0 )
+ {
+ mpi_swap (p, q);
+ *swapped = 1;
+ }
+ n = mpi_new (nbits);
+ mpi_mul (n, p, q);
+
+ /* Compute the Euler totient: phi = (p-1)(q-1) */
+ pm1 = mpi_snew (nbits/2);
+ qm1 = mpi_snew (nbits/2);
+ phi = mpi_snew (nbits);
+ mpi_sub_ui (pm1, p, 1);
+ mpi_sub_ui (qm1, q, 1);
+ mpi_mul (phi, pm1, qm1);
+
+ g = mpi_snew (nbits);
+ gcry_assert (mpi_gcd (g, e, phi));
+
+ /* Compute: f = lcm(p-1,q-1) = phi / gcd(p-1,q-1) */
+ mpi_gcd (g, pm1, qm1);
+ f = pm1; pm1 = NULL;
+ _gcry_mpi_release (qm1); qm1 = NULL;
+ mpi_fdiv_q (f, phi, g);
+ _gcry_mpi_release (phi); phi = NULL;
+ d = g; g = NULL;
+ /* Compute the secret key: d = e^{-1} mod lcm(p-1,q-1) */
+ mpi_invm (d, e, f);
+
+ /* Compute the inverse of p and q. */
+ u = f; f = NULL;
+ mpi_invm (u, p, q );
+
+ if( DBG_CIPHER )
+ {
+ if (*swapped)
+ log_debug ("p and q are swapped\n");
+ log_mpidump(" p", p );
+ log_mpidump(" q", q );
+ log_mpidump(" n", n );
+ log_mpidump(" e", e );
+ log_mpidump(" d", d );
+ log_mpidump(" u", u );
+ }
+
+
+ sk->n = n;
+ sk->e = e;
+ sk->p = p;
+ sk->q = q;
+ sk->d = d;
+ sk->u = u;
+
+ /* Now we can test our keys. */
+ if (test_keys (sk, nbits - 64))
+ {
+ _gcry_mpi_release (sk->n); sk->n = NULL;
+ _gcry_mpi_release (sk->e); sk->e = NULL;
+ _gcry_mpi_release (sk->p); sk->p = NULL;
+ _gcry_mpi_release (sk->q); sk->q = NULL;
+ _gcry_mpi_release (sk->d); sk->d = NULL;
+ _gcry_mpi_release (sk->u); sk->u = NULL;
+ fips_signal_error ("self-test after key generation failed");
+ return GPG_ERR_SELFTEST_FAILED;
+ }
+
+ return 0;
+}
+
+
+/****************
+ * Test whether the secret key is valid.
+ * Returns: true if this is a valid key.
+ */
+static int
+check_secret_key( RSA_secret_key *sk )
+{
+ int rc;
+ gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
+
+ mpi_mul(temp, sk->p, sk->q );
+ rc = mpi_cmp( temp, sk->n );
+ mpi_free(temp);
+ return !rc;
+}
+
+
+
+/****************
+ * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
+ *
+ * c = m^e mod n
+ *
+ * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
+ */
+static void
+public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
+{
+ if( output == input ) /* powm doesn't like output and input the same */
+ {
+ gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
+ mpi_powm( x, input, pkey->e, pkey->n );
+ mpi_set(output, x);
+ mpi_free(x);
+ }
+ else
+ mpi_powm( output, input, pkey->e, pkey->n );
+}
+
+#if 0
+static void
+stronger_key_check ( RSA_secret_key *skey )
+{
+ gcry_mpi_t t = mpi_alloc_secure ( 0 );
+ gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
+ gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
+ gcry_mpi_t phi = mpi_alloc_secure ( 0 );
+
+ /* check that n == p * q */
+ mpi_mul( t, skey->p, skey->q);
+ if (mpi_cmp( t, skey->n) )
+ log_info ( "RSA Oops: n != p * q\n" );
+
+ /* check that p is less than q */
+ if( mpi_cmp( skey->p, skey->q ) > 0 )
+ {
+ log_info ("RSA Oops: p >= q - fixed\n");
+ _gcry_mpi_swap ( skey->p, skey->q);
+ }
+
+ /* check that e divides neither p-1 nor q-1 */
+ mpi_sub_ui(t, skey->p, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides p-1\n" );
+ mpi_sub_ui(t, skey->q, 1 );
+ mpi_fdiv_r(t, t, skey->e );
+ if ( !mpi_cmp_ui( t, 0) )
+ log_info ( "RSA Oops: e divides q-1\n" );
+
+ /* check that d is correct */
+ mpi_sub_ui( t1, skey->p, 1 );
+ mpi_sub_ui( t2, skey->q, 1 );
+ mpi_mul( phi, t1, t2 );
+ gcry_mpi_gcd(t, t1, t2);
+ mpi_fdiv_q(t, phi, t);
+ mpi_invm(t, skey->e, t );
+ if ( mpi_cmp(t, skey->d ) )
+ {
+ log_info ( "RSA Oops: d is wrong - fixed\n");
+ mpi_set (skey->d, t);
+ log_printmpi (" fixed d", skey->d);
+ }
+
+ /* check for correctness of u */
+ mpi_invm(t, skey->p, skey->q );
+ if ( mpi_cmp(t, skey->u ) )
+ {
+ log_info ( "RSA Oops: u is wrong - fixed\n");
+ mpi_set (skey->u, t);
+ log_printmpi (" fixed u", skey->u);
+ }
+
+ log_info ( "RSA secret key check finished\n");
+
+ mpi_free (t);
+ mpi_free (t1);
+ mpi_free (t2);
+ mpi_free (phi);
+}
+#endif
+
+
+
+/* Secret key operation - standard version.
+ *
+ * m = c^d mod n
+ */
+static void
+secret_core_std (gcry_mpi_t M, gcry_mpi_t C,
+ gcry_mpi_t D, gcry_mpi_t N)
+{
+ mpi_powm (M, C, D, N);
+}
+
+
+/* Secret key operation - using the CRT.
+ *
+ * m1 = c ^ (d mod (p-1)) mod p
+ * m2 = c ^ (d mod (q-1)) mod q
+ * h = u * (m2 - m1) mod q
+ * m = m1 + h * p
+ */
+static void
+secret_core_crt (gcry_mpi_t M, gcry_mpi_t C,
+ gcry_mpi_t D, unsigned int Nlimbs,
+ gcry_mpi_t P, gcry_mpi_t Q, gcry_mpi_t U)
+{
+ gcry_mpi_t m1 = mpi_alloc_secure ( Nlimbs + 1 );
+ gcry_mpi_t m2 = mpi_alloc_secure ( Nlimbs + 1 );
+ gcry_mpi_t h = mpi_alloc_secure ( Nlimbs + 1 );
+ gcry_mpi_t D_blind = mpi_alloc_secure ( Nlimbs + 1 );
+ gcry_mpi_t r;
+ unsigned int r_nbits;
+
+ r_nbits = mpi_get_nbits (P) / 4;
+ if (r_nbits < 96)
+ r_nbits = 96;
+ r = mpi_secure_new (r_nbits);
+
+ /* d_blind = (d mod (p-1)) + (p-1) * r */
+ /* m1 = c ^ d_blind mod p */
+ _gcry_mpi_randomize (r, r_nbits, GCRY_WEAK_RANDOM);
+ mpi_set_highbit (r, r_nbits - 1);
+ mpi_sub_ui ( h, P, 1 );
+ mpi_mul ( D_blind, h, r );
+ mpi_fdiv_r ( h, D, h );
+ mpi_add ( D_blind, D_blind, h );
+ mpi_powm ( m1, C, D_blind, P );
+
+ /* d_blind = (d mod (q-1)) + (q-1) * r */
+ /* m2 = c ^ d_blind mod q */
+ _gcry_mpi_randomize (r, r_nbits, GCRY_WEAK_RANDOM);
+ mpi_set_highbit (r, r_nbits - 1);
+ mpi_sub_ui ( h, Q, 1 );
+ mpi_mul ( D_blind, h, r );
+ mpi_fdiv_r ( h, D, h );
+ mpi_add ( D_blind, D_blind, h );
+ mpi_powm ( m2, C, D_blind, Q );
+
+ mpi_free ( r );
+ mpi_free ( D_blind );
+
+ /* h = u * ( m2 - m1 ) mod q */
+ mpi_sub ( h, m2, m1 );
+ if ( mpi_has_sign ( h ) )
+ mpi_add ( h, h, Q );
+ mpi_mulm ( h, U, h, Q );
+
+ /* m = m1 + h * p */
+ mpi_mul ( h, h, P );
+ mpi_add ( M, m1, h );
+
+ mpi_free ( h );
+ mpi_free ( m1 );
+ mpi_free ( m2 );
+}
+
+
+/* Secret key operation.
+ * Encrypt INPUT with SKEY and put result into
+ * OUTPUT. SKEY has the secret key parameters.
+ */
+static void
+secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey )
+{
+ /* Remove superfluous leading zeroes from INPUT. */
+ mpi_normalize (input);
+
+ if (!skey->p || !skey->q || !skey->u)
+ {
+ secret_core_std (output, input, skey->d, skey->n);
+ }
+ else
+ {
+ secret_core_crt (output, input, skey->d, mpi_get_nlimbs (skey->n),
+ skey->p, skey->q, skey->u);
+ }
+}
+
+
+static void
+secret_blinded (gcry_mpi_t output, gcry_mpi_t input,
+ RSA_secret_key *sk, unsigned int nbits)
+{
+ gcry_mpi_t r; /* Random number needed for blinding. */
+ gcry_mpi_t ri; /* Modular multiplicative inverse of r. */
+ gcry_mpi_t bldata; /* Blinded data to decrypt. */
+
+ /* First, we need a random number r between 0 and n - 1, which is
+ * relatively prime to n (i.e. it is neither p nor q). The random
+ * number needs to be only unpredictable, thus we employ the
+ * gcry_create_nonce function by using GCRY_WEAK_RANDOM with
+ * gcry_mpi_randomize. */
+ r = mpi_snew (nbits);
+ ri = mpi_snew (nbits);
+ bldata = mpi_snew (nbits);
+
+ do
+ {
+ _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM);
+ mpi_mod (r, r, sk->n);
+ }
+ while (!mpi_invm (ri, r, sk->n));
+
+ /* Do blinding. We calculate: y = (x * r^e) mod n, where r is the
+ * random number, e is the public exponent, x is the non-blinded
+ * input data and n is the RSA modulus. */
+ mpi_powm (bldata, r, sk->e, sk->n);
+ mpi_mulm (bldata, bldata, input, sk->n);
+
+ /* Perform decryption. */
+ secret (output, bldata, sk);
+ _gcry_mpi_release (bldata);
+
+ /* Undo blinding. Here we calculate: y = (x * r^-1) mod n, where x
+ * is the blinded decrypted data, ri is the modular multiplicative
+ * inverse of r and n is the RSA modulus. */
+ mpi_mulm (output, output, ri, sk->n);
+
+ _gcry_mpi_release (r);
+ _gcry_mpi_release (ri);
+}
+
+
+/*********************************************
+ ************** interface ******************
+ *********************************************/
+
+static gcry_err_code_t
+rsa_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey)
+{
+ gpg_err_code_t ec;
+ unsigned int nbits;
+ unsigned long evalue;
+ RSA_secret_key sk;
+ gcry_sexp_t deriveparms;
+ int flags = 0;
+ gcry_sexp_t l1;
+ gcry_sexp_t swap_info = NULL;
+
+ memset (&sk, 0, sizeof sk);
+
+ ec = _gcry_pk_util_get_nbits (genparms, &nbits);
+ if (ec)
+ return ec;
+
+ ec = _gcry_pk_util_get_rsa_use_e (genparms, &evalue);
+ if (ec)
+ return ec;
+
+ /* Parse the optional flags list. */
+ l1 = sexp_find_token (genparms, "flags", 0);
+ if (l1)
+ {
+ ec = _gcry_pk_util_parse_flaglist (l1, &flags, NULL);
+ sexp_release (l1);
+ if (ec)
+ return ec;
+ }
+
+ deriveparms = (genparms?
+ sexp_find_token (genparms, "derive-parms", 0) : NULL);
+ if (!deriveparms)
+ {
+ /* Parse the optional "use-x931" flag. */
+ l1 = sexp_find_token (genparms, "use-x931", 0);
+ if (l1)
+ {
+ flags |= PUBKEY_FLAG_USE_X931;
+ sexp_release (l1);
+ }
+ }
+
+ if (deriveparms || (flags & PUBKEY_FLAG_USE_X931))
+ {
+ int swapped;
+ ec = generate_x931 (&sk, nbits, evalue, deriveparms, &swapped);
+ sexp_release (deriveparms);
+ if (!ec && swapped)
+ ec = sexp_new (&swap_info, "(misc-key-info(p-q-swapped))", 0, 1);
+ }
+ else
+ {
+ /* Parse the optional "transient-key" flag. */
+ if (!(flags & PUBKEY_FLAG_TRANSIENT_KEY))
+ {
+ l1 = sexp_find_token (genparms, "transient-key", 0);
+ if (l1)
+ {
+ flags |= PUBKEY_FLAG_TRANSIENT_KEY;
+ sexp_release (l1);
+ }
+ }
+ deriveparms = (genparms? sexp_find_token (genparms, "test-parms", 0)
+ /**/ : NULL);
+
+ /* Generate. */
+ if (deriveparms || fips_mode())
+ {
+ ec = generate_fips (&sk, nbits, evalue, deriveparms,
+ !!(flags & PUBKEY_FLAG_TRANSIENT_KEY));
+ }
+ else
+ {
+ ec = generate_std (&sk, nbits, evalue,
+ !!(flags & PUBKEY_FLAG_TRANSIENT_KEY));
+ }
+ sexp_release (deriveparms);
+ }
+
+ if (!ec)
+ {
+ ec = sexp_build (r_skey, NULL,
+ "(key-data"
+ " (public-key"
+ " (rsa(n%m)(e%m)))"
+ " (private-key"
+ " (rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))"
+ " %S)",
+ sk.n, sk.e,
+ sk.n, sk.e, sk.d, sk.p, sk.q, sk.u,
+ swap_info);
+ }
+
+ mpi_free (sk.n);
+ mpi_free (sk.e);
+ mpi_free (sk.p);
+ mpi_free (sk.q);
+ mpi_free (sk.d);
+ mpi_free (sk.u);
+ sexp_release (swap_info);
+
+ return ec;
+}
+
+
+static gcry_err_code_t
+rsa_check_secret_key (gcry_sexp_t keyparms)
+{
+ gcry_err_code_t rc;
+ RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL};
+
+ /* To check the key we need the optional parameters. */
+ rc = sexp_extract_param (keyparms, NULL, "nedpqu",
+ &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u,
+ NULL);
+ if (rc)
+ goto leave;
+
+ if (!check_secret_key (&sk))
+ rc = GPG_ERR_BAD_SECKEY;
+
+ leave:
+ _gcry_mpi_release (sk.n);
+ _gcry_mpi_release (sk.e);
+ _gcry_mpi_release (sk.d);
+ _gcry_mpi_release (sk.p);
+ _gcry_mpi_release (sk.q);
+ _gcry_mpi_release (sk.u);
+ if (DBG_CIPHER)
+ log_debug ("rsa_testkey => %s\n", gpg_strerror (rc));
+ return rc;
+}
+
+
+static gcry_err_code_t
+rsa_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms)
+{
+ gcry_err_code_t rc;
+ struct pk_encoding_ctx ctx;
+ gcry_mpi_t data = NULL;
+ RSA_public_key pk = {NULL, NULL};
+ gcry_mpi_t ciph = NULL;
+
+ _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT,
+ rsa_get_nbits (keyparms));
+
+ /* Extract the data. */
+ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ log_mpidump ("rsa_encrypt data", data);
+ if (!data || mpi_is_opaque (data))
+ {
+ rc = GPG_ERR_INV_DATA;
+ goto leave;
+ }
+
+ /* Extract the key. */
+ rc = sexp_extract_param (keyparms, NULL, "ne", &pk.n, &pk.e, NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ {
+ log_mpidump ("rsa_encrypt n", pk.n);
+ log_mpidump ("rsa_encrypt e", pk.e);
+ }
+
+ /* Do RSA computation and build result. */
+ ciph = mpi_new (0);
+ public (ciph, data, &pk);
+ if (DBG_CIPHER)
+ log_mpidump ("rsa_encrypt res", ciph);
+ if ((ctx.flags & PUBKEY_FLAG_FIXEDLEN))
+ {
+ /* We need to make sure to return the correct length to avoid
+ problems with missing leading zeroes. */
+ unsigned char *em;
+ size_t emlen = (mpi_get_nbits (pk.n)+7)/8;
+
+ rc = _gcry_mpi_to_octet_string (&em, NULL, ciph, emlen);
+ if (!rc)
+ {
+ rc = sexp_build (r_ciph, NULL, "(enc-val(rsa(a%b)))", (int)emlen, em);
+ xfree (em);
+ }
+ }
+ else
+ rc = sexp_build (r_ciph, NULL, "(enc-val(rsa(a%m)))", ciph);
+
+ leave:
+ _gcry_mpi_release (ciph);
+ _gcry_mpi_release (pk.n);
+ _gcry_mpi_release (pk.e);
+ _gcry_mpi_release (data);
+ _gcry_pk_util_free_encoding_ctx (&ctx);
+ if (DBG_CIPHER)
+ log_debug ("rsa_encrypt => %s\n", gpg_strerror (rc));
+ return rc;
+}
+
+
+static gcry_err_code_t
+rsa_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms)
+
+{
+ gpg_err_code_t rc;
+ struct pk_encoding_ctx ctx;
+ gcry_sexp_t l1 = NULL;
+ gcry_mpi_t data = NULL;
+ RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL};
+ gcry_mpi_t plain = NULL;
+ unsigned char *unpad = NULL;
+ size_t unpadlen = 0;
+
+ _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT,
+ rsa_get_nbits (keyparms));
+
+ /* Extract the data. */
+ rc = _gcry_pk_util_preparse_encval (s_data, rsa_names, &l1, &ctx);
+ if (rc)
+ goto leave;
+ rc = sexp_extract_param (l1, NULL, "a", &data, NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_decrypt data", data);
+ if (mpi_is_opaque (data))
+ {
+ rc = GPG_ERR_INV_DATA;
+ goto leave;
+ }
+
+ /* Extract the key. */
+ rc = sexp_extract_param (keyparms, NULL, "nedp?q?u?",
+ &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u,
+ NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ {
+ log_printmpi ("rsa_decrypt n", sk.n);
+ log_printmpi ("rsa_decrypt e", sk.e);
+ if (!fips_mode ())
+ {
+ log_printmpi ("rsa_decrypt d", sk.d);
+ log_printmpi ("rsa_decrypt p", sk.p);
+ log_printmpi ("rsa_decrypt q", sk.q);
+ log_printmpi ("rsa_decrypt u", sk.u);
+ }
+ }
+
+ /* Better make sure that there are no superfluous leading zeroes in
+ the input and it has not been "padded" using multiples of N.
+ This mitigates side-channel attacks (CVE-2013-4576). */
+ mpi_normalize (data);
+ mpi_fdiv_r (data, data, sk.n);
+
+ /* Allocate MPI for the plaintext. */
+ plain = mpi_snew (ctx.nbits);
+
+ /* We use blinding by default to mitigate timing attacks which can
+ be practically mounted over the network as shown by Brumley and
+ Boney in 2003. */
+ if ((ctx.flags & PUBKEY_FLAG_NO_BLINDING))
+ secret (plain, data, &sk);
+ else
+ secret_blinded (plain, data, &sk, ctx.nbits);
+
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_decrypt res", plain);
+
+ /* Reverse the encoding and build the s-expression. */
+ switch (ctx.encoding)
+ {
+ case PUBKEY_ENC_PKCS1:
+ rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain);
+ mpi_free (plain);
+ plain = NULL;
+ if (!rc)
+ rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
+ break;
+
+ case PUBKEY_ENC_OAEP:
+ rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen,
+ ctx.nbits, ctx.hash_algo,
+ plain, ctx.label, ctx.labellen);
+ mpi_free (plain);
+ plain = NULL;
+ if (!rc)
+ rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
+ break;
+
+ default:
+ /* Raw format. For backward compatibility we need to assume a
+ signed mpi by using the sexp format string "%m". */
+ rc = sexp_build (r_plain, NULL,
+ (ctx.flags & PUBKEY_FLAG_LEGACYRESULT)
+ ? "%m":"(value %m)", plain);
+ break;
+ }
+
+ leave:
+ xfree (unpad);
+ _gcry_mpi_release (plain);
+ _gcry_mpi_release (sk.n);
+ _gcry_mpi_release (sk.e);
+ _gcry_mpi_release (sk.d);
+ _gcry_mpi_release (sk.p);
+ _gcry_mpi_release (sk.q);
+ _gcry_mpi_release (sk.u);
+ _gcry_mpi_release (data);
+ sexp_release (l1);
+ _gcry_pk_util_free_encoding_ctx (&ctx);
+ if (DBG_CIPHER)
+ log_debug ("rsa_decrypt => %s\n", gpg_strerror (rc));
+ return rc;
+}
+
+
+static gcry_err_code_t
+rsa_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms)
+{
+ gpg_err_code_t rc;
+ struct pk_encoding_ctx ctx;
+ gcry_mpi_t data = NULL;
+ RSA_secret_key sk = {NULL, NULL, NULL, NULL, NULL, NULL};
+ RSA_public_key pk;
+ gcry_mpi_t sig = NULL;
+ gcry_mpi_t result = NULL;
+
+ _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN,
+ rsa_get_nbits (keyparms));
+
+ /* Extract the data. */
+ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_sign data", data);
+ if (mpi_is_opaque (data))
+ {
+ rc = GPG_ERR_INV_DATA;
+ goto leave;
+ }
+
+ /* Extract the key. */
+ rc = sexp_extract_param (keyparms, NULL, "nedp?q?u?",
+ &sk.n, &sk.e, &sk.d, &sk.p, &sk.q, &sk.u,
+ NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ {
+ log_printmpi ("rsa_sign n", sk.n);
+ log_printmpi ("rsa_sign e", sk.e);
+ if (!fips_mode ())
+ {
+ log_printmpi ("rsa_sign d", sk.d);
+ log_printmpi ("rsa_sign p", sk.p);
+ log_printmpi ("rsa_sign q", sk.q);
+ log_printmpi ("rsa_sign u", sk.u);
+ }
+ }
+
+ /* Do RSA computation. */
+ sig = mpi_new (0);
+ if ((ctx.flags & PUBKEY_FLAG_NO_BLINDING))
+ secret (sig, data, &sk);
+ else
+ secret_blinded (sig, data, &sk, ctx.nbits);
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_sign res", sig);
+
+ /* Check that the created signature is good. This detects a failure
+ of the CRT algorithm (Lenstra's attack on RSA's use of the CRT). */
+ result = mpi_new (0);
+ pk.n = sk.n;
+ pk.e = sk.e;
+ public (result, sig, &pk);
+ if (mpi_cmp (result, data))
+ {
+ rc = GPG_ERR_BAD_SIGNATURE;
+ goto leave;
+ }
+
+ /* Convert the result. */
+ if ((ctx.flags & PUBKEY_FLAG_FIXEDLEN))
+ {
+ /* We need to make sure to return the correct length to avoid
+ problems with missing leading zeroes. */
+ unsigned char *em;
+ size_t emlen = (mpi_get_nbits (sk.n)+7)/8;
+
+ rc = _gcry_mpi_to_octet_string (&em, NULL, sig, emlen);
+ if (!rc)
+ {
+ rc = sexp_build (r_sig, NULL, "(sig-val(rsa(s%b)))", (int)emlen, em);
+ xfree (em);
+ }
+ }
+ else
+ rc = sexp_build (r_sig, NULL, "(sig-val(rsa(s%M)))", sig);
+
+
+ leave:
+ _gcry_mpi_release (result);
+ _gcry_mpi_release (sig);
+ _gcry_mpi_release (sk.n);
+ _gcry_mpi_release (sk.e);
+ _gcry_mpi_release (sk.d);
+ _gcry_mpi_release (sk.p);
+ _gcry_mpi_release (sk.q);
+ _gcry_mpi_release (sk.u);
+ _gcry_mpi_release (data);
+ _gcry_pk_util_free_encoding_ctx (&ctx);
+ if (DBG_CIPHER)
+ log_debug ("rsa_sign => %s\n", gpg_strerror (rc));
+ return rc;
+}
+
+
+static gcry_err_code_t
+rsa_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms)
+{
+ gcry_err_code_t rc;
+ struct pk_encoding_ctx ctx;
+ gcry_sexp_t l1 = NULL;
+ gcry_mpi_t sig = NULL;
+ gcry_mpi_t data = NULL;
+ RSA_public_key pk = { NULL, NULL };
+ gcry_mpi_t result = NULL;
+
+ _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY,
+ rsa_get_nbits (keyparms));
+
+ /* Extract the data. */
+ rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_verify data", data);
+ if (mpi_is_opaque (data))
+ {
+ rc = GPG_ERR_INV_DATA;
+ goto leave;
+ }
+
+ /* Extract the signature value. */
+ rc = _gcry_pk_util_preparse_sigval (s_sig, rsa_names, &l1, NULL);
+ if (rc)
+ goto leave;
+ rc = sexp_extract_param (l1, NULL, "s", &sig, NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_verify sig", sig);
+
+ /* Extract the key. */
+ rc = sexp_extract_param (keyparms, NULL, "ne", &pk.n, &pk.e, NULL);
+ if (rc)
+ goto leave;
+ if (DBG_CIPHER)
+ {
+ log_printmpi ("rsa_verify n", pk.n);
+ log_printmpi ("rsa_verify e", pk.e);
+ }
+
+ /* Do RSA computation and compare. */
+ result = mpi_new (0);
+ public (result, sig, &pk);
+ if (DBG_CIPHER)
+ log_printmpi ("rsa_verify cmp", result);
+ if (ctx.verify_cmp)
+ rc = ctx.verify_cmp (&ctx, result);
+ else
+ rc = mpi_cmp (result, data) ? GPG_ERR_BAD_SIGNATURE : 0;
+
+ leave:
+ _gcry_mpi_release (result);
+ _gcry_mpi_release (pk.n);
+ _gcry_mpi_release (pk.e);
+ _gcry_mpi_release (data);
+ _gcry_mpi_release (sig);
+ sexp_release (l1);
+ _gcry_pk_util_free_encoding_ctx (&ctx);
+ if (DBG_CIPHER)
+ log_debug ("rsa_verify => %s\n", rc?gpg_strerror (rc):"Good");
+ return rc;
+}
+
+
+
+/* Return the number of bits for the key described by PARMS. On error
+ * 0 is returned. The format of PARMS starts with the algorithm name;
+ * for example:
+ *
+ * (rsa
+ * (n <mpi>)
+ * (e <mpi>))
+ *
+ * More parameters may be given but we only need N here.
+ */
+static unsigned int
+rsa_get_nbits (gcry_sexp_t parms)
+{
+ gcry_sexp_t l1;
+ gcry_mpi_t n;
+ unsigned int nbits;
+
+ l1 = sexp_find_token (parms, "n", 1);
+ if (!l1)
+ return 0; /* Parameter N not found. */
+
+ n = sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
+ sexp_release (l1);
+ nbits = n? mpi_get_nbits (n) : 0;
+ _gcry_mpi_release (n);
+ return nbits;
+}
+
+
+/* Compute a keygrip. MD is the hash context which we are going to
+ update. KEYPARAM is an S-expression with the key parameters, this
+ is usually a public key but may also be a secret key. An example
+ of such an S-expression is:
+
+ (rsa
+ (n #00B...#)
+ (e #010001#))
+
+ PKCS-15 says that for RSA only the modulus should be hashed -
+ however, it is not clear whether this is meant to use the raw bytes
+ (assuming this is an unsigned integer) or whether the DER required
+ 0 should be prefixed. We hash the raw bytes. */
+static gpg_err_code_t
+compute_keygrip (gcry_md_hd_t md, gcry_sexp_t keyparam)
+{
+ gcry_sexp_t l1;
+ const char *data;
+ size_t datalen;
+
+ l1 = sexp_find_token (keyparam, "n", 1);
+ if (!l1)
+ return GPG_ERR_NO_OBJ;
+
+ data = sexp_nth_data (l1, 1, &datalen);
+ if (!data)
+ {
+ sexp_release (l1);
+ return GPG_ERR_NO_OBJ;
+ }
+
+ _gcry_md_write (md, data, datalen);
+ sexp_release (l1);
+
+ return 0;
+}
+
+
+
+
+/*
+ Self-test section.
+ */
+
+static const char *
+selftest_sign_2048 (gcry_sexp_t pkey, gcry_sexp_t skey)
+{
+ static const char sample_data[] =
+ "(data (flags pkcs1)"
+ " (hash sha256 #11223344556677889900aabbccddeeff"
+ /**/ "102030405060708090a0b0c0d0f01121#))";
+ static const char sample_data_bad[] =
+ "(data (flags pkcs1)"
+ " (hash sha256 #11223344556677889900aabbccddeeff"
+ /**/ "802030405060708090a0b0c0d0f01121#))";
+
+ const char *errtxt = NULL;
+ gcry_error_t err;
+ gcry_sexp_t data = NULL;
+ gcry_sexp_t data_bad = NULL;
+ gcry_sexp_t sig = NULL;
+ /* raw signature data reference */
+ const char ref_data[] =
+ "6252a19a11e1d5155ed9376036277193d644fa239397fff03e9b92d6f86415d6"
+ "d30da9273775f290e580d038295ff8ff89522becccfa6ae870bf76b76df402a8"
+ "54f69347e3db3de8e1e7d4dada281ec556810c7a8ecd0b5f51f9b1c0e7aa7557"
+ "61aa2b8ba5f811304acc6af0eca41fe49baf33bf34eddaf44e21e036ac7f0b68"
+ "03cdef1c60021fb7b5b97ebacdd88ab755ce29af568dbc5728cc6e6eff42618d"
+ "62a0386ca8beed46402bdeeef29b6a3feded906bace411a06a39192bf516ae10"
+ "67e4320fa8ea113968525f4574d022a3ceeaafdc41079efe1f22cc94bf59d8d3"
+ "328085da9674857db56de5978a62394aab48aa3b72e23a1b16260cfd9daafe65";
+ gcry_mpi_t ref_mpi = NULL;
+ gcry_mpi_t sig_mpi = NULL;
+
+ err = sexp_sscan (&data, NULL, sample_data, strlen (sample_data));
+ if (!err)
+ err = sexp_sscan (&data_bad, NULL,
+ sample_data_bad, strlen (sample_data_bad));
+ if (err)
+ {
+ errtxt = "converting data failed";
+ goto leave;
+ }
+
+ err = _gcry_pk_sign (&sig, data, skey);
+ if (err)
+ {
+ errtxt = "signing failed";
+ goto leave;
+ }
+
+ err = _gcry_mpi_scan(&ref_mpi, GCRYMPI_FMT_HEX, ref_data, 0, NULL);
+ if (err)
+ {
+ errtxt = "converting ref_data to mpi failed";
+ goto leave;
+ }
+
+ err = _gcry_sexp_extract_param(sig, "sig-val!rsa", "s", &sig_mpi, NULL);
+ if (err)
+ {
+ errtxt = "extracting signature data failed";
+ goto leave;
+ }
+
+ if (mpi_cmp (sig_mpi, ref_mpi))
+ {
+ errtxt = "signature does not match reference data";
+ goto leave;
+ }
+
+ err = _gcry_pk_verify (sig, data, pkey);
+ if (err)
+ {
+ errtxt = "verify failed";
+ goto leave;
+ }
+ err = _gcry_pk_verify (sig, data_bad, pkey);
+ if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE)
+ {
+ errtxt = "bad signature not detected";
+ goto leave;
+ }
+
+
+ leave:
+ sexp_release (sig);
+ sexp_release (data_bad);
+ sexp_release (data);
+ _gcry_mpi_release (ref_mpi);
+ _gcry_mpi_release (sig_mpi);
+ return errtxt;
+}
+
+
+
+/* Given an S-expression ENCR_DATA of the form:
+
+ (enc-val
+ (rsa
+ (a a-value)))
+
+ as returned by gcry_pk_decrypt, return the the A-VALUE. On error,
+ return NULL. */
+static gcry_mpi_t
+extract_a_from_sexp (gcry_sexp_t encr_data)
+{
+ gcry_sexp_t l1, l2, l3;
+ gcry_mpi_t a_value;
+
+ l1 = sexp_find_token (encr_data, "enc-val", 0);
+ if (!l1)
+ return NULL;
+ l2 = sexp_find_token (l1, "rsa", 0);
+ sexp_release (l1);
+ if (!l2)
+ return NULL;
+ l3 = sexp_find_token (l2, "a", 0);
+ sexp_release (l2);
+ if (!l3)
+ return NULL;
+ a_value = sexp_nth_mpi (l3, 1, 0);
+ sexp_release (l3);
+
+ return a_value;
+}
+
+
+static const char *
+selftest_encr_2048 (gcry_sexp_t pkey, gcry_sexp_t skey)
+{
+ const char *errtxt = NULL;
+ gcry_error_t err;
+ static const char plaintext[] =
+ "Jim quickly realized that the beautiful gowns are expensive.";
+ gcry_sexp_t plain = NULL;
+ gcry_sexp_t encr = NULL;
+ gcry_mpi_t ciphertext = NULL;
+ gcry_sexp_t decr = NULL;
+ char *decr_plaintext = NULL;
+ gcry_sexp_t tmplist = NULL;
+ /* expected result of encrypting the plaintext with sample_secret_key */
+ static const char ref_data[] =
+ "18022e2593a402a737caaa93b4c7e750e20ca265452980e1d6b7710fbd3e"
+ "7dce72be5c2110fb47691cb38f42170ee3b4a37f2498d4a51567d762585e"
+ "4cb81d04fbc7df4144f8e5eac2d4b8688521b64011f11d7ad53f4c874004"
+ "819856f2e2a6f83d1c9c4e73ac26089789c14482b0b8d44139133c88c4a5"
+ "2dba9dd6d6ffc622666b7d129168333d999706af30a2d7d272db7734e5ed"
+ "fb8c64ea3018af3ad20f4a013a5060cb0f5e72753967bebe294280a6ed0d"
+ "dbd3c4f11d0a8696e9d32a0dc03deb0b5e49b2cbd1503392642d4e1211f3"
+ "e8e2ee38abaa3671ccd57fcde8ca76e85fd2cb77c35706a970a213a27352"
+ "cec92a9604d543ddb5fc478ff50e0622";
+ gcry_mpi_t ref_mpi = NULL;
+
+ /* Put the plaintext into an S-expression. */
+ err = sexp_build (&plain, NULL, "(data (flags raw) (value %s))", plaintext);
+ if (err)
+ {
+ errtxt = "converting data failed";
+ goto leave;
+ }
+
+ /* Encrypt. */
+ err = _gcry_pk_encrypt (&encr, plain, pkey);
+ if (err)
+ {
+ errtxt = "encrypt failed";
+ goto leave;
+ }
+
+ err = _gcry_mpi_scan(&ref_mpi, GCRYMPI_FMT_HEX, ref_data, 0, NULL);
+ if (err)
+ {
+ errtxt = "converting encrydata to mpi failed";
+ goto leave;
+ }
+
+ /* Extraxt the ciphertext from the returned S-expression. */
+ /*sexp_dump (encr);*/
+ ciphertext = extract_a_from_sexp (encr);
+ if (!ciphertext)
+ {
+ errtxt = "gcry_pk_decrypt returned garbage";
+ goto leave;
+ }
+
+ /* Check that the ciphertext does no match the plaintext. */
+ /* _gcry_log_printmpi ("plaintext", plaintext); */
+ /* _gcry_log_printmpi ("ciphertxt", ciphertext); */
+ if (mpi_cmp (ref_mpi, ciphertext))
+ {
+ errtxt = "ciphertext doesn't match reference data";
+ goto leave;
+ }
+
+ /* Decrypt. */
+ err = _gcry_pk_decrypt (&decr, encr, skey);
+ if (err)
+ {
+ errtxt = "decrypt failed";
+ goto leave;
+ }
+
+ /* Extract the decrypted data from the S-expression. Note that the
+ output of gcry_pk_decrypt depends on whether a flags lists occurs
+ in its input data. Because we passed the output of
+ gcry_pk_encrypt directly to gcry_pk_decrypt, such a flag value
+ won't be there as of today. To be prepared for future changes we
+ take care of it anyway. */
+ tmplist = sexp_find_token (decr, "value", 0);
+ if (tmplist)
+ decr_plaintext = sexp_nth_string (tmplist, 1);
+ else
+ decr_plaintext = sexp_nth_string (decr, 0);
+ if (!decr_plaintext)
+ {
+ errtxt = "decrypt returned no plaintext";
+ goto leave;
+ }
+
+ /* Check that the decrypted plaintext matches the original plaintext. */
+ if (strcmp (plaintext, decr_plaintext))
+ {
+ errtxt = "mismatch";
+ goto leave;
+ }
+
+ leave:
+ sexp_release (tmplist);
+ xfree (decr_plaintext);
+ sexp_release (decr);
+ _gcry_mpi_release (ciphertext);
+ _gcry_mpi_release (ref_mpi);
+ sexp_release (encr);
+ sexp_release (plain);
+ return errtxt;
+}
+
+
+static gpg_err_code_t
+selftests_rsa (selftest_report_func_t report)
+{
+ const char *what;
+ const char *errtxt;
+ gcry_error_t err;
+ gcry_sexp_t skey = NULL;
+ gcry_sexp_t pkey = NULL;
+
+ /* Convert the S-expressions into the internal representation. */
+ what = "convert";
+ err = sexp_sscan (&skey, NULL, sample_secret_key, strlen (sample_secret_key));
+ if (!err)
+ err = sexp_sscan (&pkey, NULL,
+ sample_public_key, strlen (sample_public_key));
+ if (err)
+ {
+ errtxt = _gcry_strerror (err);
+ goto failed;
+ }
+
+ what = "key consistency";
+ err = _gcry_pk_testkey (skey);
+ if (err)
+ {
+ errtxt = _gcry_strerror (err);
+ goto failed;
+ }
+
+ what = "sign";
+ errtxt = selftest_sign_2048 (pkey, skey);
+ if (errtxt)
+ goto failed;
+
+ what = "encrypt";
+ errtxt = selftest_encr_2048 (pkey, skey);
+ if (errtxt)
+ goto failed;
+
+ sexp_release (pkey);
+ sexp_release (skey);
+ return 0; /* Succeeded. */
+
+ failed:
+ sexp_release (pkey);
+ sexp_release (skey);
+ if (report)
+ report ("pubkey", GCRY_PK_RSA, what, errtxt);
+ return GPG_ERR_SELFTEST_FAILED;
+}
+
+
+/* Run a full self-test for ALGO and return 0 on success. */
+static gpg_err_code_t
+run_selftests (int algo, int extended, selftest_report_func_t report)
+{
+ gpg_err_code_t ec;
+
+ (void)extended;
+
+ switch (algo)
+ {
+ case GCRY_PK_RSA:
+ ec = selftests_rsa (report);
+ break;
+ default:
+ ec = GPG_ERR_PUBKEY_ALGO;
+ break;
+
+ }
+ return ec;
+}
+
+
+
+
+gcry_pk_spec_t _gcry_pubkey_spec_rsa =
+ {
+ GCRY_PK_RSA, { 0, 1 },
+ (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR),
+ "RSA", rsa_names,
+ "ne", "nedpqu", "a", "s", "n",
+ rsa_generate,
+ rsa_check_secret_key,
+ rsa_encrypt,
+ rsa_decrypt,
+ rsa_sign,
+ rsa_verify,
+ rsa_get_nbits,
+ run_selftests,
+ compute_keygrip
+ };