summaryrefslogtreecommitdiffstats
path: root/comm/third_party/libgcrypt/cipher/serpent.c
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/serpent.c')
-rw-r--r--comm/third_party/libgcrypt/cipher/serpent.c1807
1 files changed, 1807 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/serpent.c b/comm/third_party/libgcrypt/cipher/serpent.c
new file mode 100644
index 0000000000..3c5eed2c03
--- /dev/null
+++ b/comm/third_party/libgcrypt/cipher/serpent.c
@@ -0,0 +1,1807 @@
+/* serpent.c - Implementation of the Serpent encryption algorithm.
+ * Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser general Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+ * 02111-1307, USA.
+ */
+
+#include <config.h>
+
+#include <string.h>
+#include <stdio.h>
+
+#include "types.h"
+#include "g10lib.h"
+#include "cipher.h"
+#include "bithelp.h"
+#include "bufhelp.h"
+#include "cipher-internal.h"
+#include "cipher-selftest.h"
+
+
+/* USE_SSE2 indicates whether to compile with AMD64 SSE2 code. */
+#undef USE_SSE2
+#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
+ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
+# define USE_SSE2 1
+#endif
+
+/* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */
+#undef USE_AVX2
+#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
+ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
+# if defined(ENABLE_AVX2_SUPPORT)
+# define USE_AVX2 1
+# endif
+#endif
+
+/* USE_NEON indicates whether to enable ARM NEON assembly code. */
+#undef USE_NEON
+#ifdef ENABLE_NEON_SUPPORT
+# if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \
+ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \
+ && defined(HAVE_GCC_INLINE_ASM_NEON)
+# define USE_NEON 1
+# endif
+#endif /*ENABLE_NEON_SUPPORT*/
+
+/* Number of rounds per Serpent encrypt/decrypt operation. */
+#define ROUNDS 32
+
+/* Magic number, used during generating of the subkeys. */
+#define PHI 0x9E3779B9
+
+/* Serpent works on 128 bit blocks. */
+typedef u32 serpent_block_t[4];
+
+/* Serpent key, provided by the user. If the original key is shorter
+ than 256 bits, it is padded. */
+typedef u32 serpent_key_t[8];
+
+/* The key schedule consists of 33 128 bit subkeys. */
+typedef u32 serpent_subkeys_t[ROUNDS + 1][4];
+
+/* A Serpent context. */
+typedef struct serpent_context
+{
+ serpent_subkeys_t keys; /* Generated subkeys. */
+
+#ifdef USE_AVX2
+ int use_avx2;
+#endif
+#ifdef USE_NEON
+ int use_neon;
+#endif
+} serpent_context_t;
+
+
+/* Assembly implementations use SystemV ABI, ABI conversion and additional
+ * stack to store XMM6-XMM15 needed on Win64. */
+#undef ASM_FUNC_ABI
+#if defined(USE_SSE2) || defined(USE_AVX2)
+# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
+# define ASM_FUNC_ABI __attribute__((sysv_abi))
+# else
+# define ASM_FUNC_ABI
+# endif
+#endif
+
+
+#ifdef USE_SSE2
+/* Assembler implementations of Serpent using SSE2. Process 8 block in
+ parallel.
+ */
+extern void _gcry_serpent_sse2_ctr_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *ctr) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_sse2_cbc_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_sse2_cfb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_sse2_ocb_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[8]) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_sse2_ocb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[8]) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_sse2_ocb_auth(serpent_context_t *ctx,
+ const unsigned char *abuf,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[8]) ASM_FUNC_ABI;
+#endif
+
+#ifdef USE_AVX2
+/* Assembler implementations of Serpent using AVX2. Process 16 block in
+ parallel.
+ */
+extern void _gcry_serpent_avx2_ctr_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *ctr) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_avx2_cbc_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_avx2_cfb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_avx2_ocb_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[16]) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_avx2_ocb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[16]) ASM_FUNC_ABI;
+
+extern void _gcry_serpent_avx2_ocb_auth(serpent_context_t *ctx,
+ const unsigned char *abuf,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const u64 Ls[16]) ASM_FUNC_ABI;
+#endif
+
+#ifdef USE_NEON
+/* Assembler implementations of Serpent using ARM NEON. Process 8 block in
+ parallel.
+ */
+extern void _gcry_serpent_neon_ctr_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *ctr);
+
+extern void _gcry_serpent_neon_cbc_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv);
+
+extern void _gcry_serpent_neon_cfb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *iv);
+
+extern void _gcry_serpent_neon_ocb_enc(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const void *Ls[8]);
+
+extern void _gcry_serpent_neon_ocb_dec(serpent_context_t *ctx,
+ unsigned char *out,
+ const unsigned char *in,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const void *Ls[8]);
+
+extern void _gcry_serpent_neon_ocb_auth(serpent_context_t *ctx,
+ const unsigned char *abuf,
+ unsigned char *offset,
+ unsigned char *checksum,
+ const void *Ls[8]);
+#endif
+
+
+/* Prototypes. */
+static const char *serpent_test (void);
+
+static void _gcry_serpent_ctr_enc (void *context, unsigned char *ctr,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks);
+static void _gcry_serpent_cbc_dec (void *context, unsigned char *iv,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks);
+static void _gcry_serpent_cfb_dec (void *context, unsigned char *iv,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks);
+static size_t _gcry_serpent_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
+ const void *inbuf_arg, size_t nblocks,
+ int encrypt);
+static size_t _gcry_serpent_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
+ size_t nblocks);
+
+
+/*
+ * These are the S-Boxes of Serpent from following research paper.
+ *
+ * D. A. Osvik, “Speeding up Serpent,” in Third AES Candidate Conference,
+ * (New York, New York, USA), p. 317–329, National Institute of Standards and
+ * Technology, 2000.
+ *
+ * Paper is also available at: http://www.ii.uib.no/~osvik/pub/aes3.pdf
+ *
+ */
+
+#define SBOX0(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r3 ^= r0; r4 = r1; \
+ r1 &= r3; r4 ^= r2; \
+ r1 ^= r0; r0 |= r3; \
+ r0 ^= r4; r4 ^= r3; \
+ r3 ^= r2; r2 |= r1; \
+ r2 ^= r4; r4 = ~r4; \
+ r4 |= r1; r1 ^= r3; \
+ r1 ^= r4; r3 |= r0; \
+ r1 ^= r3; r4 ^= r3; \
+ \
+ w = r1; x = r4; y = r2; z = r0; \
+ }
+
+#define SBOX0_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r2 = ~r2; r4 = r1; \
+ r1 |= r0; r4 = ~r4; \
+ r1 ^= r2; r2 |= r4; \
+ r1 ^= r3; r0 ^= r4; \
+ r2 ^= r0; r0 &= r3; \
+ r4 ^= r0; r0 |= r1; \
+ r0 ^= r2; r3 ^= r4; \
+ r2 ^= r1; r3 ^= r0; \
+ r3 ^= r1; \
+ r2 &= r3; \
+ r4 ^= r2; \
+ \
+ w = r0; x = r4; y = r1; z = r3; \
+ }
+
+#define SBOX1(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r0 = ~r0; r2 = ~r2; \
+ r4 = r0; r0 &= r1; \
+ r2 ^= r0; r0 |= r3; \
+ r3 ^= r2; r1 ^= r0; \
+ r0 ^= r4; r4 |= r1; \
+ r1 ^= r3; r2 |= r0; \
+ r2 &= r4; r0 ^= r1; \
+ r1 &= r2; \
+ r1 ^= r0; r0 &= r2; \
+ r0 ^= r4; \
+ \
+ w = r2; x = r0; y = r3; z = r1; \
+ }
+
+#define SBOX1_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r1; r1 ^= r3; \
+ r3 &= r1; r4 ^= r2; \
+ r3 ^= r0; r0 |= r1; \
+ r2 ^= r3; r0 ^= r4; \
+ r0 |= r2; r1 ^= r3; \
+ r0 ^= r1; r1 |= r3; \
+ r1 ^= r0; r4 = ~r4; \
+ r4 ^= r1; r1 |= r0; \
+ r1 ^= r0; \
+ r1 |= r4; \
+ r3 ^= r1; \
+ \
+ w = r4; x = r0; y = r3; z = r2; \
+ }
+
+#define SBOX2(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r0; r0 &= r2; \
+ r0 ^= r3; r2 ^= r1; \
+ r2 ^= r0; r3 |= r4; \
+ r3 ^= r1; r4 ^= r2; \
+ r1 = r3; r3 |= r4; \
+ r3 ^= r0; r0 &= r1; \
+ r4 ^= r0; r1 ^= r3; \
+ r1 ^= r4; r4 = ~r4; \
+ \
+ w = r2; x = r3; y = r1; z = r4; \
+ }
+
+#define SBOX2_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r2 ^= r3; r3 ^= r0; \
+ r4 = r3; r3 &= r2; \
+ r3 ^= r1; r1 |= r2; \
+ r1 ^= r4; r4 &= r3; \
+ r2 ^= r3; r4 &= r0; \
+ r4 ^= r2; r2 &= r1; \
+ r2 |= r0; r3 = ~r3; \
+ r2 ^= r3; r0 ^= r3; \
+ r0 &= r1; r3 ^= r4; \
+ r3 ^= r0; \
+ \
+ w = r1; x = r4; y = r2; z = r3; \
+ }
+
+#define SBOX3(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r0; r0 |= r3; \
+ r3 ^= r1; r1 &= r4; \
+ r4 ^= r2; r2 ^= r3; \
+ r3 &= r0; r4 |= r1; \
+ r3 ^= r4; r0 ^= r1; \
+ r4 &= r0; r1 ^= r3; \
+ r4 ^= r2; r1 |= r0; \
+ r1 ^= r2; r0 ^= r3; \
+ r2 = r1; r1 |= r3; \
+ r1 ^= r0; \
+ \
+ w = r1; x = r2; y = r3; z = r4; \
+ }
+
+#define SBOX3_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r2; r2 ^= r1; \
+ r0 ^= r2; r4 &= r2; \
+ r4 ^= r0; r0 &= r1; \
+ r1 ^= r3; r3 |= r4; \
+ r2 ^= r3; r0 ^= r3; \
+ r1 ^= r4; r3 &= r2; \
+ r3 ^= r1; r1 ^= r0; \
+ r1 |= r2; r0 ^= r3; \
+ r1 ^= r4; \
+ r0 ^= r1; \
+ \
+ w = r2; x = r1; y = r3; z = r0; \
+ }
+
+#define SBOX4(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r1 ^= r3; r3 = ~r3; \
+ r2 ^= r3; r3 ^= r0; \
+ r4 = r1; r1 &= r3; \
+ r1 ^= r2; r4 ^= r3; \
+ r0 ^= r4; r2 &= r4; \
+ r2 ^= r0; r0 &= r1; \
+ r3 ^= r0; r4 |= r1; \
+ r4 ^= r0; r0 |= r3; \
+ r0 ^= r2; r2 &= r3; \
+ r0 = ~r0; r4 ^= r2; \
+ \
+ w = r1; x = r4; y = r0; z = r3; \
+ }
+
+#define SBOX4_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r2; r2 &= r3; \
+ r2 ^= r1; r1 |= r3; \
+ r1 &= r0; r4 ^= r2; \
+ r4 ^= r1; r1 &= r2; \
+ r0 = ~r0; r3 ^= r4; \
+ r1 ^= r3; r3 &= r0; \
+ r3 ^= r2; r0 ^= r1; \
+ r2 &= r0; r3 ^= r0; \
+ r2 ^= r4; \
+ r2 |= r3; r3 ^= r0; \
+ r2 ^= r1; \
+ \
+ w = r0; x = r3; y = r2; z = r4; \
+ }
+
+#define SBOX5(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r0 ^= r1; r1 ^= r3; \
+ r3 = ~r3; r4 = r1; \
+ r1 &= r0; r2 ^= r3; \
+ r1 ^= r2; r2 |= r4; \
+ r4 ^= r3; r3 &= r1; \
+ r3 ^= r0; r4 ^= r1; \
+ r4 ^= r2; r2 ^= r0; \
+ r0 &= r3; r2 = ~r2; \
+ r0 ^= r4; r4 |= r3; \
+ r2 ^= r4; \
+ \
+ w = r1; x = r3; y = r0; z = r2; \
+ }
+
+#define SBOX5_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r1 = ~r1; r4 = r3; \
+ r2 ^= r1; r3 |= r0; \
+ r3 ^= r2; r2 |= r1; \
+ r2 &= r0; r4 ^= r3; \
+ r2 ^= r4; r4 |= r0; \
+ r4 ^= r1; r1 &= r2; \
+ r1 ^= r3; r4 ^= r2; \
+ r3 &= r4; r4 ^= r1; \
+ r3 ^= r4; r4 = ~r4; \
+ r3 ^= r0; \
+ \
+ w = r1; x = r4; y = r3; z = r2; \
+ }
+
+#define SBOX6(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r2 = ~r2; r4 = r3; \
+ r3 &= r0; r0 ^= r4; \
+ r3 ^= r2; r2 |= r4; \
+ r1 ^= r3; r2 ^= r0; \
+ r0 |= r1; r2 ^= r1; \
+ r4 ^= r0; r0 |= r3; \
+ r0 ^= r2; r4 ^= r3; \
+ r4 ^= r0; r3 = ~r3; \
+ r2 &= r4; \
+ r2 ^= r3; \
+ \
+ w = r0; x = r1; y = r4; z = r2; \
+ }
+
+#define SBOX6_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r0 ^= r2; r4 = r2; \
+ r2 &= r0; r4 ^= r3; \
+ r2 = ~r2; r3 ^= r1; \
+ r2 ^= r3; r4 |= r0; \
+ r0 ^= r2; r3 ^= r4; \
+ r4 ^= r1; r1 &= r3; \
+ r1 ^= r0; r0 ^= r3; \
+ r0 |= r2; r3 ^= r1; \
+ r4 ^= r0; \
+ \
+ w = r1; x = r2; y = r4; z = r3; \
+ }
+
+#define SBOX7(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r1; r1 |= r2; \
+ r1 ^= r3; r4 ^= r2; \
+ r2 ^= r1; r3 |= r4; \
+ r3 &= r0; r4 ^= r2; \
+ r3 ^= r1; r1 |= r4; \
+ r1 ^= r0; r0 |= r4; \
+ r0 ^= r2; r1 ^= r4; \
+ r2 ^= r1; r1 &= r0; \
+ r1 ^= r4; r2 = ~r2; \
+ r2 |= r0; \
+ r4 ^= r2; \
+ \
+ w = r4; x = r3; y = r1; z = r0; \
+ }
+
+#define SBOX7_INVERSE(r0, r1, r2, r3, w, x, y, z) \
+ { \
+ u32 r4; \
+ \
+ r4 = r2; r2 ^= r0; \
+ r0 &= r3; r4 |= r3; \
+ r2 = ~r2; r3 ^= r1; \
+ r1 |= r0; r0 ^= r2; \
+ r2 &= r4; r3 &= r4; \
+ r1 ^= r2; r2 ^= r0; \
+ r0 |= r2; r4 ^= r1; \
+ r0 ^= r3; r3 ^= r4; \
+ r4 |= r0; r3 ^= r2; \
+ r4 ^= r2; \
+ \
+ w = r3; x = r0; y = r1; z = r4; \
+ }
+
+/* XOR BLOCK1 into BLOCK0. */
+#define BLOCK_XOR(block0, block1) \
+ { \
+ block0[0] ^= block1[0]; \
+ block0[1] ^= block1[1]; \
+ block0[2] ^= block1[2]; \
+ block0[3] ^= block1[3]; \
+ }
+
+/* Copy BLOCK_SRC to BLOCK_DST. */
+#define BLOCK_COPY(block_dst, block_src) \
+ { \
+ block_dst[0] = block_src[0]; \
+ block_dst[1] = block_src[1]; \
+ block_dst[2] = block_src[2]; \
+ block_dst[3] = block_src[3]; \
+ }
+
+/* Apply SBOX number WHICH to to the block found in ARRAY0, writing
+ the output to the block found in ARRAY1. */
+#define SBOX(which, array0, array1) \
+ SBOX##which (array0[0], array0[1], array0[2], array0[3], \
+ array1[0], array1[1], array1[2], array1[3]);
+
+/* Apply inverse SBOX number WHICH to to the block found in ARRAY0, writing
+ the output to the block found in ARRAY1. */
+#define SBOX_INVERSE(which, array0, array1) \
+ SBOX##which##_INVERSE (array0[0], array0[1], array0[2], array0[3], \
+ array1[0], array1[1], array1[2], array1[3]);
+
+/* Apply the linear transformation to BLOCK. */
+#define LINEAR_TRANSFORMATION(block) \
+ { \
+ block[0] = rol (block[0], 13); \
+ block[2] = rol (block[2], 3); \
+ block[1] = block[1] ^ block[0] ^ block[2]; \
+ block[3] = block[3] ^ block[2] ^ (block[0] << 3); \
+ block[1] = rol (block[1], 1); \
+ block[3] = rol (block[3], 7); \
+ block[0] = block[0] ^ block[1] ^ block[3]; \
+ block[2] = block[2] ^ block[3] ^ (block[1] << 7); \
+ block[0] = rol (block[0], 5); \
+ block[2] = rol (block[2], 22); \
+ }
+
+/* Apply the inverse linear transformation to BLOCK. */
+#define LINEAR_TRANSFORMATION_INVERSE(block) \
+ { \
+ block[2] = ror (block[2], 22); \
+ block[0] = ror (block[0] , 5); \
+ block[2] = block[2] ^ block[3] ^ (block[1] << 7); \
+ block[0] = block[0] ^ block[1] ^ block[3]; \
+ block[3] = ror (block[3], 7); \
+ block[1] = ror (block[1], 1); \
+ block[3] = block[3] ^ block[2] ^ (block[0] << 3); \
+ block[1] = block[1] ^ block[0] ^ block[2]; \
+ block[2] = ror (block[2], 3); \
+ block[0] = ror (block[0], 13); \
+ }
+
+/* Apply a Serpent round to BLOCK, using the SBOX number WHICH and the
+ subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary storage.
+ This macro increments `round'. */
+#define ROUND(which, subkeys, block, block_tmp) \
+ { \
+ BLOCK_XOR (block, subkeys[round]); \
+ round++; \
+ SBOX (which, block, block_tmp); \
+ LINEAR_TRANSFORMATION (block_tmp); \
+ BLOCK_COPY (block, block_tmp); \
+ }
+
+/* Apply the last Serpent round to BLOCK, using the SBOX number WHICH
+ and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary
+ storage. The result will be stored in BLOCK_TMP. This macro
+ increments `round'. */
+#define ROUND_LAST(which, subkeys, block, block_tmp) \
+ { \
+ BLOCK_XOR (block, subkeys[round]); \
+ round++; \
+ SBOX (which, block, block_tmp); \
+ BLOCK_XOR (block_tmp, subkeys[round]); \
+ round++; \
+ }
+
+/* Apply an inverse Serpent round to BLOCK, using the SBOX number
+ WHICH and the subkeys contained in SUBKEYS. Use BLOCK_TMP as
+ temporary storage. This macro increments `round'. */
+#define ROUND_INVERSE(which, subkey, block, block_tmp) \
+ { \
+ LINEAR_TRANSFORMATION_INVERSE (block); \
+ SBOX_INVERSE (which, block, block_tmp); \
+ BLOCK_XOR (block_tmp, subkey[round]); \
+ round--; \
+ BLOCK_COPY (block, block_tmp); \
+ }
+
+/* Apply the first Serpent round to BLOCK, using the SBOX number WHICH
+ and the subkeys contained in SUBKEYS. Use BLOCK_TMP as temporary
+ storage. The result will be stored in BLOCK_TMP. This macro
+ increments `round'. */
+#define ROUND_FIRST_INVERSE(which, subkeys, block, block_tmp) \
+ { \
+ BLOCK_XOR (block, subkeys[round]); \
+ round--; \
+ SBOX_INVERSE (which, block, block_tmp); \
+ BLOCK_XOR (block_tmp, subkeys[round]); \
+ round--; \
+ }
+
+/* Convert the user provided key KEY of KEY_LENGTH bytes into the
+ internally used format. */
+static void
+serpent_key_prepare (const byte *key, unsigned int key_length,
+ serpent_key_t key_prepared)
+{
+ int i;
+
+ /* Copy key. */
+ key_length /= 4;
+ for (i = 0; i < key_length; i++)
+ key_prepared[i] = buf_get_le32 (key + i * 4);
+
+ if (i < 8)
+ {
+ /* Key must be padded according to the Serpent
+ specification. */
+ key_prepared[i] = 0x00000001;
+
+ for (i++; i < 8; i++)
+ key_prepared[i] = 0;
+ }
+}
+
+/* Derive the 33 subkeys from KEY and store them in SUBKEYS. */
+static void
+serpent_subkeys_generate (serpent_key_t key, serpent_subkeys_t subkeys)
+{
+ u32 w[8]; /* The `prekey'. */
+ u32 ws[4];
+ u32 wt[4];
+
+ /* Initialize with key values. */
+ w[0] = key[0];
+ w[1] = key[1];
+ w[2] = key[2];
+ w[3] = key[3];
+ w[4] = key[4];
+ w[5] = key[5];
+ w[6] = key[6];
+ w[7] = key[7];
+
+ /* Expand to intermediate key using the affine recurrence. */
+#define EXPAND_KEY4(wo, r) \
+ wo[0] = w[(r+0)%8] = \
+ rol (w[(r+0)%8] ^ w[(r+3)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ PHI ^ (r+0), 11); \
+ wo[1] = w[(r+1)%8] = \
+ rol (w[(r+1)%8] ^ w[(r+4)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ PHI ^ (r+1), 11); \
+ wo[2] = w[(r+2)%8] = \
+ rol (w[(r+2)%8] ^ w[(r+5)%8] ^ w[(r+7)%8] ^ w[(r+1)%8] ^ PHI ^ (r+2), 11); \
+ wo[3] = w[(r+3)%8] = \
+ rol (w[(r+3)%8] ^ w[(r+6)%8] ^ w[(r+0)%8] ^ w[(r+2)%8] ^ PHI ^ (r+3), 11);
+
+#define EXPAND_KEY(r) \
+ EXPAND_KEY4(ws, (r)); \
+ EXPAND_KEY4(wt, (r + 4));
+
+ /* Calculate subkeys via S-Boxes, in bitslice mode. */
+ EXPAND_KEY (0); SBOX (3, ws, subkeys[0]); SBOX (2, wt, subkeys[1]);
+ EXPAND_KEY (8); SBOX (1, ws, subkeys[2]); SBOX (0, wt, subkeys[3]);
+ EXPAND_KEY (16); SBOX (7, ws, subkeys[4]); SBOX (6, wt, subkeys[5]);
+ EXPAND_KEY (24); SBOX (5, ws, subkeys[6]); SBOX (4, wt, subkeys[7]);
+ EXPAND_KEY (32); SBOX (3, ws, subkeys[8]); SBOX (2, wt, subkeys[9]);
+ EXPAND_KEY (40); SBOX (1, ws, subkeys[10]); SBOX (0, wt, subkeys[11]);
+ EXPAND_KEY (48); SBOX (7, ws, subkeys[12]); SBOX (6, wt, subkeys[13]);
+ EXPAND_KEY (56); SBOX (5, ws, subkeys[14]); SBOX (4, wt, subkeys[15]);
+ EXPAND_KEY (64); SBOX (3, ws, subkeys[16]); SBOX (2, wt, subkeys[17]);
+ EXPAND_KEY (72); SBOX (1, ws, subkeys[18]); SBOX (0, wt, subkeys[19]);
+ EXPAND_KEY (80); SBOX (7, ws, subkeys[20]); SBOX (6, wt, subkeys[21]);
+ EXPAND_KEY (88); SBOX (5, ws, subkeys[22]); SBOX (4, wt, subkeys[23]);
+ EXPAND_KEY (96); SBOX (3, ws, subkeys[24]); SBOX (2, wt, subkeys[25]);
+ EXPAND_KEY (104); SBOX (1, ws, subkeys[26]); SBOX (0, wt, subkeys[27]);
+ EXPAND_KEY (112); SBOX (7, ws, subkeys[28]); SBOX (6, wt, subkeys[29]);
+ EXPAND_KEY (120); SBOX (5, ws, subkeys[30]); SBOX (4, wt, subkeys[31]);
+ EXPAND_KEY4 (ws, 128); SBOX (3, ws, subkeys[32]);
+
+ wipememory (ws, sizeof (ws));
+ wipememory (wt, sizeof (wt));
+ wipememory (w, sizeof (w));
+}
+
+/* Initialize CONTEXT with the key KEY of KEY_LENGTH bits. */
+static void
+serpent_setkey_internal (serpent_context_t *context,
+ const byte *key, unsigned int key_length)
+{
+ serpent_key_t key_prepared;
+
+ serpent_key_prepare (key, key_length, key_prepared);
+ serpent_subkeys_generate (key_prepared, context->keys);
+
+#ifdef USE_AVX2
+ context->use_avx2 = 0;
+ if ((_gcry_get_hw_features () & HWF_INTEL_AVX2))
+ {
+ context->use_avx2 = 1;
+ }
+#endif
+
+#ifdef USE_NEON
+ context->use_neon = 0;
+ if ((_gcry_get_hw_features () & HWF_ARM_NEON))
+ {
+ context->use_neon = 1;
+ }
+#endif
+
+ wipememory (key_prepared, sizeof(key_prepared));
+}
+
+/* Initialize CTX with the key KEY of KEY_LENGTH bytes. */
+static gcry_err_code_t
+serpent_setkey (void *ctx,
+ const byte *key, unsigned int key_length,
+ cipher_bulk_ops_t *bulk_ops)
+{
+ serpent_context_t *context = ctx;
+ static const char *serpent_test_ret;
+ static int serpent_init_done;
+ gcry_err_code_t ret = GPG_ERR_NO_ERROR;
+
+ if (! serpent_init_done)
+ {
+ /* Execute a self-test the first time, Serpent is used. */
+ serpent_init_done = 1;
+ serpent_test_ret = serpent_test ();
+ if (serpent_test_ret)
+ log_error ("Serpent test failure: %s\n", serpent_test_ret);
+ }
+
+ /* Setup bulk encryption routines. */
+ memset (bulk_ops, 0, sizeof(*bulk_ops));
+ bulk_ops->cbc_dec = _gcry_serpent_cbc_dec;
+ bulk_ops->cfb_dec = _gcry_serpent_cfb_dec;
+ bulk_ops->ctr_enc = _gcry_serpent_ctr_enc;
+ bulk_ops->ocb_crypt = _gcry_serpent_ocb_crypt;
+ bulk_ops->ocb_auth = _gcry_serpent_ocb_auth;
+
+ if (serpent_test_ret)
+ ret = GPG_ERR_SELFTEST_FAILED;
+ else
+ serpent_setkey_internal (context, key, key_length);
+
+ return ret;
+}
+
+static void
+serpent_encrypt_internal (serpent_context_t *context,
+ const byte *input, byte *output)
+{
+ serpent_block_t b, b_next;
+ int round = 0;
+
+ b[0] = buf_get_le32 (input + 0);
+ b[1] = buf_get_le32 (input + 4);
+ b[2] = buf_get_le32 (input + 8);
+ b[3] = buf_get_le32 (input + 12);
+
+ ROUND (0, context->keys, b, b_next);
+ ROUND (1, context->keys, b, b_next);
+ ROUND (2, context->keys, b, b_next);
+ ROUND (3, context->keys, b, b_next);
+ ROUND (4, context->keys, b, b_next);
+ ROUND (5, context->keys, b, b_next);
+ ROUND (6, context->keys, b, b_next);
+ ROUND (7, context->keys, b, b_next);
+ ROUND (0, context->keys, b, b_next);
+ ROUND (1, context->keys, b, b_next);
+ ROUND (2, context->keys, b, b_next);
+ ROUND (3, context->keys, b, b_next);
+ ROUND (4, context->keys, b, b_next);
+ ROUND (5, context->keys, b, b_next);
+ ROUND (6, context->keys, b, b_next);
+ ROUND (7, context->keys, b, b_next);
+ ROUND (0, context->keys, b, b_next);
+ ROUND (1, context->keys, b, b_next);
+ ROUND (2, context->keys, b, b_next);
+ ROUND (3, context->keys, b, b_next);
+ ROUND (4, context->keys, b, b_next);
+ ROUND (5, context->keys, b, b_next);
+ ROUND (6, context->keys, b, b_next);
+ ROUND (7, context->keys, b, b_next);
+ ROUND (0, context->keys, b, b_next);
+ ROUND (1, context->keys, b, b_next);
+ ROUND (2, context->keys, b, b_next);
+ ROUND (3, context->keys, b, b_next);
+ ROUND (4, context->keys, b, b_next);
+ ROUND (5, context->keys, b, b_next);
+ ROUND (6, context->keys, b, b_next);
+
+ ROUND_LAST (7, context->keys, b, b_next);
+
+ buf_put_le32 (output + 0, b_next[0]);
+ buf_put_le32 (output + 4, b_next[1]);
+ buf_put_le32 (output + 8, b_next[2]);
+ buf_put_le32 (output + 12, b_next[3]);
+}
+
+static void
+serpent_decrypt_internal (serpent_context_t *context,
+ const byte *input, byte *output)
+{
+ serpent_block_t b, b_next;
+ int round = ROUNDS;
+
+ b_next[0] = buf_get_le32 (input + 0);
+ b_next[1] = buf_get_le32 (input + 4);
+ b_next[2] = buf_get_le32 (input + 8);
+ b_next[3] = buf_get_le32 (input + 12);
+
+ ROUND_FIRST_INVERSE (7, context->keys, b_next, b);
+
+ ROUND_INVERSE (6, context->keys, b, b_next);
+ ROUND_INVERSE (5, context->keys, b, b_next);
+ ROUND_INVERSE (4, context->keys, b, b_next);
+ ROUND_INVERSE (3, context->keys, b, b_next);
+ ROUND_INVERSE (2, context->keys, b, b_next);
+ ROUND_INVERSE (1, context->keys, b, b_next);
+ ROUND_INVERSE (0, context->keys, b, b_next);
+ ROUND_INVERSE (7, context->keys, b, b_next);
+ ROUND_INVERSE (6, context->keys, b, b_next);
+ ROUND_INVERSE (5, context->keys, b, b_next);
+ ROUND_INVERSE (4, context->keys, b, b_next);
+ ROUND_INVERSE (3, context->keys, b, b_next);
+ ROUND_INVERSE (2, context->keys, b, b_next);
+ ROUND_INVERSE (1, context->keys, b, b_next);
+ ROUND_INVERSE (0, context->keys, b, b_next);
+ ROUND_INVERSE (7, context->keys, b, b_next);
+ ROUND_INVERSE (6, context->keys, b, b_next);
+ ROUND_INVERSE (5, context->keys, b, b_next);
+ ROUND_INVERSE (4, context->keys, b, b_next);
+ ROUND_INVERSE (3, context->keys, b, b_next);
+ ROUND_INVERSE (2, context->keys, b, b_next);
+ ROUND_INVERSE (1, context->keys, b, b_next);
+ ROUND_INVERSE (0, context->keys, b, b_next);
+ ROUND_INVERSE (7, context->keys, b, b_next);
+ ROUND_INVERSE (6, context->keys, b, b_next);
+ ROUND_INVERSE (5, context->keys, b, b_next);
+ ROUND_INVERSE (4, context->keys, b, b_next);
+ ROUND_INVERSE (3, context->keys, b, b_next);
+ ROUND_INVERSE (2, context->keys, b, b_next);
+ ROUND_INVERSE (1, context->keys, b, b_next);
+ ROUND_INVERSE (0, context->keys, b, b_next);
+
+ buf_put_le32 (output + 0, b_next[0]);
+ buf_put_le32 (output + 4, b_next[1]);
+ buf_put_le32 (output + 8, b_next[2]);
+ buf_put_le32 (output + 12, b_next[3]);
+}
+
+static unsigned int
+serpent_encrypt (void *ctx, byte *buffer_out, const byte *buffer_in)
+{
+ serpent_context_t *context = ctx;
+
+ serpent_encrypt_internal (context, buffer_in, buffer_out);
+ return /*burn_stack*/ (2 * sizeof (serpent_block_t));
+}
+
+static unsigned int
+serpent_decrypt (void *ctx, byte *buffer_out, const byte *buffer_in)
+{
+ serpent_context_t *context = ctx;
+
+ serpent_decrypt_internal (context, buffer_in, buffer_out);
+ return /*burn_stack*/ (2 * sizeof (serpent_block_t));
+}
+
+
+
+/* Bulk encryption of complete blocks in CTR mode. This function is only
+ intended for the bulk encryption feature of cipher.c. CTR is expected to be
+ of size sizeof(serpent_block_t). */
+static void
+_gcry_serpent_ctr_enc(void *context, unsigned char *ctr,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks)
+{
+ serpent_context_t *ctx = context;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ unsigned char tmpbuf[sizeof(serpent_block_t)];
+ int burn_stack_depth = 2 * sizeof (serpent_block_t);
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ {
+ int did_use_avx2 = 0;
+
+ /* Process data in 16 block chunks. */
+ while (nblocks >= 16)
+ {
+ _gcry_serpent_avx2_ctr_enc(ctx, outbuf, inbuf, ctr);
+
+ nblocks -= 16;
+ outbuf += 16 * sizeof(serpent_block_t);
+ inbuf += 16 * sizeof(serpent_block_t);
+ did_use_avx2 = 1;
+ }
+
+ if (did_use_avx2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic/sse2 code to handle smaller chunks... */
+ /* TODO: use caching instead? */
+ }
+#endif
+
+#ifdef USE_SSE2
+ {
+ int did_use_sse2 = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_sse2_ctr_enc(ctx, outbuf, inbuf, ctr);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_sse2 = 1;
+ }
+
+ if (did_use_sse2)
+ {
+ /* serpent-sse2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ /* TODO: use caching instead? */
+ }
+#endif
+
+#ifdef USE_NEON
+ if (ctx->use_neon)
+ {
+ int did_use_neon = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_neon_ctr_enc(ctx, outbuf, inbuf, ctr);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_neon = 1;
+ }
+
+ if (did_use_neon)
+ {
+ /* serpent-neon assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ /* TODO: use caching instead? */
+ }
+#endif
+
+ for ( ;nblocks; nblocks-- )
+ {
+ /* Encrypt the counter. */
+ serpent_encrypt_internal(ctx, ctr, tmpbuf);
+ /* XOR the input with the encrypted counter and store in output. */
+ cipher_block_xor(outbuf, tmpbuf, inbuf, sizeof(serpent_block_t));
+ outbuf += sizeof(serpent_block_t);
+ inbuf += sizeof(serpent_block_t);
+ /* Increment the counter. */
+ cipher_block_add(ctr, 1, sizeof(serpent_block_t));
+ }
+
+ wipememory(tmpbuf, sizeof(tmpbuf));
+ _gcry_burn_stack(burn_stack_depth);
+}
+
+/* Bulk decryption of complete blocks in CBC mode. This function is only
+ intended for the bulk encryption feature of cipher.c. */
+static void
+_gcry_serpent_cbc_dec(void *context, unsigned char *iv,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks)
+{
+ serpent_context_t *ctx = context;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ unsigned char savebuf[sizeof(serpent_block_t)];
+ int burn_stack_depth = 2 * sizeof (serpent_block_t);
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ {
+ int did_use_avx2 = 0;
+
+ /* Process data in 16 block chunks. */
+ while (nblocks >= 16)
+ {
+ _gcry_serpent_avx2_cbc_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 16;
+ outbuf += 16 * sizeof(serpent_block_t);
+ inbuf += 16 * sizeof(serpent_block_t);
+ did_use_avx2 = 1;
+ }
+
+ if (did_use_avx2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic/sse2 code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_SSE2
+ {
+ int did_use_sse2 = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_sse2_cbc_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_sse2 = 1;
+ }
+
+ if (did_use_sse2)
+ {
+ /* serpent-sse2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_NEON
+ if (ctx->use_neon)
+ {
+ int did_use_neon = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_neon_cbc_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_neon = 1;
+ }
+
+ if (did_use_neon)
+ {
+ /* serpent-neon assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+ for ( ;nblocks; nblocks-- )
+ {
+ /* INBUF is needed later and it may be identical to OUTBUF, so store
+ the intermediate result to SAVEBUF. */
+ serpent_decrypt_internal (ctx, inbuf, savebuf);
+
+ cipher_block_xor_n_copy_2(outbuf, savebuf, iv, inbuf,
+ sizeof(serpent_block_t));
+ inbuf += sizeof(serpent_block_t);
+ outbuf += sizeof(serpent_block_t);
+ }
+
+ wipememory(savebuf, sizeof(savebuf));
+ _gcry_burn_stack(burn_stack_depth);
+}
+
+/* Bulk decryption of complete blocks in CFB mode. This function is only
+ intended for the bulk encryption feature of cipher.c. */
+static void
+_gcry_serpent_cfb_dec(void *context, unsigned char *iv,
+ void *outbuf_arg, const void *inbuf_arg,
+ size_t nblocks)
+{
+ serpent_context_t *ctx = context;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ int burn_stack_depth = 2 * sizeof (serpent_block_t);
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ {
+ int did_use_avx2 = 0;
+
+ /* Process data in 16 block chunks. */
+ while (nblocks >= 16)
+ {
+ _gcry_serpent_avx2_cfb_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 16;
+ outbuf += 16 * sizeof(serpent_block_t);
+ inbuf += 16 * sizeof(serpent_block_t);
+ did_use_avx2 = 1;
+ }
+
+ if (did_use_avx2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic/sse2 code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_SSE2
+ {
+ int did_use_sse2 = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_sse2_cfb_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_sse2 = 1;
+ }
+
+ if (did_use_sse2)
+ {
+ /* serpent-sse2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_NEON
+ if (ctx->use_neon)
+ {
+ int did_use_neon = 0;
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ _gcry_serpent_neon_cfb_dec(ctx, outbuf, inbuf, iv);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_neon = 1;
+ }
+
+ if (did_use_neon)
+ {
+ /* serpent-neon assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+ for ( ;nblocks; nblocks-- )
+ {
+ serpent_encrypt_internal(ctx, iv, iv);
+ cipher_block_xor_n_copy(outbuf, iv, inbuf, sizeof(serpent_block_t));
+ outbuf += sizeof(serpent_block_t);
+ inbuf += sizeof(serpent_block_t);
+ }
+
+ _gcry_burn_stack(burn_stack_depth);
+}
+
+/* Bulk encryption/decryption of complete blocks in OCB mode. */
+static size_t
+_gcry_serpent_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
+ const void *inbuf_arg, size_t nblocks, int encrypt)
+{
+#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
+ serpent_context_t *ctx = (void *)&c->context.c;
+ unsigned char *outbuf = outbuf_arg;
+ const unsigned char *inbuf = inbuf_arg;
+ int burn_stack_depth = 2 * sizeof (serpent_block_t);
+ u64 blkn = c->u_mode.ocb.data_nblocks;
+#else
+ (void)c;
+ (void)outbuf_arg;
+ (void)inbuf_arg;
+ (void)encrypt;
+#endif
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ {
+ int did_use_avx2 = 0;
+ u64 Ls[16];
+ unsigned int n = 16 - (blkn % 16);
+ u64 *l;
+ int i;
+
+ if (nblocks >= 16)
+ {
+ for (i = 0; i < 16; i += 8)
+ {
+ /* Use u64 to store pointers for x32 support (assembly function
+ * assumes 64-bit pointers). */
+ Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
+ Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ }
+
+ Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
+ l = &Ls[(15 + n) % 16];
+
+ /* Process data in 16 block chunks. */
+ while (nblocks >= 16)
+ {
+ blkn += 16;
+ *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
+
+ if (encrypt)
+ _gcry_serpent_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+ else
+ _gcry_serpent_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+
+ nblocks -= 16;
+ outbuf += 16 * sizeof(serpent_block_t);
+ inbuf += 16 * sizeof(serpent_block_t);
+ did_use_avx2 = 1;
+ }
+ }
+
+ if (did_use_avx2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_SSE2
+ {
+ int did_use_sse2 = 0;
+ u64 Ls[8];
+ unsigned int n = 8 - (blkn % 8);
+ u64 *l;
+
+ if (nblocks >= 8)
+ {
+ /* Use u64 to store pointers for x32 support (assembly function
+ * assumes 64-bit pointers). */
+ Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
+ Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ l = &Ls[(7 + n) % 8];
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ blkn += 8;
+ *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 8);
+
+ if (encrypt)
+ _gcry_serpent_sse2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+ else
+ _gcry_serpent_sse2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_sse2 = 1;
+ }
+ }
+
+ if (did_use_sse2)
+ {
+ /* serpent-sse2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_NEON
+ if (ctx->use_neon)
+ {
+ int did_use_neon = 0;
+ const void *Ls[8];
+ unsigned int n = 8 - (blkn % 8);
+ const void **l;
+
+ if (nblocks >= 8)
+ {
+ Ls[(0 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(1 + n) % 8] = c->u_mode.ocb.L[1];
+ Ls[(2 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(3 + n) % 8] = c->u_mode.ocb.L[2];
+ Ls[(4 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(5 + n) % 8] = c->u_mode.ocb.L[1];
+ Ls[(6 + n) % 8] = c->u_mode.ocb.L[0];
+ l = &Ls[(7 + n) % 8];
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ blkn += 8;
+ *l = ocb_get_l(c, blkn - blkn % 8);
+
+ if (encrypt)
+ _gcry_serpent_neon_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+ else
+ _gcry_serpent_neon_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
+ c->u_ctr.ctr, Ls);
+
+ nblocks -= 8;
+ outbuf += 8 * sizeof(serpent_block_t);
+ inbuf += 8 * sizeof(serpent_block_t);
+ did_use_neon = 1;
+ }
+ }
+
+ if (did_use_neon)
+ {
+ /* serpent-neon assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
+ c->u_mode.ocb.data_nblocks = blkn;
+
+ if (burn_stack_depth)
+ _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
+#endif
+
+ return nblocks;
+}
+
+/* Bulk authentication of complete blocks in OCB mode. */
+static size_t
+_gcry_serpent_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
+ size_t nblocks)
+{
+#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
+ serpent_context_t *ctx = (void *)&c->context.c;
+ const unsigned char *abuf = abuf_arg;
+ int burn_stack_depth = 2 * sizeof(serpent_block_t);
+ u64 blkn = c->u_mode.ocb.aad_nblocks;
+#else
+ (void)c;
+ (void)abuf_arg;
+#endif
+
+#ifdef USE_AVX2
+ if (ctx->use_avx2)
+ {
+ int did_use_avx2 = 0;
+ u64 Ls[16];
+ unsigned int n = 16 - (blkn % 16);
+ u64 *l;
+ int i;
+
+ if (nblocks >= 16)
+ {
+ for (i = 0; i < 16; i += 8)
+ {
+ /* Use u64 to store pointers for x32 support (assembly function
+ * assumes 64-bit pointers). */
+ Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
+ Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ }
+
+ Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
+ l = &Ls[(15 + n) % 16];
+
+ /* Process data in 16 block chunks. */
+ while (nblocks >= 16)
+ {
+ blkn += 16;
+ *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
+
+ _gcry_serpent_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
+ c->u_mode.ocb.aad_sum, Ls);
+
+ nblocks -= 16;
+ abuf += 16 * sizeof(serpent_block_t);
+ did_use_avx2 = 1;
+ }
+ }
+
+ if (did_use_avx2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_SSE2
+ {
+ int did_use_sse2 = 0;
+ u64 Ls[8];
+ unsigned int n = 8 - (blkn % 8);
+ u64 *l;
+
+ if (nblocks >= 8)
+ {
+ /* Use u64 to store pointers for x32 support (assembly function
+ * assumes 64-bit pointers). */
+ Ls[(0 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(1 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(2 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(3 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
+ Ls[(4 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ Ls[(5 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
+ Ls[(6 + n) % 8] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
+ l = &Ls[(7 + n) % 8];
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ blkn += 8;
+ *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 8);
+
+ _gcry_serpent_sse2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
+ c->u_mode.ocb.aad_sum, Ls);
+
+ nblocks -= 8;
+ abuf += 8 * sizeof(serpent_block_t);
+ did_use_sse2 = 1;
+ }
+ }
+
+ if (did_use_sse2)
+ {
+ /* serpent-avx2 assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#ifdef USE_NEON
+ if (ctx->use_neon)
+ {
+ int did_use_neon = 0;
+ const void *Ls[8];
+ unsigned int n = 8 - (blkn % 8);
+ const void **l;
+
+ if (nblocks >= 8)
+ {
+ Ls[(0 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(1 + n) % 8] = c->u_mode.ocb.L[1];
+ Ls[(2 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(3 + n) % 8] = c->u_mode.ocb.L[2];
+ Ls[(4 + n) % 8] = c->u_mode.ocb.L[0];
+ Ls[(5 + n) % 8] = c->u_mode.ocb.L[1];
+ Ls[(6 + n) % 8] = c->u_mode.ocb.L[0];
+ l = &Ls[(7 + n) % 8];
+
+ /* Process data in 8 block chunks. */
+ while (nblocks >= 8)
+ {
+ blkn += 8;
+ *l = ocb_get_l(c, blkn - blkn % 8);
+
+ _gcry_serpent_neon_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
+ c->u_mode.ocb.aad_sum, Ls);
+
+ nblocks -= 8;
+ abuf += 8 * sizeof(serpent_block_t);
+ did_use_neon = 1;
+ }
+ }
+
+ if (did_use_neon)
+ {
+ /* serpent-neon assembly code does not use stack */
+ if (nblocks == 0)
+ burn_stack_depth = 0;
+ }
+
+ /* Use generic code to handle smaller chunks... */
+ }
+#endif
+
+#if defined(USE_AVX2) || defined(USE_SSE2) || defined(USE_NEON)
+ c->u_mode.ocb.aad_nblocks = blkn;
+
+ if (burn_stack_depth)
+ _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
+#endif
+
+ return nblocks;
+}
+
+
+
+/* Run the self-tests for SERPENT-CTR-128, tests IV increment of bulk CTR
+ encryption. Returns NULL on success. */
+static const char*
+selftest_ctr_128 (void)
+{
+ const int nblocks = 16+8+1;
+ const int blocksize = sizeof(serpent_block_t);
+ const int context_size = sizeof(serpent_context_t);
+
+ return _gcry_selftest_helper_ctr("SERPENT", &serpent_setkey,
+ &serpent_encrypt, nblocks, blocksize, context_size);
+}
+
+
+/* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption.
+ Returns NULL on success. */
+static const char*
+selftest_cbc_128 (void)
+{
+ const int nblocks = 16+8+2;
+ const int blocksize = sizeof(serpent_block_t);
+ const int context_size = sizeof(serpent_context_t);
+
+ return _gcry_selftest_helper_cbc("SERPENT", &serpent_setkey,
+ &serpent_encrypt, nblocks, blocksize, context_size);
+}
+
+
+/* Run the self-tests for SERPENT-CBC-128, tests bulk CBC decryption.
+ Returns NULL on success. */
+static const char*
+selftest_cfb_128 (void)
+{
+ const int nblocks = 16+8+2;
+ const int blocksize = sizeof(serpent_block_t);
+ const int context_size = sizeof(serpent_context_t);
+
+ return _gcry_selftest_helper_cfb("SERPENT", &serpent_setkey,
+ &serpent_encrypt, nblocks, blocksize, context_size);
+}
+
+
+/* Serpent test. */
+
+static const char *
+serpent_test (void)
+{
+ serpent_context_t context;
+ unsigned char scratch[16];
+ unsigned int i;
+ const char *r;
+
+ static struct test
+ {
+ int key_length;
+ unsigned char key[32];
+ unsigned char text_plain[16];
+ unsigned char text_cipher[16];
+ } test_data[] =
+ {
+ {
+ 16,
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
+ "\xD2\x9D\x57\x6F\xCE\xA3\xA3\xA7\xED\x90\x99\xF2\x92\x73\xD7\x8E",
+ "\xB2\x28\x8B\x96\x8A\xE8\xB0\x86\x48\xD1\xCE\x96\x06\xFD\x99\x2D"
+ },
+ {
+ 24,
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
+ "\x00\x00\x00\x00\x00\x00\x00\x00",
+ "\xD2\x9D\x57\x6F\xCE\xAB\xA3\xA7\xED\x98\x99\xF2\x92\x7B\xD7\x8E",
+ "\x13\x0E\x35\x3E\x10\x37\xC2\x24\x05\xE8\xFA\xEF\xB2\xC3\xC3\xE9"
+ },
+ {
+ 32,
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
+ "\xD0\x95\x57\x6F\xCE\xA3\xE3\xA7\xED\x98\xD9\xF2\x90\x73\xD7\x8E",
+ "\xB9\x0E\xE5\x86\x2D\xE6\x91\x68\xF2\xBD\xD5\x12\x5B\x45\x47\x2B"
+ },
+ {
+ 32,
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
+ "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
+ "\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00",
+ "\x20\x61\xA4\x27\x82\xBD\x52\xEC\x69\x1E\xC3\x83\xB0\x3B\xA7\x7C"
+ },
+ {
+ 0
+ },
+ };
+
+ for (i = 0; test_data[i].key_length; i++)
+ {
+ serpent_setkey_internal (&context, test_data[i].key,
+ test_data[i].key_length);
+ serpent_encrypt_internal (&context, test_data[i].text_plain, scratch);
+
+ if (memcmp (scratch, test_data[i].text_cipher, sizeof (serpent_block_t)))
+ switch (test_data[i].key_length)
+ {
+ case 16:
+ return "Serpent-128 test encryption failed.";
+ case 24:
+ return "Serpent-192 test encryption failed.";
+ case 32:
+ return "Serpent-256 test encryption failed.";
+ }
+
+ serpent_decrypt_internal (&context, test_data[i].text_cipher, scratch);
+ if (memcmp (scratch, test_data[i].text_plain, sizeof (serpent_block_t)))
+ switch (test_data[i].key_length)
+ {
+ case 16:
+ return "Serpent-128 test decryption failed.";
+ case 24:
+ return "Serpent-192 test decryption failed.";
+ case 32:
+ return "Serpent-256 test decryption failed.";
+ }
+ }
+
+ if ( (r = selftest_ctr_128 ()) )
+ return r;
+
+ if ( (r = selftest_cbc_128 ()) )
+ return r;
+
+ if ( (r = selftest_cfb_128 ()) )
+ return r;
+
+ return NULL;
+}
+
+
+static gcry_cipher_oid_spec_t serpent128_oids[] =
+ {
+ {"1.3.6.1.4.1.11591.13.2.1", GCRY_CIPHER_MODE_ECB },
+ {"1.3.6.1.4.1.11591.13.2.2", GCRY_CIPHER_MODE_CBC },
+ {"1.3.6.1.4.1.11591.13.2.3", GCRY_CIPHER_MODE_OFB },
+ {"1.3.6.1.4.1.11591.13.2.4", GCRY_CIPHER_MODE_CFB },
+ { NULL }
+ };
+
+static gcry_cipher_oid_spec_t serpent192_oids[] =
+ {
+ {"1.3.6.1.4.1.11591.13.2.21", GCRY_CIPHER_MODE_ECB },
+ {"1.3.6.1.4.1.11591.13.2.22", GCRY_CIPHER_MODE_CBC },
+ {"1.3.6.1.4.1.11591.13.2.23", GCRY_CIPHER_MODE_OFB },
+ {"1.3.6.1.4.1.11591.13.2.24", GCRY_CIPHER_MODE_CFB },
+ { NULL }
+ };
+
+static gcry_cipher_oid_spec_t serpent256_oids[] =
+ {
+ {"1.3.6.1.4.1.11591.13.2.41", GCRY_CIPHER_MODE_ECB },
+ {"1.3.6.1.4.1.11591.13.2.42", GCRY_CIPHER_MODE_CBC },
+ {"1.3.6.1.4.1.11591.13.2.43", GCRY_CIPHER_MODE_OFB },
+ {"1.3.6.1.4.1.11591.13.2.44", GCRY_CIPHER_MODE_CFB },
+ { NULL }
+ };
+
+static const char *serpent128_aliases[] =
+ {
+ "SERPENT",
+ "SERPENT-128",
+ NULL
+ };
+static const char *serpent192_aliases[] =
+ {
+ "SERPENT-192",
+ NULL
+ };
+static const char *serpent256_aliases[] =
+ {
+ "SERPENT-256",
+ NULL
+ };
+
+gcry_cipher_spec_t _gcry_cipher_spec_serpent128 =
+ {
+ GCRY_CIPHER_SERPENT128, {0, 0},
+ "SERPENT128", serpent128_aliases, serpent128_oids, 16, 128,
+ sizeof (serpent_context_t),
+ serpent_setkey, serpent_encrypt, serpent_decrypt
+ };
+
+gcry_cipher_spec_t _gcry_cipher_spec_serpent192 =
+ {
+ GCRY_CIPHER_SERPENT192, {0, 0},
+ "SERPENT192", serpent192_aliases, serpent192_oids, 16, 192,
+ sizeof (serpent_context_t),
+ serpent_setkey, serpent_encrypt, serpent_decrypt
+ };
+
+gcry_cipher_spec_t _gcry_cipher_spec_serpent256 =
+ {
+ GCRY_CIPHER_SERPENT256, {0, 0},
+ "SERPENT256", serpent256_aliases, serpent256_oids, 16, 256,
+ sizeof (serpent_context_t),
+ serpent_setkey, serpent_encrypt, serpent_decrypt
+ };