diff options
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/twofish.c')
-rw-r--r-- | comm/third_party/libgcrypt/cipher/twofish.c | 1793 |
1 files changed, 1793 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/twofish.c b/comm/third_party/libgcrypt/cipher/twofish.c new file mode 100644 index 0000000000..d19e079046 --- /dev/null +++ b/comm/third_party/libgcrypt/cipher/twofish.c @@ -0,0 +1,1793 @@ +/* Twofish for GPG + * Copyright (C) 1998, 2002, 2003 Free Software Foundation, Inc. + * Written by Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998 + * 256-bit key length added March 20, 1999 + * Some modifications to reduce the text size by Werner Koch, April, 1998 + * + * This file is part of Libgcrypt. + * + * Libgcrypt is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as + * published by the Free Software Foundation; either version 2.1 of + * the License, or (at your option) any later version. + * + * Libgcrypt is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + ******************************************************************** + * + * This code is a "clean room" implementation, written from the paper + * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, + * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available + * through http://www.counterpane.com/twofish.html + * + * For background information on multiplication in finite fields, used for + * the matrix operations in the key schedule, see the book _Contemporary + * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the + * Third Edition. + * + * Only the 128- and 256-bit key sizes are supported. This code is intended + * for GNU C on a 32-bit system, but it should work almost anywhere. Loops + * are unrolled, precomputation tables are used, etc., for maximum speed at + * some cost in memory consumption. */ + +#include <config.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> /* for memcmp() */ + +#include "types.h" /* for byte and u32 typedefs */ +#include "g10lib.h" +#include "cipher.h" +#include "bufhelp.h" +#include "cipher-internal.h" +#include "cipher-selftest.h" + + +#define TWOFISH_BLOCKSIZE 16 + + +/* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */ +#undef USE_AMD64_ASM +#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ + defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) +# define USE_AMD64_ASM 1 +#endif + +/* USE_ARM_ASM indicates whether to use ARM assembly code. */ +#undef USE_ARM_ASM +#if defined(__ARMEL__) +# if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) +# define USE_ARM_ASM 1 +# endif +#endif +# if defined(__AARCH64EL__) +# ifdef HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS +# define USE_ARM_ASM 1 +# endif +# endif + +/* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */ +#undef USE_AVX2 +#if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ + defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) +# if defined(ENABLE_AVX2_SUPPORT) +# define USE_AVX2 1 +# endif +#endif + + +/* Prototype for the self-test function. */ +static const char *selftest(void); + + +/* Prototypes for the bulk functions. */ +static void _gcry_twofish_ctr_enc (void *context, unsigned char *ctr, + void *outbuf_arg, const void *inbuf_arg, + size_t nblocks); +static void _gcry_twofish_cbc_dec (void *context, unsigned char *iv, + void *outbuf_arg, const void *inbuf_arg, + size_t nblocks); +static void _gcry_twofish_cfb_dec (void *context, unsigned char *iv, + void *outbuf_arg, const void *inbuf_arg, + size_t nblocks); +static size_t _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks, + int encrypt); +static size_t _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg, + size_t nblocks); + + +/* Structure for an expanded Twofish key. s contains the key-dependent + * S-boxes composed with the MDS matrix; w contains the eight "whitening" + * subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note + * that k[i] corresponds to what the Twofish paper calls K[i+8]. */ +typedef struct { + u32 s[4][256], w[8], k[32]; + +#ifdef USE_AVX2 + int use_avx2; +#endif +} TWOFISH_context; + + +/* Assembly implementations use SystemV ABI, ABI conversion and additional + * stack to store XMM6-XMM15 needed on Win64. */ +#undef ASM_FUNC_ABI +#if defined(USE_AVX2) +# ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS +# define ASM_FUNC_ABI __attribute__((sysv_abi)) +# else +# define ASM_FUNC_ABI +# endif +#endif + + +/* These two tables are the q0 and q1 permutations, exactly as described in + * the Twofish paper. */ + +static const byte q0[256] = { + 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78, + 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, + 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30, + 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82, + 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE, + 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, + 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45, + 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7, + 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF, + 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, + 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED, + 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90, + 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B, + 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, + 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F, + 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A, + 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17, + 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, + 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68, + 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4, + 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42, + 0x4A, 0x5E, 0xC1, 0xE0 +}; + +static const byte q1[256] = { + 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B, + 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, + 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B, + 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5, + 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54, + 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, + 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7, + 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8, + 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF, + 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, + 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D, + 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E, + 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21, + 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, + 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E, + 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64, + 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44, + 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, + 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B, + 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9, + 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56, + 0x55, 0x09, 0xBE, 0x91 +}; + +/* These MDS tables are actually tables of MDS composed with q0 and q1, + * because it is only ever used that way and we can save some time by + * precomputing. Of course the main saving comes from precomputing the + * GF(2^8) multiplication involved in the MDS matrix multiply; by looking + * things up in these tables we reduce the matrix multiply to four lookups + * and three XORs. Semi-formally, the definition of these tables is: + * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T + * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T + * where ^T means "transpose", the matrix multiply is performed in GF(2^8) + * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described + * by Schneier et al, and I'm casually glossing over the byte/word + * conversion issues. */ + +static const u32 mds[4][256] = { + {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B, + 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B, + 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32, + 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1, + 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA, + 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B, + 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1, + 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5, + 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490, + 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154, + 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0, + 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796, + 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228, + 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7, + 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3, + 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8, + 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477, + 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF, + 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C, + 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9, + 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA, + 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D, + 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72, + 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E, + 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76, + 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321, + 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39, + 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01, + 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D, + 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E, + 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5, + 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64, + 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7, + 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544, + 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E, + 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E, + 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A, + 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B, + 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2, + 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9, + 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504, + 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756, + 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91}, + + {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252, + 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A, + 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020, + 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141, + 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444, + 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424, + 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A, + 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757, + 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383, + 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A, + 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9, + 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656, + 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1, + 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898, + 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414, + 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3, + 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1, + 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989, + 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5, + 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282, + 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E, + 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E, + 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202, + 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC, + 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565, + 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A, + 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808, + 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272, + 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A, + 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969, + 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505, + 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5, + 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D, + 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343, + 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF, + 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3, + 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F, + 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646, + 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6, + 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF, + 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A, + 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7, + 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8}, + + {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B, + 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F, + 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A, + 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783, + 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70, + 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3, + 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB, + 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA, + 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4, + 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41, + 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C, + 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07, + 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622, + 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18, + 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035, + 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96, + 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84, + 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E, + 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F, + 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD, + 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558, + 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40, + 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA, + 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85, + 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF, + 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773, + 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D, + 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B, + 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C, + 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19, + 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086, + 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D, + 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74, + 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755, + 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691, + 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D, + 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4, + 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53, + 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E, + 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9, + 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705, + 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7, + 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF}, + + {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98, + 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866, + 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643, + 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77, + 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9, + 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C, + 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3, + 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216, + 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F, + 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25, + 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF, + 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7, + 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4, + 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E, + 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA, + 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C, + 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12, + 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A, + 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D, + 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE, + 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A, + 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C, + 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B, + 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4, + 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B, + 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3, + 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE, + 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB, + 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85, + 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA, + 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E, + 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8, + 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33, + 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC, + 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718, + 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA, + 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8, + 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872, + 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882, + 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D, + 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10, + 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6, + 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8} +}; + +/* The exp_to_poly and poly_to_exp tables are used to perform efficient + * operations in GF(2^8) represented as GF(2)[x]/w(x) where + * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the + * definition of the RS matrix in the key schedule. Elements of that field + * are polynomials of degree not greater than 7 and all coefficients 0 or 1, + * which can be represented naturally by bytes (just substitute x=2). In that + * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8) + * multiplication is inefficient without hardware support. To multiply + * faster, I make use of the fact x is a generator for the nonzero elements, + * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for + * some n in 0..254. Note that that caret is exponentiation in GF(2^8), + * *not* polynomial notation. So if I want to compute pq where p and q are + * in GF(2^8), I can just say: + * 1. if p=0 or q=0 then pq=0 + * 2. otherwise, find m and n such that p=x^m and q=x^n + * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq + * The translations in steps 2 and 3 are looked up in the tables + * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this + * in action, look at the CALC_S macro. As additional wrinkles, note that + * one of my operands is always a constant, so the poly_to_exp lookup on it + * is done in advance; I included the original values in the comments so + * readers can have some chance of recognizing that this *is* the RS matrix + * from the Twofish paper. I've only included the table entries I actually + * need; I never do a lookup on a variable input of zero and the biggest + * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll + * never sum to more than 491. I'm repeating part of the exp_to_poly table + * so that I don't have to do mod-255 reduction in the exponent arithmetic. + * Since I know my constant operands are never zero, I only have to worry + * about zero values in the variable operand, and I do it with a simple + * conditional branch. I know conditionals are expensive, but I couldn't + * see a non-horrible way of avoiding them, and I did manage to group the + * statements so that each if covers four group multiplications. */ + +static const u16 poly_to_exp[256] = { + 492, + 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19, + 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A, + 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C, + 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B, + 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47, + 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D, + 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8, + 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C, + 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83, + 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48, + 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26, + 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E, + 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3, + 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9, + 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A, + 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D, + 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75, + 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84, + 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64, + 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49, + 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF, + 0x85, 0xC8, 0xA1 +}; + +static const byte exp_to_poly[492 + 256] = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2, + 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03, + 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6, + 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A, + 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63, + 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C, + 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07, + 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88, + 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12, + 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7, + 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C, + 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8, + 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25, + 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A, + 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE, + 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC, + 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E, + 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92, + 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89, + 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB, + 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1, + 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, + 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, + 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, + 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, + 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, + 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, + 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, + 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, + 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, + 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, + 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, + 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, + 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, + 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, + 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, + 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, + 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, + 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, + 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, + 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, +}; + + +/* The table constants are indices of + * S-box entries, preprocessed through q0 and q1. */ +static byte calc_sb_tbl[512] = { + 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4, + 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8, + 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B, + 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B, + 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD, + 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1, + 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B, + 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F, + 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B, + 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D, + 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E, + 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5, + 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14, + 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3, + 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54, + 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51, + 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A, + 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96, + 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10, + 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C, + 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7, + 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70, + 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB, + 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8, + 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF, + 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC, + 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF, + 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2, + 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82, + 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9, + 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97, + 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17, + 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D, + 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3, + 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C, + 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E, + 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F, + 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49, + 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21, + 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9, + 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD, + 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01, + 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F, + 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48, + 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E, + 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19, + 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57, + 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64, + 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE, + 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5, + 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44, + 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69, + 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15, + 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E, + 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34, + 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC, + 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B, + 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB, + 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52, + 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9, + 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4, + 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2, + 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56, + 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91 +}; + +/* Macro to perform one column of the RS matrix multiplication. The + * parameters a, b, c, and d are the four bytes of output; i is the index + * of the key bytes, and w, x, y, and z, are the column of constants from + * the RS matrix, preprocessed through the poly_to_exp table. */ + +#define CALC_S(a, b, c, d, i, w, x, y, z) \ + { \ + tmp = poly_to_exp[key[i]]; \ + (a) ^= exp_to_poly[tmp + (w)]; \ + (b) ^= exp_to_poly[tmp + (x)]; \ + (c) ^= exp_to_poly[tmp + (y)]; \ + (d) ^= exp_to_poly[tmp + (z)]; \ + } + +/* Macros to calculate the key-dependent S-boxes for a 128-bit key using + * the S vector from CALC_S. CALC_SB_2 computes a single entry in all + * four S-boxes, where i is the index of the entry to compute, and a and b + * are the index numbers preprocessed through the q0 and q1 tables + * respectively. CALC_SB is simply a convenience to make the code shorter; + * it calls CALC_SB_2 four times with consecutive indices from i to i+3, + * using the remaining parameters two by two. */ + +#define CALC_SB_2(i, a, b) \ + ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \ + ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \ + ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \ + ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh] + +#define CALC_SB(i, a, b, c, d, e, f, g, h) \ + CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \ + CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h) + +/* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */ + +#define CALC_SB256_2(i, a, b) \ + ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \ + ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \ + ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \ + ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp]; + +#define CALC_SB256(i, a, b, c, d, e, f, g, h) \ + CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \ + CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h) + +/* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the + * last two stages of the h() function for a given index (either 2i or 2i+1). + * a, b, c, and d are the four bytes going into the last two stages. For + * 128-bit keys, this is the entire h() function and a and c are the index + * preprocessed through q0 and q1 respectively; for longer keys they are the + * output of previous stages. j is the index of the first key byte to use. + * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2 + * twice, doing the Pseudo-Hadamard Transform, and doing the necessary + * rotations. Its parameters are: a, the array to write the results into, + * j, the index of the first output entry, k and l, the preprocessed indices + * for index 2i, and m and n, the preprocessed indices for index 2i+1. + * CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two + * additional lookup-and-XOR stages. The parameters a and b are the index + * preprocessed through q0 and q1 respectively; j is the index of the first + * key byte to use. CALC_K256 is identical to CALC_K but for using the + * CALC_K256_2 macro instead of CALC_K_2. */ + +#define CALC_K_2(a, b, c, d, j) \ + mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \ + ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \ + ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \ + ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]] + +#define CALC_K(a, j, k, l, m, n) \ + x = CALC_K_2 (k, l, k, l, 0); \ + y = CALC_K_2 (m, n, m, n, 4); \ + y = (y << 8) + (y >> 24); \ + x += y; y += x; ctx->a[j] = x; \ + ctx->a[(j) + 1] = (y << 9) + (y >> 23) + +#define CALC_K256_2(a, b, j) \ + CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \ + q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \ + q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \ + q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j) + +#define CALC_K256(a, j, k, l, m, n) \ + x = CALC_K256_2 (k, l, 0); \ + y = CALC_K256_2 (m, n, 4); \ + y = (y << 8) + (y >> 24); \ + x += y; y += x; ctx->a[j] = x; \ + ctx->a[(j) + 1] = (y << 9) + (y >> 23) + + + +/* Perform the key setup. Note that this works only with 128- and 256-bit + * keys, despite the API that looks like it might support other sizes. */ + +static gcry_err_code_t +do_twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen) +{ + int i, j, k; + + /* Temporaries for CALC_K. */ + u32 x, y; + + /* The S vector used to key the S-boxes, split up into individual bytes. + * 128-bit keys use only sa through sh; 256-bit use all of them. */ + byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0; + byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0; + + /* Temporary for CALC_S. */ + unsigned int tmp; + + /* Flags for self-test. */ + static int initialized = 0; + static const char *selftest_failed=0; + + /* Check key length. */ + if( ( ( keylen - 16 ) | 16 ) != 16 ) + return GPG_ERR_INV_KEYLEN; + + /* Do self-test if necessary. */ + if (!initialized) + { + initialized = 1; + selftest_failed = selftest (); + if( selftest_failed ) + log_error("%s\n", selftest_failed ); + } + if( selftest_failed ) + return GPG_ERR_SELFTEST_FAILED; + + /* Compute the first two words of the S vector. The magic numbers are + * the entries of the RS matrix, preprocessed through poly_to_exp. The + * numbers in the comments are the original (polynomial form) matrix + * entries. */ + CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ + CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ + CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ + CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ + CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ + CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ + CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ + CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ + CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ + CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ + CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ + CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ + CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ + CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ + CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ + CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ + + if (keylen == 32) /* 256-bit key */ + { + /* Calculate the remaining two words of the S vector */ + CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ + CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ + CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ + CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ + CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ + CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ + CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ + CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ + CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */ + CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */ + CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */ + CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */ + CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */ + CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */ + CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */ + CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */ + + /* Compute the S-boxes. */ + for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) + { + CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); + } + + /* Calculate whitening and round subkeys. */ + for (i = 0; i < 8; i += 2) + { + CALC_K256 ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] ); + } + for (j = 0; j < 32; j += 2, i += 2) + { + CALC_K256 ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] ); + } + } + else + { + /* Compute the S-boxes. */ + for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) + { + CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] ); + } + + /* Calculate whitening and round subkeys. */ + for (i = 0; i < 8; i += 2) + { + CALC_K ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] ); + } + for (j = 0; j < 32; j += 2, i += 2) + { + CALC_K ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] ); + } + } + + return 0; +} + +static gcry_err_code_t +twofish_setkey (void *context, const byte *key, unsigned int keylen, + cipher_bulk_ops_t *bulk_ops) +{ + TWOFISH_context *ctx = context; + unsigned int hwfeatures = _gcry_get_hw_features (); + int rc; + + rc = do_twofish_setkey (ctx, key, keylen); + +#ifdef USE_AVX2 + ctx->use_avx2 = 0; + if ((hwfeatures & HWF_INTEL_AVX2) && (hwfeatures & HWF_INTEL_FAST_VPGATHER)) + { + ctx->use_avx2 = 1; + } +#endif + + /* Setup bulk encryption routines. */ + memset (bulk_ops, 0, sizeof(*bulk_ops)); + bulk_ops->cbc_dec = _gcry_twofish_cbc_dec; + bulk_ops->cfb_dec = _gcry_twofish_cfb_dec; + bulk_ops->ctr_enc = _gcry_twofish_ctr_enc; + bulk_ops->ocb_crypt = _gcry_twofish_ocb_crypt; + bulk_ops->ocb_auth = _gcry_twofish_ocb_auth; + + (void)hwfeatures; + + _gcry_burn_stack (23+6*sizeof(void*)); + return rc; +} + + +#ifdef USE_AVX2 +/* Assembler implementations of Twofish using AVX2. Process 16 block in + parallel. + */ +extern void _gcry_twofish_avx2_ctr_enc(const TWOFISH_context *ctx, + unsigned char *out, + const unsigned char *in, + unsigned char *ctr) ASM_FUNC_ABI; + +extern void _gcry_twofish_avx2_cbc_dec(const TWOFISH_context *ctx, + unsigned char *out, + const unsigned char *in, + unsigned char *iv) ASM_FUNC_ABI; + +extern void _gcry_twofish_avx2_cfb_dec(const TWOFISH_context *ctx, + unsigned char *out, + const unsigned char *in, + unsigned char *iv) ASM_FUNC_ABI; + +extern void _gcry_twofish_avx2_ocb_enc(const TWOFISH_context *ctx, + unsigned char *out, + const unsigned char *in, + unsigned char *offset, + unsigned char *checksum, + const u64 Ls[16]) ASM_FUNC_ABI; + +extern void _gcry_twofish_avx2_ocb_dec(const TWOFISH_context *ctx, + unsigned char *out, + const unsigned char *in, + unsigned char *offset, + unsigned char *checksum, + const u64 Ls[16]) ASM_FUNC_ABI; + +extern void _gcry_twofish_avx2_ocb_auth(const TWOFISH_context *ctx, + const unsigned char *abuf, + unsigned char *offset, + unsigned char *checksum, + const u64 Ls[16]) ASM_FUNC_ABI; +#endif + + +#ifdef USE_AMD64_ASM + +/* Assembly implementations of Twofish. */ +extern void _gcry_twofish_amd64_encrypt_block(const TWOFISH_context *c, + byte *out, const byte *in); + +extern void _gcry_twofish_amd64_decrypt_block(const TWOFISH_context *c, + byte *out, const byte *in); + +/* These assembly implementations process three blocks in parallel. */ +extern void _gcry_twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, + const byte *in, byte *ctr); + +extern void _gcry_twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, + const byte *in, byte *iv); + +extern void _gcry_twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, + const byte *in, byte *iv); + +extern void _gcry_twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, + const byte *in, byte *offset, + byte *checksum, const u64 Ls[3]); + +extern void _gcry_twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, + const byte *in, byte *offset, + byte *checksum, const u64 Ls[3]); + +extern void _gcry_twofish_amd64_ocb_auth(const TWOFISH_context *ctx, + const byte *abuf, byte *offset, + byte *checksum, const u64 Ls[3]); + +static inline void +twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in) +{ + _gcry_twofish_amd64_encrypt_block(c, out, in); +} + +static inline void +twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in) +{ + _gcry_twofish_amd64_decrypt_block(c, out, in); +} + +static inline void +twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in, + byte *ctr) +{ + _gcry_twofish_amd64_ctr_enc(c, out, in, ctr); +} + +static inline void +twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in, + byte *iv) +{ + _gcry_twofish_amd64_cbc_dec(c, out, in, iv); +} + +static inline void +twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in, + byte *iv) +{ + _gcry_twofish_amd64_cfb_dec(c, out, in, iv); +} + +static inline void +twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in, + byte *offset, byte *checksum, const u64 Ls[3]) +{ + _gcry_twofish_amd64_ocb_enc(ctx, out, in, offset, checksum, Ls); +} + +static inline void +twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in, + byte *offset, byte *checksum, const u64 Ls[3]) +{ + _gcry_twofish_amd64_ocb_dec(ctx, out, in, offset, checksum, Ls); +} + +static inline void +twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf, + byte *offset, byte *checksum, const u64 Ls[3]) +{ + _gcry_twofish_amd64_ocb_auth(ctx, abuf, offset, checksum, Ls); +} + +#elif defined(USE_ARM_ASM) + +/* Assembly implementations of Twofish. */ +extern void _gcry_twofish_arm_encrypt_block(const TWOFISH_context *c, + byte *out, const byte *in); + +extern void _gcry_twofish_arm_decrypt_block(const TWOFISH_context *c, + byte *out, const byte *in); + +#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ + +/* Macros to compute the g() function in the encryption and decryption + * rounds. G1 is the straight g() function; G2 includes the 8-bit + * rotation for the high 32-bit word. */ + +#define G1(a) \ + (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \ + ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24]) + +#define G2(b) \ + (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \ + ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24]) + +/* Encryption and decryption Feistel rounds. Each one calls the two g() + * macros, does the PHT, and performs the XOR and the appropriate bit + * rotations. The parameters are the round number (used to select subkeys), + * and the four 32-bit chunks of the text. */ + +#define ENCROUND(n, a, b, c, d) \ + x = G1 (a); y = G2 (b); \ + x += y; y += x + ctx->k[2 * (n) + 1]; \ + (c) ^= x + ctx->k[2 * (n)]; \ + (c) = ((c) >> 1) + ((c) << 31); \ + (d) = (((d) << 1)+((d) >> 31)) ^ y + +#define DECROUND(n, a, b, c, d) \ + x = G1 (a); y = G2 (b); \ + x += y; y += x; \ + (d) ^= y + ctx->k[2 * (n) + 1]; \ + (d) = ((d) >> 1) + ((d) << 31); \ + (c) = (((c) << 1)+((c) >> 31)); \ + (c) ^= (x + ctx->k[2 * (n)]) + +/* Encryption and decryption cycles; each one is simply two Feistel rounds + * with the 32-bit chunks re-ordered to simulate the "swap" */ + +#define ENCCYCLE(n) \ + ENCROUND (2 * (n), a, b, c, d); \ + ENCROUND (2 * (n) + 1, c, d, a, b) + +#define DECCYCLE(n) \ + DECROUND (2 * (n) + 1, c, d, a, b); \ + DECROUND (2 * (n), a, b, c, d) + +/* Macros to convert the input and output bytes into 32-bit words, + * and simultaneously perform the whitening step. INPACK packs word + * number n into the variable named by x, using whitening subkey number m. + * OUTUNPACK unpacks word number n from the variable named by x, using + * whitening subkey number m. */ + +#define INPACK(n, x, m) \ + x = buf_get_le32(in + (n) * 4); \ + x ^= ctx->w[m] + +#define OUTUNPACK(n, x, m) \ + x ^= ctx->w[m]; \ + buf_put_le32(out + (n) * 4, x) + +#endif /*!USE_AMD64_ASM*/ + + +/* Encrypt one block. in and out may be the same. */ + +#ifdef USE_AMD64_ASM + +static unsigned int +twofish_encrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + twofish_amd64_encrypt_block(ctx, out, in); + return /*burn_stack*/ (4*sizeof (void*)); +} + +#elif defined(USE_ARM_ASM) + +static unsigned int +twofish_encrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + _gcry_twofish_arm_encrypt_block(ctx, out, in); + return /*burn_stack*/ (4*sizeof (void*)); +} + +#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ + +static void +do_twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in) +{ + /* The four 32-bit chunks of the text. */ + u32 a, b, c, d; + + /* Temporaries used by the round function. */ + u32 x, y; + + /* Input whitening and packing. */ + INPACK (0, a, 0); + INPACK (1, b, 1); + INPACK (2, c, 2); + INPACK (3, d, 3); + + /* Encryption Feistel cycles. */ + ENCCYCLE (0); + ENCCYCLE (1); + ENCCYCLE (2); + ENCCYCLE (3); + ENCCYCLE (4); + ENCCYCLE (5); + ENCCYCLE (6); + ENCCYCLE (7); + + /* Output whitening and unpacking. */ + OUTUNPACK (0, c, 4); + OUTUNPACK (1, d, 5); + OUTUNPACK (2, a, 6); + OUTUNPACK (3, b, 7); +} + +static unsigned int +twofish_encrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + do_twofish_encrypt (ctx, out, in); + return /*burn_stack*/ (24+3*sizeof (void*)); +} + +#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/ + + +/* Decrypt one block. in and out may be the same. */ + +#ifdef USE_AMD64_ASM + +static unsigned int +twofish_decrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + twofish_amd64_decrypt_block(ctx, out, in); + return /*burn_stack*/ (4*sizeof (void*)); +} + +#elif defined(USE_ARM_ASM) + +static unsigned int +twofish_decrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + _gcry_twofish_arm_decrypt_block(ctx, out, in); + return /*burn_stack*/ (4*sizeof (void*)); +} + +#else /*!USE_AMD64_ASM && !USE_ARM_ASM*/ + +static void +do_twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in) +{ + /* The four 32-bit chunks of the text. */ + u32 a, b, c, d; + + /* Temporaries used by the round function. */ + u32 x, y; + + /* Input whitening and packing. */ + INPACK (0, c, 4); + INPACK (1, d, 5); + INPACK (2, a, 6); + INPACK (3, b, 7); + + /* Encryption Feistel cycles. */ + DECCYCLE (7); + DECCYCLE (6); + DECCYCLE (5); + DECCYCLE (4); + DECCYCLE (3); + DECCYCLE (2); + DECCYCLE (1); + DECCYCLE (0); + + /* Output whitening and unpacking. */ + OUTUNPACK (0, a, 0); + OUTUNPACK (1, b, 1); + OUTUNPACK (2, c, 2); + OUTUNPACK (3, d, 3); +} + +static unsigned int +twofish_decrypt (void *context, byte *out, const byte *in) +{ + TWOFISH_context *ctx = context; + + do_twofish_decrypt (ctx, out, in); + return /*burn_stack*/ (24+3*sizeof (void*)); +} + +#endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/ + + + +/* Bulk encryption of complete blocks in CTR mode. This function is only + intended for the bulk encryption feature of cipher.c. CTR is expected to be + of size TWOFISH_BLOCKSIZE. */ +static void +_gcry_twofish_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks) +{ + TWOFISH_context *ctx = context; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + unsigned char tmpbuf[TWOFISH_BLOCKSIZE]; + unsigned int burn, burn_stack_depth = 0; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + { + int did_use_avx2 = 0; + + /* Process data in 16 block chunks. */ + while (nblocks >= 16) + { + _gcry_twofish_avx2_ctr_enc(ctx, outbuf, inbuf, ctr); + + nblocks -= 16; + outbuf += 16 * TWOFISH_BLOCKSIZE; + inbuf += 16 * TWOFISH_BLOCKSIZE; + did_use_avx2 = 1; + } + + if (did_use_avx2) + { + /* twofish-avx2 assembly code does not use stack */ + if (nblocks == 0) + burn_stack_depth = 0; + } + } +#endif + +#ifdef USE_AMD64_ASM + { + /* Process data in 3 block chunks. */ + while (nblocks >= 3) + { + twofish_amd64_ctr_enc(ctx, outbuf, inbuf, ctr); + + nblocks -= 3; + outbuf += 3 * TWOFISH_BLOCKSIZE; + inbuf += 3 * TWOFISH_BLOCKSIZE; + + burn = 8 * sizeof(void*); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + } + + /* Use generic code to handle smaller chunks... */ + /* TODO: use caching instead? */ + } +#endif + + for ( ;nblocks; nblocks-- ) + { + /* Encrypt the counter. */ + burn = twofish_encrypt(ctx, tmpbuf, ctr); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + + /* XOR the input with the encrypted counter and store in output. */ + cipher_block_xor(outbuf, tmpbuf, inbuf, TWOFISH_BLOCKSIZE); + outbuf += TWOFISH_BLOCKSIZE; + inbuf += TWOFISH_BLOCKSIZE; + /* Increment the counter. */ + cipher_block_add(ctr, 1, TWOFISH_BLOCKSIZE); + } + + wipememory(tmpbuf, sizeof(tmpbuf)); + _gcry_burn_stack(burn_stack_depth); +} + + +/* Bulk decryption of complete blocks in CBC mode. This function is only + intended for the bulk encryption feature of cipher.c. */ +static void +_gcry_twofish_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks) +{ + TWOFISH_context *ctx = context; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + unsigned char savebuf[TWOFISH_BLOCKSIZE]; + unsigned int burn, burn_stack_depth = 0; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + { + int did_use_avx2 = 0; + + /* Process data in 16 block chunks. */ + while (nblocks >= 16) + { + _gcry_twofish_avx2_cbc_dec(ctx, outbuf, inbuf, iv); + + nblocks -= 16; + outbuf += 16 * TWOFISH_BLOCKSIZE; + inbuf += 16 * TWOFISH_BLOCKSIZE; + did_use_avx2 = 1; + } + + if (did_use_avx2) + { + /* twofish-avx2 assembly code does not use stack */ + if (nblocks == 0) + burn_stack_depth = 0; + } + } +#endif + +#ifdef USE_AMD64_ASM + { + /* Process data in 3 block chunks. */ + while (nblocks >= 3) + { + twofish_amd64_cbc_dec(ctx, outbuf, inbuf, iv); + + nblocks -= 3; + outbuf += 3 * TWOFISH_BLOCKSIZE; + inbuf += 3 * TWOFISH_BLOCKSIZE; + + burn = 9 * sizeof(void*); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + } + + /* Use generic code to handle smaller chunks... */ + } +#endif + + for ( ;nblocks; nblocks-- ) + { + /* INBUF is needed later and it may be identical to OUTBUF, so store + the intermediate result to SAVEBUF. */ + burn = twofish_decrypt (ctx, savebuf, inbuf); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + + cipher_block_xor_n_copy_2(outbuf, savebuf, iv, inbuf, TWOFISH_BLOCKSIZE); + inbuf += TWOFISH_BLOCKSIZE; + outbuf += TWOFISH_BLOCKSIZE; + } + + wipememory(savebuf, sizeof(savebuf)); + _gcry_burn_stack(burn_stack_depth); +} + + +/* Bulk decryption of complete blocks in CFB mode. This function is only + intended for the bulk encryption feature of cipher.c. */ +static void +_gcry_twofish_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks) +{ + TWOFISH_context *ctx = context; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + unsigned int burn, burn_stack_depth = 0; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + { + int did_use_avx2 = 0; + + /* Process data in 16 block chunks. */ + while (nblocks >= 16) + { + _gcry_twofish_avx2_cfb_dec(ctx, outbuf, inbuf, iv); + + nblocks -= 16; + outbuf += 16 * TWOFISH_BLOCKSIZE; + inbuf += 16 * TWOFISH_BLOCKSIZE; + did_use_avx2 = 1; + } + + if (did_use_avx2) + { + /* twofish-avx2 assembly code does not use stack */ + if (nblocks == 0) + burn_stack_depth = 0; + } + } +#endif + +#ifdef USE_AMD64_ASM + { + /* Process data in 3 block chunks. */ + while (nblocks >= 3) + { + twofish_amd64_cfb_dec(ctx, outbuf, inbuf, iv); + + nblocks -= 3; + outbuf += 3 * TWOFISH_BLOCKSIZE; + inbuf += 3 * TWOFISH_BLOCKSIZE; + + burn = 8 * sizeof(void*); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + } + + /* Use generic code to handle smaller chunks... */ + } +#endif + + for ( ;nblocks; nblocks-- ) + { + burn = twofish_encrypt(ctx, iv, iv); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + + cipher_block_xor_n_copy(outbuf, iv, inbuf, TWOFISH_BLOCKSIZE); + outbuf += TWOFISH_BLOCKSIZE; + inbuf += TWOFISH_BLOCKSIZE; + } + + _gcry_burn_stack(burn_stack_depth); +} + +/* Bulk encryption/decryption of complete blocks in OCB mode. */ +static size_t +_gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg, + const void *inbuf_arg, size_t nblocks, int encrypt) +{ +#ifdef USE_AMD64_ASM + TWOFISH_context *ctx = (void *)&c->context.c; + unsigned char *outbuf = outbuf_arg; + const unsigned char *inbuf = inbuf_arg; + unsigned int burn, burn_stack_depth = 0; + u64 blkn = c->u_mode.ocb.data_nblocks; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + { + int did_use_avx2 = 0; + u64 Ls[16]; + unsigned int n = 16 - (blkn % 16); + u64 *l; + int i; + + if (nblocks >= 16) + { + for (i = 0; i < 16; i += 8) + { + /* Use u64 to store pointers for x32 support (assembly function + * assumes 64-bit pointers). */ + Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; + Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; + Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; + Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + } + + Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3]; + l = &Ls[(15 + n) % 16]; + + /* Process data in 16 block chunks. */ + while (nblocks >= 16) + { + blkn += 16; + *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16); + + if (encrypt) + _gcry_twofish_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, + c->u_ctr.ctr, Ls); + else + _gcry_twofish_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, + c->u_ctr.ctr, Ls); + + nblocks -= 16; + outbuf += 16 * TWOFISH_BLOCKSIZE; + inbuf += 16 * TWOFISH_BLOCKSIZE; + did_use_avx2 = 1; + } + } + + if (did_use_avx2) + { + /* twofish-avx2 assembly code does not use stack */ + if (nblocks == 0) + burn_stack_depth = 0; + } + } +#endif + + { + /* Use u64 to store pointers for x32 support (assembly function + * assumes 64-bit pointers). */ + u64 Ls[3]; + + /* Process data in 3 block chunks. */ + while (nblocks >= 3) + { + Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1); + Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2); + Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3); + blkn += 3; + + if (encrypt) + twofish_amd64_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, + Ls); + else + twofish_amd64_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr, + Ls); + + nblocks -= 3; + outbuf += 3 * TWOFISH_BLOCKSIZE; + inbuf += 3 * TWOFISH_BLOCKSIZE; + + burn = 8 * sizeof(void*); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + } + + /* Use generic code to handle smaller chunks... */ + } + + c->u_mode.ocb.data_nblocks = blkn; + + if (burn_stack_depth) + _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); +#else + (void)c; + (void)outbuf_arg; + (void)inbuf_arg; + (void)encrypt; +#endif + + return nblocks; +} + +/* Bulk authentication of complete blocks in OCB mode. */ +static size_t +_gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg, + size_t nblocks) +{ +#ifdef USE_AMD64_ASM + TWOFISH_context *ctx = (void *)&c->context.c; + const unsigned char *abuf = abuf_arg; + unsigned int burn, burn_stack_depth = 0; + u64 blkn = c->u_mode.ocb.aad_nblocks; + +#ifdef USE_AVX2 + if (ctx->use_avx2) + { + int did_use_avx2 = 0; + u64 Ls[16]; + unsigned int n = 16 - (blkn % 16); + u64 *l; + int i; + + if (nblocks >= 16) + { + for (i = 0; i < 16; i += 8) + { + /* Use u64 to store pointers for x32 support (assembly function + * assumes 64-bit pointers). */ + Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; + Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2]; + Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1]; + Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0]; + } + + Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3]; + l = &Ls[(15 + n) % 16]; + + /* Process data in 16 block chunks. */ + while (nblocks >= 16) + { + blkn += 16; + *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16); + + _gcry_twofish_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, + c->u_mode.ocb.aad_sum, Ls); + + nblocks -= 16; + abuf += 16 * TWOFISH_BLOCKSIZE; + did_use_avx2 = 1; + } + } + + if (did_use_avx2) + { + /* twofish-avx2 assembly code does not use stack */ + if (nblocks == 0) + burn_stack_depth = 0; + } + + /* Use generic code to handle smaller chunks... */ + } +#endif + + { + /* Use u64 to store pointers for x32 support (assembly function + * assumes 64-bit pointers). */ + u64 Ls[3]; + + /* Process data in 3 block chunks. */ + while (nblocks >= 3) + { + Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1); + Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2); + Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3); + blkn += 3; + + twofish_amd64_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset, + c->u_mode.ocb.aad_sum, Ls); + + nblocks -= 3; + abuf += 3 * TWOFISH_BLOCKSIZE; + + burn = 8 * sizeof(void*); + if (burn > burn_stack_depth) + burn_stack_depth = burn; + } + + /* Use generic code to handle smaller chunks... */ + } + + c->u_mode.ocb.aad_nblocks = blkn; + + if (burn_stack_depth) + _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *)); +#else + (void)c; + (void)abuf_arg; +#endif + + return nblocks; +} + + + +/* Run the self-tests for TWOFISH-CTR, tests IV increment of bulk CTR + encryption. Returns NULL on success. */ +static const char * +selftest_ctr (void) +{ + const int nblocks = 16+1; + const int blocksize = TWOFISH_BLOCKSIZE; + const int context_size = sizeof(TWOFISH_context); + + return _gcry_selftest_helper_ctr("TWOFISH", &twofish_setkey, + &twofish_encrypt, nblocks, blocksize, context_size); +} + +/* Run the self-tests for TWOFISH-CBC, tests bulk CBC decryption. + Returns NULL on success. */ +static const char * +selftest_cbc (void) +{ + const int nblocks = 16+2; + const int blocksize = TWOFISH_BLOCKSIZE; + const int context_size = sizeof(TWOFISH_context); + + return _gcry_selftest_helper_cbc("TWOFISH", &twofish_setkey, + &twofish_encrypt, nblocks, blocksize, context_size); +} + +/* Run the self-tests for TWOFISH-CFB, tests bulk CBC decryption. + Returns NULL on success. */ +static const char * +selftest_cfb (void) +{ + const int nblocks = 16+2; + const int blocksize = TWOFISH_BLOCKSIZE; + const int context_size = sizeof(TWOFISH_context); + + return _gcry_selftest_helper_cfb("TWOFISH", &twofish_setkey, + &twofish_encrypt, nblocks, blocksize, context_size); +} + + +/* Test a single encryption and decryption with each key size. */ + +static const char* +selftest (void) +{ + TWOFISH_context ctx; /* Expanded key. */ + byte scratch[16]; /* Encryption/decryption result buffer. */ + cipher_bulk_ops_t bulk_ops; + const char *r; + + /* Test vectors for single encryption/decryption. Note that I am using + * the vectors from the Twofish paper's "known answer test", I=3 for + * 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the + * "intermediate value test", because an all-0 key would trigger all the + * special cases in the RS matrix multiply, leaving the math untested. */ + static byte plaintext[16] = { + 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, + 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 + }; + static byte key[16] = { + 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, + 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A + }; + static const byte ciphertext[16] = { + 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, + 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 + }; + static byte plaintext_256[16] = { + 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, + 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 + }; + static byte key_256[32] = { + 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, + 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, + 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, + 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F + }; + static const byte ciphertext_256[16] = { + 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, + 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA + }; + + twofish_setkey (&ctx, key, sizeof(key), &bulk_ops); + twofish_encrypt (&ctx, scratch, plaintext); + if (memcmp (scratch, ciphertext, sizeof (ciphertext))) + return "Twofish-128 test encryption failed."; + twofish_decrypt (&ctx, scratch, scratch); + if (memcmp (scratch, plaintext, sizeof (plaintext))) + return "Twofish-128 test decryption failed."; + + twofish_setkey (&ctx, key_256, sizeof(key_256), &bulk_ops); + twofish_encrypt (&ctx, scratch, plaintext_256); + if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256))) + return "Twofish-256 test encryption failed."; + twofish_decrypt (&ctx, scratch, scratch); + if (memcmp (scratch, plaintext_256, sizeof (plaintext_256))) + return "Twofish-256 test decryption failed."; + + if ((r = selftest_ctr()) != NULL) + return r; + if ((r = selftest_cbc()) != NULL) + return r; + if ((r = selftest_cfb()) != NULL) + return r; + + return NULL; +} + +/* More complete test program. This does 1000 encryptions and decryptions + * with each of 250 128-bit keys and 2000 encryptions and decryptions with + * each of 125 256-bit keys, using a feedback scheme similar to a Feistel + * cipher, so as to be sure of testing all the table entries pretty + * thoroughly. We keep changing the keys so as to get a more meaningful + * performance number, since the key setup is non-trivial for Twofish. */ + +#ifdef TEST + +#include <stdio.h> +#include <string.h> +#include <time.h> + +int +main() +{ + TWOFISH_context ctx; /* Expanded key. */ + int i, j; /* Loop counters. */ + cipher_bulk_ops_t bulk_ops; + + const char *encrypt_msg; /* Message to print regarding encryption test; + * the printf is done outside the loop to avoid + * stuffing up the timing. */ + clock_t timer; /* For computing elapsed time. */ + + /* Test buffer. */ + byte buffer[4][16] = { + {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}, + {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78, + 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0}, + {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, + 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10}, + {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10, + 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98} + }; + + /* Expected outputs for the million-operation test */ + static const byte test_encrypt[4][16] = { + {0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13, + 0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B}, + {0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E, + 0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27}, + {0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64, + 0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73}, + {0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8, + 0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57} + }; + static const byte test_decrypt[4][16] = { + {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}, + {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78, + 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0}, + {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, + 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10}, + {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10, + 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98} + }; + + /* Start the timer ticking. */ + timer = clock (); + + /* Encryption test. */ + for (i = 0; i < 125; i++) + { + twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops); + for (j = 0; j < 1000; j++) + twofish_encrypt (&ctx, buffer[2], buffer[2]); + twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops); + for (j = 0; j < 1000; j++) + twofish_encrypt (&ctx, buffer[3], buffer[3]); + twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops); + for (j = 0; j < 1000; j++) { + twofish_encrypt (&ctx, buffer[0], buffer[0]); + twofish_encrypt (&ctx, buffer[1], buffer[1]); + } + } + encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ? + "encryption failure!\n" : "encryption OK!\n"; + + /* Decryption test. */ + for (i = 0; i < 125; i++) + { + twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2, &bulk_ops); + for (j = 0; j < 1000; j++) { + twofish_decrypt (&ctx, buffer[0], buffer[0]); + twofish_decrypt (&ctx, buffer[1], buffer[1]); + } + twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]), &bulk_ops); + for (j = 0; j < 1000; j++) + twofish_decrypt (&ctx, buffer[3], buffer[3]); + twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]), &bulk_ops); + for (j = 0; j < 1000; j++) + twofish_decrypt (&ctx, buffer[2], buffer[2]); + } + + /* Stop the timer, and print results. */ + timer = clock () - timer; + printf (encrypt_msg); + printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ? + "decryption failure!\n" : "decryption OK!\n"); + printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC); + + return 0; +} + +#endif /* TEST */ + + + +gcry_cipher_spec_t _gcry_cipher_spec_twofish = + { + GCRY_CIPHER_TWOFISH, {0, 0}, + "TWOFISH", NULL, NULL, 16, 256, sizeof (TWOFISH_context), + twofish_setkey, twofish_encrypt, twofish_decrypt + }; + +gcry_cipher_spec_t _gcry_cipher_spec_twofish128 = + { + GCRY_CIPHER_TWOFISH128, {0, 0}, + "TWOFISH128", NULL, NULL, 16, 128, sizeof (TWOFISH_context), + twofish_setkey, twofish_encrypt, twofish_decrypt + }; |