diff options
Diffstat (limited to '')
-rw-r--r-- | gfx/graphite2/src/Pass.cpp | 1107 |
1 files changed, 1107 insertions, 0 deletions
diff --git a/gfx/graphite2/src/Pass.cpp b/gfx/graphite2/src/Pass.cpp new file mode 100644 index 0000000000..db31c22d46 --- /dev/null +++ b/gfx/graphite2/src/Pass.cpp @@ -0,0 +1,1107 @@ +/* GRAPHITE2 LICENSING + + Copyright 2010, SIL International + All rights reserved. + + This library is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as published + by the Free Software Foundation; either version 2.1 of License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should also have received a copy of the GNU Lesser General Public + License along with this library in the file named "LICENSE". + If not, write to the Free Software Foundation, 51 Franklin Street, + Suite 500, Boston, MA 02110-1335, USA or visit their web page on the + internet at http://www.fsf.org/licenses/lgpl.html. + +Alternatively, the contents of this file may be used under the terms of the +Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public +License, as published by the Free Software Foundation, either version 2 +of the License or (at your option) any later version. +*/ +#include "inc/Main.h" +#include "inc/debug.h" +#include "inc/Endian.h" +#include "inc/Pass.h" +#include <cstring> +#include <cstdlib> +#include <cassert> +#include <cmath> +#include "inc/Segment.h" +#include "inc/Code.h" +#include "inc/Rule.h" +#include "inc/Error.h" +#include "inc/Collider.h" + +using namespace graphite2; +using vm::Machine; +typedef Machine::Code Code; + +enum KernCollison +{ + None = 0, + CrossSpace = 1, + InWord = 2, + reserved = 3 +}; + +Pass::Pass() +: m_silf(0), + m_cols(0), + m_rules(0), + m_ruleMap(0), + m_startStates(0), + m_transitions(0), + m_states(0), + m_codes(0), + m_progs(0), + m_numCollRuns(0), + m_kernColls(0), + m_iMaxLoop(0), + m_numGlyphs(0), + m_numRules(0), + m_numStates(0), + m_numTransition(0), + m_numSuccess(0), + m_successStart(0), + m_numColumns(0), + m_minPreCtxt(0), + m_maxPreCtxt(0), + m_colThreshold(0), + m_isReverseDir(false) +{ +} + +Pass::~Pass() +{ + free(m_cols); + free(m_startStates); + free(m_transitions); + free(m_states); + free(m_ruleMap); + + if (m_rules) delete [] m_rules; + if (m_codes) delete [] m_codes; + free(m_progs); +} + +bool Pass::readPass(const byte * const pass_start, size_t pass_length, size_t subtable_base, + GR_MAYBE_UNUSED Face & face, passtype pt, GR_MAYBE_UNUSED uint32 version, Error &e) +{ + const byte * p = pass_start, + * const pass_end = p + pass_length; + size_t numRanges; + + if (e.test(pass_length < 40, E_BADPASSLENGTH)) return face.error(e); + // Read in basic values + const byte flags = be::read<byte>(p); + if (e.test((flags & 0x1f) && + (pt < PASS_TYPE_POSITIONING || !m_silf->aCollision() || !face.glyphs().hasBoxes() || !(m_silf->flags() & 0x20)), + E_BADCOLLISIONPASS)) + return face.error(e); + m_numCollRuns = flags & 0x7; + m_kernColls = (flags >> 3) & 0x3; + m_isReverseDir = (flags >> 5) & 0x1; + m_iMaxLoop = be::read<byte>(p); + if (m_iMaxLoop < 1) m_iMaxLoop = 1; + be::skip<byte>(p,2); // skip maxContext & maxBackup + m_numRules = be::read<uint16>(p); + if (e.test(!m_numRules && m_numCollRuns == 0, E_BADEMPTYPASS)) return face.error(e); + be::skip<uint16>(p); // fsmOffset - not sure why we would want this + const byte * const pcCode = pass_start + be::read<uint32>(p) - subtable_base, + * const rcCode = pass_start + be::read<uint32>(p) - subtable_base, + * const aCode = pass_start + be::read<uint32>(p) - subtable_base; + be::skip<uint32>(p); + m_numStates = be::read<uint16>(p); + m_numTransition = be::read<uint16>(p); + m_numSuccess = be::read<uint16>(p); + m_numColumns = be::read<uint16>(p); + numRanges = be::read<uint16>(p); + be::skip<uint16>(p, 3); // skip searchRange, entrySelector & rangeShift. + assert(p - pass_start == 40); + // Perform some sanity checks. + if ( e.test(m_numTransition > m_numStates, E_BADNUMTRANS) + || e.test(m_numSuccess > m_numStates, E_BADNUMSUCCESS) + || e.test(m_numSuccess + m_numTransition < m_numStates, E_BADNUMSTATES) + || e.test(m_numRules && numRanges == 0, E_NORANGES) + || e.test(m_numColumns > 0x7FFF, E_BADNUMCOLUMNS)) + return face.error(e); + + m_successStart = m_numStates - m_numSuccess; + // test for beyond end - 1 to account for reading uint16 + if (e.test(p + numRanges * 6 - 2 > pass_end, E_BADPASSLENGTH)) return face.error(e); + m_numGlyphs = be::peek<uint16>(p + numRanges * 6 - 4) + 1; + // Calculate the start of various arrays. + const byte * const ranges = p; + be::skip<uint16>(p, numRanges*3); + const byte * const o_rule_map = p; + be::skip<uint16>(p, m_numSuccess + 1); + + // More sanity checks + if (e.test(reinterpret_cast<const byte *>(o_rule_map + m_numSuccess*sizeof(uint16)) > pass_end + || p > pass_end, E_BADRULEMAPLEN)) + return face.error(e); + const size_t numEntries = be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16)); + const byte * const rule_map = p; + be::skip<uint16>(p, numEntries); + + if (e.test(p + 2*sizeof(uint8) > pass_end, E_BADPASSLENGTH)) return face.error(e); + m_minPreCtxt = be::read<uint8>(p); + m_maxPreCtxt = be::read<uint8>(p); + if (e.test(m_minPreCtxt > m_maxPreCtxt, E_BADCTXTLENBOUNDS)) return face.error(e); + const byte * const start_states = p; + be::skip<int16>(p, m_maxPreCtxt - m_minPreCtxt + 1); + const uint16 * const sort_keys = reinterpret_cast<const uint16 *>(p); + be::skip<uint16>(p, m_numRules); + const byte * const precontext = p; + be::skip<byte>(p, m_numRules); + + if (e.test(p + sizeof(uint16) + sizeof(uint8) > pass_end, E_BADCTXTLENS)) return face.error(e); + m_colThreshold = be::read<uint8>(p); + if (m_colThreshold == 0) m_colThreshold = 10; // A default + const size_t pass_constraint_len = be::read<uint16>(p); + + const uint16 * const o_constraint = reinterpret_cast<const uint16 *>(p); + be::skip<uint16>(p, m_numRules + 1); + const uint16 * const o_actions = reinterpret_cast<const uint16 *>(p); + be::skip<uint16>(p, m_numRules + 1); + const byte * const states = p; + if (e.test(2u*m_numTransition*m_numColumns >= (unsigned)(pass_end - p), E_BADPASSLENGTH) + || e.test(p >= pass_end, E_BADPASSLENGTH)) + return face.error(e); + be::skip<int16>(p, m_numTransition*m_numColumns); + be::skip<uint8>(p); + if (e.test(p != pcCode, E_BADPASSCCODEPTR)) return face.error(e); + be::skip<byte>(p, pass_constraint_len); + if (e.test(p != rcCode, E_BADRULECCODEPTR) + || e.test(size_t(rcCode - pcCode) != pass_constraint_len, E_BADCCODELEN)) return face.error(e); + be::skip<byte>(p, be::peek<uint16>(o_constraint + m_numRules)); + if (e.test(p != aCode, E_BADACTIONCODEPTR)) return face.error(e); + be::skip<byte>(p, be::peek<uint16>(o_actions + m_numRules)); + + // We should be at the end or within the pass + if (e.test(p > pass_end, E_BADPASSLENGTH)) return face.error(e); + + // Load the pass constraint if there is one. + if (pass_constraint_len) + { + face.error_context(face.error_context() + 1); + m_cPConstraint = vm::Machine::Code(true, pcCode, pcCode + pass_constraint_len, + precontext[0], be::peek<uint16>(sort_keys), *m_silf, face, PASS_TYPE_UNKNOWN); + if (e.test(!m_cPConstraint, E_OUTOFMEM) + || e.test(m_cPConstraint.status() != Code::loaded, m_cPConstraint.status() + E_CODEFAILURE)) + return face.error(e); + face.error_context(face.error_context() - 1); + } + if (m_numRules) + { + if (!readRanges(ranges, numRanges, e)) return face.error(e); + if (!readRules(rule_map, numEntries, precontext, sort_keys, + o_constraint, rcCode, o_actions, aCode, face, pt, e)) return false; + } +#ifdef GRAPHITE2_TELEMETRY + telemetry::category _states_cat(face.tele.states); +#endif + return m_numRules ? readStates(start_states, states, o_rule_map, face, e) : true; +} + + +bool Pass::readRules(const byte * rule_map, const size_t num_entries, + const byte *precontext, const uint16 * sort_key, + const uint16 * o_constraint, const byte *rc_data, + const uint16 * o_action, const byte * ac_data, + Face & face, passtype pt, Error &e) +{ + const byte * const ac_data_end = ac_data + be::peek<uint16>(o_action + m_numRules); + const byte * const rc_data_end = rc_data + be::peek<uint16>(o_constraint + m_numRules); + + precontext += m_numRules; + sort_key += m_numRules; + o_constraint += m_numRules; + o_action += m_numRules; + + // Load rules. + const byte * ac_begin = 0, * rc_begin = 0, + * ac_end = ac_data + be::peek<uint16>(o_action), + * rc_end = rc_data + be::peek<uint16>(o_constraint); + + // Allocate pools + m_rules = new Rule [m_numRules]; + m_codes = new Code [m_numRules*2]; + int totalSlots = 0; + const uint16 *tsort = sort_key; + for (int i = 0; i < m_numRules; ++i) + totalSlots += be::peek<uint16>(--tsort); + const size_t prog_pool_sz = vm::Machine::Code::estimateCodeDataOut(ac_end - ac_data + rc_end - rc_data, 2 * m_numRules, totalSlots); + m_progs = gralloc<byte>(prog_pool_sz); + byte * prog_pool_free = m_progs, + * prog_pool_end = m_progs + prog_pool_sz; + if (e.test(!(m_rules && m_codes && m_progs), E_OUTOFMEM)) return face.error(e); + + Rule * r = m_rules + m_numRules - 1; + for (size_t n = m_numRules; r >= m_rules; --n, --r, ac_end = ac_begin, rc_end = rc_begin) + { + face.error_context((face.error_context() & 0xFFFF00) + EC_ARULE + int((n - 1) << 24)); + r->preContext = *--precontext; + r->sort = be::peek<uint16>(--sort_key); +#ifndef NDEBUG + r->rule_idx = uint16(n - 1); +#endif + if (r->sort > 63 || r->preContext >= r->sort || r->preContext > m_maxPreCtxt || r->preContext < m_minPreCtxt) + return false; + ac_begin = ac_data + be::peek<uint16>(--o_action); + --o_constraint; + rc_begin = be::peek<uint16>(o_constraint) ? rc_data + be::peek<uint16>(o_constraint) : rc_end; + + if (ac_begin > ac_end || ac_begin > ac_data_end || ac_end > ac_data_end + || rc_begin > rc_end || rc_begin > rc_data_end || rc_end > rc_data_end + || vm::Machine::Code::estimateCodeDataOut(ac_end - ac_begin + rc_end - rc_begin, 2, r->sort) > size_t(prog_pool_end - prog_pool_free)) + return false; + r->action = new (m_codes+n*2-2) vm::Machine::Code(false, ac_begin, ac_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free); + r->constraint = new (m_codes+n*2-1) vm::Machine::Code(true, rc_begin, rc_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free); + + if (e.test(!r->action || !r->constraint, E_OUTOFMEM) + || e.test(r->action->status() != Code::loaded, r->action->status() + E_CODEFAILURE) + || e.test(r->constraint->status() != Code::loaded, r->constraint->status() + E_CODEFAILURE) + || e.test(!r->constraint->immutable(), E_MUTABLECCODE)) + return face.error(e); + } + + byte * const moved_progs = prog_pool_free > m_progs ? static_cast<byte *>(realloc(m_progs, prog_pool_free - m_progs)) : 0; + if (e.test(!moved_progs, E_OUTOFMEM)) + { + free(m_progs); + m_progs = 0; + return face.error(e); + } + + if (moved_progs != m_progs) + { + for (Code * c = m_codes, * const ce = c + m_numRules*2; c != ce; ++c) + { + c->externalProgramMoved(moved_progs - m_progs); + } + m_progs = moved_progs; + } + + // Load the rule entries map + face.error_context((face.error_context() & 0xFFFF00) + EC_APASS); + //TODO: Coverity: 1315804: FORWARD_NULL + RuleEntry * re = m_ruleMap = gralloc<RuleEntry>(num_entries); + if (e.test(!re, E_OUTOFMEM)) return face.error(e); + for (size_t n = num_entries; n; --n, ++re) + { + const ptrdiff_t rn = be::read<uint16>(rule_map); + if (e.test(rn >= m_numRules, E_BADRULENUM)) return face.error(e); + re->rule = m_rules + rn; + } + + return true; +} + +static int cmpRuleEntry(const void *a, const void *b) { return (*(RuleEntry *)a < *(RuleEntry *)b ? -1 : + (*(RuleEntry *)b < *(RuleEntry *)a ? 1 : 0)); } + +bool Pass::readStates(const byte * starts, const byte *states, const byte * o_rule_map, GR_MAYBE_UNUSED Face & face, Error &e) +{ +#ifdef GRAPHITE2_TELEMETRY + telemetry::category _states_cat(face.tele.starts); +#endif + m_startStates = gralloc<uint16>(m_maxPreCtxt - m_minPreCtxt + 1); +#ifdef GRAPHITE2_TELEMETRY + telemetry::set_category(face.tele.states); +#endif + m_states = gralloc<State>(m_numStates); +#ifdef GRAPHITE2_TELEMETRY + telemetry::set_category(face.tele.transitions); +#endif + m_transitions = gralloc<uint16>(m_numTransition * m_numColumns); + + if (e.test(!m_startStates || !m_states || !m_transitions, E_OUTOFMEM)) return face.error(e); + // load start states + for (uint16 * s = m_startStates, + * const s_end = s + m_maxPreCtxt - m_minPreCtxt + 1; s != s_end; ++s) + { + *s = be::read<uint16>(starts); + if (e.test(*s >= m_numStates, E_BADSTATE)) + { + face.error_context((face.error_context() & 0xFFFF00) + EC_ASTARTS + int((s - m_startStates) << 24)); + return face.error(e); // true; + } + } + + // load state transition table. + for (uint16 * t = m_transitions, + * const t_end = t + m_numTransition*m_numColumns; t != t_end; ++t) + { + *t = be::read<uint16>(states); + if (e.test(*t >= m_numStates, E_BADSTATE)) + { + face.error_context((face.error_context() & 0xFFFF00) + EC_ATRANS + int(((t - m_transitions) / m_numColumns) << 8)); + return face.error(e); + } + } + + State * s = m_states, + * const success_begin = m_states + m_numStates - m_numSuccess; + const RuleEntry * rule_map_end = m_ruleMap + be::peek<uint16>(o_rule_map + m_numSuccess*sizeof(uint16)); + for (size_t n = m_numStates; n; --n, ++s) + { + RuleEntry * const begin = s < success_begin ? 0 : m_ruleMap + be::read<uint16>(o_rule_map), + * const end = s < success_begin ? 0 : m_ruleMap + be::peek<uint16>(o_rule_map); + + if (e.test(begin >= rule_map_end || end > rule_map_end || begin > end, E_BADRULEMAPPING)) + { + face.error_context((face.error_context() & 0xFFFF00) + EC_ARULEMAP + int(n << 24)); + return face.error(e); + } + s->rules = begin; + s->rules_end = (end - begin <= FiniteStateMachine::MAX_RULES)? end : + begin + FiniteStateMachine::MAX_RULES; + if (begin) // keep UBSan happy can't call qsort with null begin + qsort(begin, end - begin, sizeof(RuleEntry), &cmpRuleEntry); + } + + return true; +} + +bool Pass::readRanges(const byte * ranges, size_t num_ranges, Error &e) +{ + m_cols = gralloc<uint16>(m_numGlyphs); + if (e.test(!m_cols, E_OUTOFMEM)) return false; + memset(m_cols, 0xFF, m_numGlyphs * sizeof(uint16)); + for (size_t n = num_ranges; n; --n) + { + uint16 * ci = m_cols + be::read<uint16>(ranges), + * ci_end = m_cols + be::read<uint16>(ranges) + 1, + col = be::read<uint16>(ranges); + + if (e.test(ci >= ci_end || ci_end > m_cols+m_numGlyphs || col >= m_numColumns, E_BADRANGE)) + return false; + + // A glyph must only belong to one column at a time + while (ci != ci_end && *ci == 0xffff) + *ci++ = col; + + if (e.test(ci != ci_end, E_BADRANGE)) + return false; + } + return true; +} + + +bool Pass::runGraphite(vm::Machine & m, FiniteStateMachine & fsm, bool reverse) const +{ + Slot *s = m.slotMap().segment.first(); + if (!s || !testPassConstraint(m)) return true; + if (reverse) + { + m.slotMap().segment.reverseSlots(); + s = m.slotMap().segment.first(); + } + if (m_numRules) + { + Slot *currHigh = s->next(); + +#if !defined GRAPHITE2_NTRACING + if (fsm.dbgout) *fsm.dbgout << "rules" << json::array; + json::closer rules_array_closer(fsm.dbgout); +#endif + + m.slotMap().highwater(currHigh); + int lc = m_iMaxLoop; + do + { + findNDoRule(s, m, fsm); + if (m.status() != Machine::finished) return false; + if (s && (s == m.slotMap().highwater() || m.slotMap().highpassed() || --lc == 0)) { + if (!lc) + s = m.slotMap().highwater(); + lc = m_iMaxLoop; + if (s) + m.slotMap().highwater(s->next()); + } + } while (s); + } + //TODO: Use enums for flags + const bool collisions = m_numCollRuns || m_kernColls; + + if (!collisions || !m.slotMap().segment.hasCollisionInfo()) + return true; + + if (m_numCollRuns) + { + if (!(m.slotMap().segment.flags() & Segment::SEG_INITCOLLISIONS)) + { + m.slotMap().segment.positionSlots(0, 0, 0, m.slotMap().dir(), true); +// m.slotMap().segment.flags(m.slotMap().segment.flags() | Segment::SEG_INITCOLLISIONS); + } + if (!collisionShift(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout)) + return false; + } + if ((m_kernColls) && !collisionKern(&m.slotMap().segment, m.slotMap().dir(), fsm.dbgout)) + return false; + if (collisions && !collisionFinish(&m.slotMap().segment, fsm.dbgout)) + return false; + return true; +} + +bool Pass::runFSM(FiniteStateMachine& fsm, Slot * slot) const +{ + fsm.reset(slot, m_maxPreCtxt); + if (fsm.slots.context() < m_minPreCtxt) + return false; + + uint16 state = m_startStates[m_maxPreCtxt - fsm.slots.context()]; + uint8 free_slots = SlotMap::MAX_SLOTS; + do + { + fsm.slots.pushSlot(slot); + if (slot->gid() >= m_numGlyphs + || m_cols[slot->gid()] == 0xffffU + || --free_slots == 0 + || state >= m_numTransition) + return free_slots != 0; + + const uint16 * transitions = m_transitions + state*m_numColumns; + state = transitions[m_cols[slot->gid()]]; + if (state >= m_successStart) + fsm.rules.accumulate_rules(m_states[state]); + + slot = slot->next(); + } while (state != 0 && slot); + + fsm.slots.pushSlot(slot); + return true; +} + +#if !defined GRAPHITE2_NTRACING + +inline +Slot * input_slot(const SlotMap & slots, const int n) +{ + Slot * s = slots[slots.context() + n]; + if (!s->isCopied()) return s; + + return s->prev() ? s->prev()->next() : (s->next() ? s->next()->prev() : slots.segment.last()); +} + +inline +Slot * output_slot(const SlotMap & slots, const int n) +{ + Slot * s = slots[slots.context() + n - 1]; + return s ? s->next() : slots.segment.first(); +} + +#endif //!defined GRAPHITE2_NTRACING + +void Pass::findNDoRule(Slot * & slot, Machine &m, FiniteStateMachine & fsm) const +{ + assert(slot); + + if (runFSM(fsm, slot)) + { + // Search for the first rule which passes the constraint + const RuleEntry * r = fsm.rules.begin(), + * const re = fsm.rules.end(); + while (r != re && !testConstraint(*r->rule, m)) + { + ++r; + if (m.status() != Machine::finished) + return; + } + +#if !defined GRAPHITE2_NTRACING + if (fsm.dbgout) + { + if (fsm.rules.size() != 0) + { + *fsm.dbgout << json::item << json::object; + dumpRuleEventConsidered(fsm, *r); + if (r != re) + { + const int adv = doAction(r->rule->action, slot, m); + dumpRuleEventOutput(fsm, *r->rule, slot); + if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot); + adjustSlot(adv, slot, fsm.slots); + *fsm.dbgout << "cursor" << objectid(dslot(&fsm.slots.segment, slot)) + << json::close; // Close RuelEvent object + + return; + } + else + { + *fsm.dbgout << json::close // close "considered" array + << "output" << json::null + << "cursor" << objectid(dslot(&fsm.slots.segment, slot->next())) + << json::close; + } + } + } + else +#endif + { + if (r != re) + { + const int adv = doAction(r->rule->action, slot, m); + if (m.status() != Machine::finished) return; + if (r->rule->action->deletes()) fsm.slots.collectGarbage(slot); + adjustSlot(adv, slot, fsm.slots); + return; + } + } + } + + slot = slot->next(); + return; +} + +#if !defined GRAPHITE2_NTRACING + +void Pass::dumpRuleEventConsidered(const FiniteStateMachine & fsm, const RuleEntry & re) const +{ + *fsm.dbgout << "considered" << json::array; + for (const RuleEntry *r = fsm.rules.begin(); r != &re; ++r) + { + if (r->rule->preContext > fsm.slots.context()) + continue; + *fsm.dbgout << json::flat << json::object + << "id" << r->rule - m_rules + << "failed" << true + << "input" << json::flat << json::object + << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, -r->rule->preContext))) + << "length" << r->rule->sort + << json::close // close "input" + << json::close; // close Rule object + } +} + + +void Pass::dumpRuleEventOutput(const FiniteStateMachine & fsm, const Rule & r, Slot * const last_slot) const +{ + *fsm.dbgout << json::item << json::flat << json::object + << "id" << &r - m_rules + << "failed" << false + << "input" << json::flat << json::object + << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0))) + << "length" << r.sort - r.preContext + << json::close // close "input" + << json::close // close Rule object + << json::close // close considered array + << "output" << json::object + << "range" << json::flat << json::object + << "start" << objectid(dslot(&fsm.slots.segment, input_slot(fsm.slots, 0))) + << "end" << objectid(dslot(&fsm.slots.segment, last_slot)) + << json::close // close "input" + << "slots" << json::array; + const Position rsb_prepos = last_slot ? last_slot->origin() : fsm.slots.segment.advance(); + fsm.slots.segment.positionSlots(0, 0, 0, fsm.slots.segment.currdir()); + + for(Slot * slot = output_slot(fsm.slots, 0); slot != last_slot; slot = slot->next()) + *fsm.dbgout << dslot(&fsm.slots.segment, slot); + *fsm.dbgout << json::close // close "slots" + << "postshift" << (last_slot ? last_slot->origin() : fsm.slots.segment.advance()) - rsb_prepos + << json::close; // close "output" object + +} + +#endif + + +inline +bool Pass::testPassConstraint(Machine & m) const +{ + if (!m_cPConstraint) return true; + + assert(m_cPConstraint.constraint()); + + m.slotMap().reset(*m.slotMap().segment.first(), 0); + m.slotMap().pushSlot(m.slotMap().segment.first()); + vm::slotref * map = m.slotMap().begin(); + const uint32 ret = m_cPConstraint.run(m, map); + +#if !defined GRAPHITE2_NTRACING + json * const dbgout = m.slotMap().segment.getFace()->logger(); + if (dbgout) + *dbgout << "constraint" << (ret && m.status() == Machine::finished); +#endif + + return ret && m.status() == Machine::finished; +} + + +bool Pass::testConstraint(const Rule & r, Machine & m) const +{ + const uint16 curr_context = m.slotMap().context(); + if (unsigned(r.sort + curr_context - r.preContext) > m.slotMap().size() + || curr_context - r.preContext < 0) return false; + + vm::slotref * map = m.slotMap().begin() + curr_context - r.preContext; + if (map[r.sort - 1] == 0) + return false; + + if (!*r.constraint) return true; + assert(r.constraint->constraint()); + for (int n = r.sort; n && map; --n, ++map) + { + if (!*map) continue; + const int32 ret = r.constraint->run(m, map); + if (!ret || m.status() != Machine::finished) + return false; + } + + return true; +} + + +void SlotMap::collectGarbage(Slot * &aSlot) +{ + for(Slot **s = begin(), *const *const se = end() - 1; s != se; ++s) { + Slot *& slot = *s; + if(slot && (slot->isDeleted() || slot->isCopied())) + { + if (slot == aSlot) + aSlot = slot->prev() ? slot->prev() : slot->next(); + segment.freeSlot(slot); + } + } +} + + + +int Pass::doAction(const Code *codeptr, Slot * & slot_out, vm::Machine & m) const +{ + assert(codeptr); + if (!*codeptr) return 0; + SlotMap & smap = m.slotMap(); + vm::slotref * map = &smap[smap.context()]; + smap.highpassed(false); + + int32 ret = codeptr->run(m, map); + + if (m.status() != Machine::finished) + { + slot_out = NULL; + smap.highwater(0); + return 0; + } + + slot_out = *map; + return ret; +} + + +void Pass::adjustSlot(int delta, Slot * & slot_out, SlotMap & smap) const +{ + if (!slot_out) + { + if (smap.highpassed() || slot_out == smap.highwater()) + { + slot_out = smap.segment.last(); + ++delta; + if (!smap.highwater() || smap.highwater() == slot_out) + smap.highpassed(false); + } + else + { + slot_out = smap.segment.first(); + --delta; + } + } + if (delta < 0) + { + while (++delta <= 0 && slot_out) + { + slot_out = slot_out->prev(); + if (smap.highpassed() && smap.highwater() == slot_out) + smap.highpassed(false); + } + } + else if (delta > 0) + { + while (--delta >= 0 && slot_out) + { + if (slot_out == smap.highwater() && slot_out) + smap.highpassed(true); + slot_out = slot_out->next(); + } + } +} + +bool Pass::collisionShift(Segment *seg, int dir, json * const dbgout) const +{ + ShiftCollider shiftcoll(dbgout); + // bool isfirst = true; + bool hasCollisions = false; + Slot *start = seg->first(); // turn on collision fixing for the first slot + Slot *end = NULL; + bool moved = false; + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << "collisions" << json::array + << json::flat << json::object << "num-loops" << m_numCollRuns << json::close; +#endif + + while (start) + { +#if !defined GRAPHITE2_NTRACING + if (dbgout) *dbgout << json::object << "phase" << "1" << "moves" << json::array; +#endif + hasCollisions = false; + end = NULL; + // phase 1 : position shiftable glyphs, ignoring kernable glyphs + for (Slot *s = start; s; s = s->next()) + { + const SlotCollision * c = seg->collisionInfo(s); + if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX + && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout)) + return false; + if (s != start && (c->flags() & SlotCollision::COLL_END)) + { + end = s->next(); + break; + } + } + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::close << json::close; // phase-1 +#endif + + // phase 2 : loop until happy. + for (int i = 0; i < m_numCollRuns - 1; ++i) + { + if (hasCollisions || moved) + { + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::object << "phase" << "2a" << "loop" << i << "moves" << json::array; +#endif + // phase 2a : if any shiftable glyphs are in collision, iterate backwards, + // fixing them and ignoring other non-collided glyphs. Note that this handles ONLY + // glyphs that are actually in collision from phases 1 or 2b, and working backwards + // has the intended effect of breaking logjams. + if (hasCollisions) + { + hasCollisions = false; + #if 0 + moved = true; + for (Slot *s = start; s != end; s = s->next()) + { + SlotCollision * c = seg->collisionInfo(s); + c->setShift(Position(0, 0)); + } + #endif + Slot *lend = end ? end->prev() : seg->last(); + Slot *lstart = start->prev(); + for (Slot *s = lend; s != lstart; s = s->prev()) + { + SlotCollision * c = seg->collisionInfo(s); + if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN | SlotCollision::COLL_ISCOL)) + == (SlotCollision::COLL_FIX | SlotCollision::COLL_ISCOL)) // ONLY if this glyph is still colliding + { + if (!resolveCollisions(seg, s, lend, shiftcoll, true, dir, moved, hasCollisions, dbgout)) + return false; + c->setFlags(c->flags() | SlotCollision::COLL_TEMPLOCK); + } + } + } + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::close << json::close // phase 2a + << json::object << "phase" << "2b" << "loop" << i << "moves" << json::array; +#endif + + // phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts + // glyphs from their current adjusted position, which has the effect of gradually minimizing the + // resulting adjustment; ie, the final result will be gradually closer to the original location. + // Also it allows more flexibility in the final adjustment, since it is moving along the + // possible 8 vectors from successively different starting locations. + if (moved) + { + moved = false; + for (Slot *s = start; s != end; s = s->next()) + { + SlotCollision * c = seg->collisionInfo(s); + if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_TEMPLOCK + | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX + && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout)) + return false; + else if (c->flags() & SlotCollision::COLL_TEMPLOCK) + c->setFlags(c->flags() & ~SlotCollision::COLL_TEMPLOCK); + } + } + // if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things + // break; +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::close << json::close; // phase 2 +#endif + } + } + if (!end) + break; + start = NULL; + for (Slot *s = end->prev(); s; s = s->next()) + { + if (seg->collisionInfo(s)->flags() & SlotCollision::COLL_START) + { + start = s; + break; + } + } + } + return true; +} + +bool Pass::collisionKern(Segment *seg, int dir, json * const dbgout) const +{ + Slot *start = seg->first(); + float ymin = 1e38f; + float ymax = -1e38f; + const GlyphCache &gc = seg->getFace()->glyphs(); + + // phase 3 : handle kerning of clusters +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::object << "phase" << "3" << "moves" << json::array; +#endif + + for (Slot *s = seg->first(); s; s = s->next()) + { + if (!gc.check(s->gid())) + return false; + const SlotCollision * c = seg->collisionInfo(s); + const Rect &bbox = seg->theGlyphBBoxTemporary(s->gid()); + float y = s->origin().y + c->shift().y; + if (!(c->flags() & SlotCollision::COLL_ISSPACE)) + { + ymax = max(y + bbox.tr.y, ymax); + ymin = min(y + bbox.bl.y, ymin); + } + if (start && (c->flags() & (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX)) + == (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX)) + resolveKern(seg, s, start, dir, ymin, ymax, dbgout); + if (c->flags() & SlotCollision::COLL_END) + start = NULL; + if (c->flags() & SlotCollision::COLL_START) + start = s; + } + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::close << json::close; // phase 3 +#endif + return true; +} + +bool Pass::collisionFinish(Segment *seg, GR_MAYBE_UNUSED json * const dbgout) const +{ + for (Slot *s = seg->first(); s; s = s->next()) + { + SlotCollision *c = seg->collisionInfo(s); + if (c->shift().x != 0 || c->shift().y != 0) + { + const Position newOffset = c->shift(); + const Position nullPosition(0, 0); + c->setOffset(newOffset + c->offset()); + c->setShift(nullPosition); + } + } +// seg->positionSlots(); + +#if !defined GRAPHITE2_NTRACING + if (dbgout) + *dbgout << json::close; +#endif + return true; +} + +// Can slot s be kerned, or is it attached to something that can be kerned? +static bool inKernCluster(Segment *seg, Slot *s) +{ + SlotCollision *c = seg->collisionInfo(s); + if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ ) + return true; + while (s->attachedTo()) + { + s = s->attachedTo(); + c = seg->collisionInfo(s); + if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ ) + return true; + } + return false; +} + +// Fix collisions for the given slot. +// Return true if everything was fixed, false if there are still collisions remaining. +// isRev means be we are processing backwards. +bool Pass::resolveCollisions(Segment *seg, Slot *slotFix, Slot *start, + ShiftCollider &coll, GR_MAYBE_UNUSED bool isRev, int dir, bool &moved, bool &hasCol, + json * const dbgout) const +{ + Slot * nbor; // neighboring slot + SlotCollision *cFix = seg->collisionInfo(slotFix); + if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(), cFix->marginWt(), + cFix->shift(), cFix->offset(), dir, dbgout)) + return false; + bool collides = false; + // When we're processing forward, ignore kernable glyphs that preceed the target glyph. + // When processing backward, don't ignore these until we pass slotFix. + bool ignoreForKern = !isRev; + bool rtl = dir & 1; + Slot *base = slotFix; + while (base->attachedTo()) + base = base->attachedTo(); + Position zero(0., 0.); + + // Look for collisions with the neighboring glyphs. + for (nbor = start; nbor; nbor = isRev ? nbor->prev() : nbor->next()) + { + SlotCollision *cNbor = seg->collisionInfo(nbor); + bool sameCluster = nbor->isChildOf(base); + if (nbor != slotFix // don't process if this is the slot of interest + && !(cNbor->ignore()) // don't process if ignoring + && (nbor == base || sameCluster // process if in the same cluster as slotFix + || !inKernCluster(seg, nbor)) // or this cluster is not to be kerned +// || (rtl ^ ignoreForKern)) // or it comes before(ltr) or after(rtl) + && (!isRev // if processing forwards then good to merge otherwise only: + || !(cNbor->flags() & SlotCollision::COLL_FIX) // merge in immovable stuff + || ((cNbor->flags() & SlotCollision::COLL_KERN) && !sameCluster) // ignore other kernable clusters + || (cNbor->flags() & SlotCollision::COLL_ISCOL)) // test against other collided glyphs + && !coll.mergeSlot(seg, nbor, cNbor, cNbor->shift(), !ignoreForKern, sameCluster, collides, false, dbgout)) + return false; + else if (nbor == slotFix) + // Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore. + ignoreForKern = !ignoreForKern; + + if (nbor != start && (cNbor->flags() & (isRev ? SlotCollision::COLL_START : SlotCollision::COLL_END))) + break; + } + bool isCol = false; + if (collides || cFix->shift().x != 0.f || cFix->shift().y != 0.f) + { + Position shift = coll.resolve(seg, isCol, dbgout); + // isCol has been set to true if a collision remains. + if (std::fabs(shift.x) < 1e38f && std::fabs(shift.y) < 1e38f) + { + if (sqr(shift.x-cFix->shift().x) + sqr(shift.y-cFix->shift().y) >= m_colThreshold * m_colThreshold) + moved = true; + cFix->setShift(shift); + if (slotFix->firstChild()) + { + Rect bbox; + Position here = slotFix->origin() + shift; + float clusterMin = here.x; + slotFix->firstChild()->finalise(seg, NULL, here, bbox, 0, clusterMin, rtl, false); + } + } + } + else + { + // This glyph is not colliding with anything. +#if !defined GRAPHITE2_NTRACING + if (dbgout) + { + *dbgout << json::object + << "missed" << objectid(dslot(seg, slotFix)); + coll.outputJsonDbg(dbgout, seg, -1); + *dbgout << json::close; + } +#endif + } + + // Set the is-collision flag bit. + if (isCol) + { cFix->setFlags(cFix->flags() | SlotCollision::COLL_ISCOL | SlotCollision::COLL_KNOWN); } + else + { cFix->setFlags((cFix->flags() & ~SlotCollision::COLL_ISCOL) | SlotCollision::COLL_KNOWN); } + hasCol |= isCol; + return true; +} + +float Pass::resolveKern(Segment *seg, Slot *slotFix, GR_MAYBE_UNUSED Slot *start, int dir, + float &ymin, float &ymax, json *const dbgout) const +{ + Slot *nbor; // neighboring slot + float currSpace = 0.; + bool collides = false; + unsigned int space_count = 0; + Slot *base = slotFix; + while (base->attachedTo()) + base = base->attachedTo(); + SlotCollision *cFix = seg->collisionInfo(base); + const GlyphCache &gc = seg->getFace()->glyphs(); + const Rect &bbb = seg->theGlyphBBoxTemporary(slotFix->gid()); + const float by = slotFix->origin().y + cFix->shift().y; + + if (base != slotFix) + { + cFix->setFlags(cFix->flags() | SlotCollision::COLL_KERN | SlotCollision::COLL_FIX); + return 0; + } + bool seenEnd = (cFix->flags() & SlotCollision::COLL_END) != 0; + bool isInit = false; + KernCollider coll(dbgout); + + ymax = max(by + bbb.tr.y, ymax); + ymin = min(by + bbb.bl.y, ymin); + for (nbor = slotFix->next(); nbor; nbor = nbor->next()) + { + if (nbor->isChildOf(base)) + continue; + if (!gc.check(nbor->gid())) + return 0.; + const Rect &bb = seg->theGlyphBBoxTemporary(nbor->gid()); + SlotCollision *cNbor = seg->collisionInfo(nbor); + if ((bb.bl.y == 0.f && bb.tr.y == 0.f) || (cNbor->flags() & SlotCollision::COLL_ISSPACE)) + { + if (m_kernColls == InWord) + break; + // Add space for a space glyph. + currSpace += nbor->advance(); + ++space_count; + } + else + { + space_count = 0; + if (nbor != slotFix && !cNbor->ignore()) + { + seenEnd = true; + if (!isInit) + { + if (!coll.initSlot(seg, slotFix, cFix->limit(), cFix->margin(), + cFix->shift(), cFix->offset(), dir, ymin, ymax, dbgout)) + return 0.; + isInit = true; + } + collides |= coll.mergeSlot(seg, nbor, cNbor->shift(), currSpace, dir, dbgout); + } + } + if (cNbor->flags() & SlotCollision::COLL_END) + { + if (seenEnd && space_count < 2) + break; + else + seenEnd = true; + } + } + if (collides) + { + Position mv = coll.resolve(seg, slotFix, dir, dbgout); + coll.shift(mv, dir); + Position delta = slotFix->advancePos() + mv - cFix->shift(); + slotFix->advance(delta); + cFix->setShift(mv); + return mv.x; + } + return 0.; +} |