summaryrefslogtreecommitdiffstats
path: root/gfx/qcms/src/transform.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--gfx/qcms/src/transform.rs1571
1 files changed, 1571 insertions, 0 deletions
diff --git a/gfx/qcms/src/transform.rs b/gfx/qcms/src/transform.rs
new file mode 100644
index 0000000000..cfca37be4c
--- /dev/null
+++ b/gfx/qcms/src/transform.rs
@@ -0,0 +1,1571 @@
+// qcms
+// Copyright (C) 2009 Mozilla Foundation
+// Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#![allow(clippy::missing_safety_doc)]
+#[cfg(all(any(target_arch = "arm", target_arch = "aarch64"), feature = "neon"))]
+use crate::transform_neon::{
+ qcms_transform_data_bgra_out_lut_neon, qcms_transform_data_rgb_out_lut_neon,
+ qcms_transform_data_rgba_out_lut_neon,
+};
+use crate::{
+ chain::chain_transform,
+ double_to_s15Fixed16Number,
+ iccread::SUPPORTS_ICCV4,
+ matrix::*,
+ transform_util::{
+ build_colorant_matrix, build_input_gamma_table, build_output_lut, compute_precache,
+ lut_interp_linear,
+ },
+};
+use crate::{
+ iccread::{qcms_CIE_xyY, qcms_CIE_xyYTRIPLE, Profile, GRAY_SIGNATURE, RGB_SIGNATURE},
+ transform_util::clamp_float,
+ Intent,
+};
+#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+use crate::{
+ transform_avx::{
+ qcms_transform_data_bgra_out_lut_avx, qcms_transform_data_rgb_out_lut_avx,
+ qcms_transform_data_rgba_out_lut_avx,
+ },
+ transform_sse2::{
+ qcms_transform_data_bgra_out_lut_sse2, qcms_transform_data_rgb_out_lut_sse2,
+ qcms_transform_data_rgba_out_lut_sse2,
+ },
+};
+
+use std::sync::atomic::Ordering;
+use std::sync::Arc;
+#[cfg(all(target_arch = "arm", feature = "neon"))]
+use std::arch::is_arm_feature_detected;
+#[cfg(all(target_arch = "aarch64", feature = "neon"))]
+use std::arch::is_aarch64_feature_detected;
+
+pub const PRECACHE_OUTPUT_SIZE: usize = 8192;
+pub const PRECACHE_OUTPUT_MAX: usize = PRECACHE_OUTPUT_SIZE - 1;
+pub const FLOATSCALE: f32 = PRECACHE_OUTPUT_SIZE as f32;
+pub const CLAMPMAXVAL: f32 = ((PRECACHE_OUTPUT_SIZE - 1) as f32) / PRECACHE_OUTPUT_SIZE as f32;
+
+#[repr(C)]
+#[derive(Debug)]
+pub struct PrecacheOuput {
+ /* We previously used a count of 65536 here but that seems like more
+ * precision than we actually need. By reducing the size we can
+ * improve startup performance and reduce memory usage. ColorSync on
+ * 10.5 uses 4097 which is perhaps because they use a fixed point
+ * representation where 1. is represented by 0x1000. */
+ pub data: [u8; PRECACHE_OUTPUT_SIZE],
+}
+
+impl Default for PrecacheOuput {
+ fn default() -> PrecacheOuput {
+ PrecacheOuput {
+ data: [0; PRECACHE_OUTPUT_SIZE],
+ }
+ }
+}
+
+/* used as a lookup table for the output transformation.
+ * we refcount them so we only need to have one around per output
+ * profile, instead of duplicating them per transform */
+
+#[repr(C)]
+#[repr(align(16))]
+#[derive(Clone, Default)]
+pub struct qcms_transform {
+ pub matrix: [[f32; 4]; 3],
+ pub input_gamma_table_r: Option<Box<[f32; 256]>>,
+ pub input_gamma_table_g: Option<Box<[f32; 256]>>,
+ pub input_gamma_table_b: Option<Box<[f32; 256]>>,
+ pub input_clut_table_length: u16,
+ pub clut: Option<Vec<f32>>,
+ pub grid_size: u16,
+ pub output_clut_table_length: u16,
+ pub input_gamma_table_gray: Option<Box<[f32; 256]>>,
+ pub out_gamma_r: f32,
+ pub out_gamma_g: f32,
+ pub out_gamma_b: f32,
+ pub out_gamma_gray: f32,
+ pub output_gamma_lut_r: Option<Vec<u16>>,
+ pub output_gamma_lut_g: Option<Vec<u16>>,
+ pub output_gamma_lut_b: Option<Vec<u16>>,
+ pub output_gamma_lut_gray: Option<Vec<u16>>,
+ pub output_gamma_lut_r_length: usize,
+ pub output_gamma_lut_g_length: usize,
+ pub output_gamma_lut_b_length: usize,
+ pub output_gamma_lut_gray_length: usize,
+ pub output_table_r: Option<Arc<PrecacheOuput>>,
+ pub output_table_g: Option<Arc<PrecacheOuput>>,
+ pub output_table_b: Option<Arc<PrecacheOuput>>,
+ pub transform_fn: transform_fn_t,
+}
+
+pub type transform_fn_t =
+ Option<unsafe fn(_: &qcms_transform, _: *const u8, _: *mut u8, _: usize) -> ()>;
+/// The format of pixel data
+#[repr(u32)]
+#[derive(PartialEq, Eq, Clone, Copy)]
+#[allow(clippy::upper_case_acronyms)]
+pub enum DataType {
+ RGB8 = 0,
+ RGBA8 = 1,
+ BGRA8 = 2,
+ Gray8 = 3,
+ GrayA8 = 4,
+ CMYK = 5,
+}
+
+impl DataType {
+ pub fn bytes_per_pixel(&self) -> usize {
+ match self {
+ RGB8 => 3,
+ RGBA8 => 4,
+ BGRA8 => 4,
+ Gray8 => 1,
+ GrayA8 => 2,
+ CMYK => 4,
+ }
+ }
+}
+
+use DataType::*;
+
+#[repr(C)]
+#[derive(Copy, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+pub struct CIE_XYZ {
+ pub X: f64,
+ pub Y: f64,
+ pub Z: f64,
+}
+
+pub trait Format {
+ const kRIndex: usize;
+ const kGIndex: usize;
+ const kBIndex: usize;
+ const kAIndex: usize;
+}
+
+#[allow(clippy::upper_case_acronyms)]
+pub struct BGRA;
+impl Format for BGRA {
+ const kBIndex: usize = 0;
+ const kGIndex: usize = 1;
+ const kRIndex: usize = 2;
+ const kAIndex: usize = 3;
+}
+
+#[allow(clippy::upper_case_acronyms)]
+pub struct RGBA;
+impl Format for RGBA {
+ const kRIndex: usize = 0;
+ const kGIndex: usize = 1;
+ const kBIndex: usize = 2;
+ const kAIndex: usize = 3;
+}
+
+#[allow(clippy::upper_case_acronyms)]
+pub struct RGB;
+impl Format for RGB {
+ const kRIndex: usize = 0;
+ const kGIndex: usize = 1;
+ const kBIndex: usize = 2;
+ const kAIndex: usize = 0xFF;
+}
+
+pub trait GrayFormat {
+ const has_alpha: bool;
+}
+
+pub struct Gray;
+impl GrayFormat for Gray {
+ const has_alpha: bool = false;
+}
+
+pub struct GrayAlpha;
+impl GrayFormat for GrayAlpha {
+ const has_alpha: bool = true;
+}
+
+#[inline]
+fn clamp_u8(v: f32) -> u8 {
+ if v > 255. {
+ 255
+ } else if v < 0. {
+ 0
+ } else {
+ (v + 0.5).floor() as u8
+ }
+}
+
+// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
+// This is just an approximation, I am not handling all the non-linear
+// aspects of the RGB to XYZ process, and assumming that the gamma correction
+// has transitive property in the tranformation chain.
+//
+// the alghoritm:
+//
+// - First I build the absolute conversion matrix using
+// primaries in XYZ. This matrix is next inverted
+// - Then I eval the source white point across this matrix
+// obtaining the coeficients of the transformation
+// - Then, I apply these coeficients to the original matrix
+fn build_RGB_to_XYZ_transfer_matrix(
+ white: qcms_CIE_xyY,
+ primrs: qcms_CIE_xyYTRIPLE,
+) -> Option<Matrix> {
+ let mut primaries: Matrix = Matrix { m: [[0.; 3]; 3] };
+
+ let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
+ let mut white_point: Vector = Vector { v: [0.; 3] };
+
+ let xn: f64 = white.x;
+ let yn: f64 = white.y;
+ if yn == 0.0f64 {
+ return None;
+ }
+
+ let xr: f64 = primrs.red.x;
+ let yr: f64 = primrs.red.y;
+ let xg: f64 = primrs.green.x;
+ let yg: f64 = primrs.green.y;
+ let xb: f64 = primrs.blue.x;
+ let yb: f64 = primrs.blue.y;
+ primaries.m[0][0] = xr as f32;
+ primaries.m[0][1] = xg as f32;
+ primaries.m[0][2] = xb as f32;
+ primaries.m[1][0] = yr as f32;
+ primaries.m[1][1] = yg as f32;
+ primaries.m[1][2] = yb as f32;
+ primaries.m[2][0] = (1f64 - xr - yr) as f32;
+ primaries.m[2][1] = (1f64 - xg - yg) as f32;
+ primaries.m[2][2] = (1f64 - xb - yb) as f32;
+ white_point.v[0] = (xn / yn) as f32;
+ white_point.v[1] = 1.;
+ white_point.v[2] = ((1.0f64 - xn - yn) / yn) as f32;
+ let primaries_invert: Matrix = primaries.invert()?;
+
+ let coefs: Vector = primaries_invert.eval(white_point);
+ result.m[0][0] = (coefs.v[0] as f64 * xr) as f32;
+ result.m[0][1] = (coefs.v[1] as f64 * xg) as f32;
+ result.m[0][2] = (coefs.v[2] as f64 * xb) as f32;
+ result.m[1][0] = (coefs.v[0] as f64 * yr) as f32;
+ result.m[1][1] = (coefs.v[1] as f64 * yg) as f32;
+ result.m[1][2] = (coefs.v[2] as f64 * yb) as f32;
+ result.m[2][0] = (coefs.v[0] as f64 * (1.0f64 - xr - yr)) as f32;
+ result.m[2][1] = (coefs.v[1] as f64 * (1.0f64 - xg - yg)) as f32;
+ result.m[2][2] = (coefs.v[2] as f64 * (1.0f64 - xb - yb)) as f32;
+ Some(result)
+}
+/* CIE Illuminant D50 */
+const D50_XYZ: CIE_XYZ = CIE_XYZ {
+ X: 0.9642f64,
+ Y: 1.0000f64,
+ Z: 0.8249f64,
+};
+/* from lcms: xyY2XYZ()
+ * corresponds to argyll: icmYxy2XYZ() */
+fn xyY2XYZ(source: qcms_CIE_xyY) -> CIE_XYZ {
+ let mut dest: CIE_XYZ = CIE_XYZ {
+ X: 0.,
+ Y: 0.,
+ Z: 0.,
+ };
+ dest.X = source.x / source.y * source.Y;
+ dest.Y = source.Y;
+ dest.Z = (1f64 - source.x - source.y) / source.y * source.Y;
+ dest
+}
+/* from lcms: ComputeChromaticAdaption */
+// Compute chromatic adaption matrix using chad as cone matrix
+fn compute_chromatic_adaption(
+ source_white_point: CIE_XYZ,
+ dest_white_point: CIE_XYZ,
+ chad: Matrix,
+) -> Option<Matrix> {
+ let mut cone_source_XYZ: Vector = Vector { v: [0.; 3] };
+
+ let mut cone_dest_XYZ: Vector = Vector { v: [0.; 3] };
+
+ let mut cone: Matrix = Matrix { m: [[0.; 3]; 3] };
+
+ let chad_inv: Matrix = chad.invert()?;
+ cone_source_XYZ.v[0] = source_white_point.X as f32;
+ cone_source_XYZ.v[1] = source_white_point.Y as f32;
+ cone_source_XYZ.v[2] = source_white_point.Z as f32;
+ cone_dest_XYZ.v[0] = dest_white_point.X as f32;
+ cone_dest_XYZ.v[1] = dest_white_point.Y as f32;
+ cone_dest_XYZ.v[2] = dest_white_point.Z as f32;
+
+ let cone_source_rgb: Vector = chad.eval(cone_source_XYZ);
+ let cone_dest_rgb: Vector = chad.eval(cone_dest_XYZ);
+ cone.m[0][0] = cone_dest_rgb.v[0] / cone_source_rgb.v[0];
+ cone.m[0][1] = 0.;
+ cone.m[0][2] = 0.;
+ cone.m[1][0] = 0.;
+ cone.m[1][1] = cone_dest_rgb.v[1] / cone_source_rgb.v[1];
+ cone.m[1][2] = 0.;
+ cone.m[2][0] = 0.;
+ cone.m[2][1] = 0.;
+ cone.m[2][2] = cone_dest_rgb.v[2] / cone_source_rgb.v[2];
+ // Normalize
+ Some(Matrix::multiply(chad_inv, Matrix::multiply(cone, chad)))
+}
+/* from lcms: cmsAdaptionMatrix */
+// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
+// Bradford is assumed
+fn adaption_matrix(source_illumination: CIE_XYZ, target_illumination: CIE_XYZ) -> Option<Matrix> {
+ let lam_rigg: Matrix = {
+ Matrix {
+ m: [
+ [0.8951, 0.2664, -0.1614],
+ [-0.7502, 1.7135, 0.0367],
+ [0.0389, -0.0685, 1.0296],
+ ],
+ }
+ };
+ compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg)
+}
+/* from lcms: cmsAdaptMatrixToD50 */
+fn adapt_matrix_to_D50(r: Option<Matrix>, source_white_pt: qcms_CIE_xyY) -> Option<Matrix> {
+ if source_white_pt.y == 0.0f64 {
+ return None;
+ }
+
+ let Dn: CIE_XYZ = xyY2XYZ(source_white_pt);
+ let Bradford: Matrix = adaption_matrix(Dn, D50_XYZ)?;
+ Some(Matrix::multiply(Bradford, r?))
+}
+pub(crate) fn set_rgb_colorants(
+ mut profile: &mut Profile,
+ white_point: qcms_CIE_xyY,
+ primaries: qcms_CIE_xyYTRIPLE,
+) -> bool {
+ let colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
+ let colorants = match adapt_matrix_to_D50(colorants, white_point) {
+ Some(colorants) => colorants,
+ None => return false,
+ };
+
+ /* note: there's a transpose type of operation going on here */
+ profile.redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0] as f64);
+ profile.redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0] as f64);
+ profile.redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0] as f64);
+ profile.greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1] as f64);
+ profile.greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1] as f64);
+ profile.greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1] as f64);
+ profile.blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2] as f64);
+ profile.blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2] as f64);
+ profile.blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2] as f64);
+ true
+}
+pub(crate) fn get_rgb_colorants(
+ white_point: qcms_CIE_xyY,
+ primaries: qcms_CIE_xyYTRIPLE,
+) -> Option<Matrix> {
+ let colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
+ adapt_matrix_to_D50(colorants, white_point)
+}
+/* Alpha is not corrected.
+ A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If
+ RGB Is?" Tech Memo 17 (December 14, 1998).
+ See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf
+*/
+unsafe extern "C" fn qcms_transform_data_gray_template_lut<I: GrayFormat, F: Format>(
+ transform: &qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
+ let input_gamma_table_gray = transform.input_gamma_table_gray.as_ref().unwrap();
+
+ let mut i: u32 = 0;
+ while (i as usize) < length {
+ let fresh0 = src;
+ src = src.offset(1);
+ let device: u8 = *fresh0;
+ let mut alpha: u8 = 0xffu8;
+ if I::has_alpha {
+ let fresh1 = src;
+ src = src.offset(1);
+ alpha = *fresh1
+ }
+ let linear: f32 = input_gamma_table_gray[device as usize];
+
+ let out_device_r: f32 = lut_interp_linear(
+ linear as f64,
+ &(*transform).output_gamma_lut_r.as_ref().unwrap(),
+ );
+ let out_device_g: f32 = lut_interp_linear(
+ linear as f64,
+ &(*transform).output_gamma_lut_g.as_ref().unwrap(),
+ );
+ let out_device_b: f32 = lut_interp_linear(
+ linear as f64,
+ &(*transform).output_gamma_lut_b.as_ref().unwrap(),
+ );
+ *dest.add(F::kRIndex) = clamp_u8(out_device_r * 255f32);
+ *dest.add(F::kGIndex) = clamp_u8(out_device_g * 255f32);
+ *dest.add(F::kBIndex) = clamp_u8(out_device_b * 255f32);
+ if F::kAIndex != 0xff {
+ *dest.add(F::kAIndex) = alpha
+ }
+ dest = dest.offset(components as isize);
+ i += 1
+ }
+}
+unsafe fn qcms_transform_data_gray_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_lut::<Gray, RGB>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_gray_rgba_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_lut::<Gray, RGBA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_gray_bgra_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_lut::<Gray, BGRA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_graya_rgba_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_lut::<GrayAlpha, RGBA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_graya_bgra_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_lut::<GrayAlpha, BGRA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_gray_template_precache<I: GrayFormat, F: Format>(
+ transform: *const qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
+ let output_table_r = ((*transform).output_table_r).as_deref().unwrap();
+ let output_table_g = ((*transform).output_table_g).as_deref().unwrap();
+ let output_table_b = ((*transform).output_table_b).as_deref().unwrap();
+
+ let input_gamma_table_gray = (*transform)
+ .input_gamma_table_gray
+ .as_ref()
+ .unwrap()
+ .as_ptr();
+
+ let mut i: u32 = 0;
+ while (i as usize) < length {
+ let fresh2 = src;
+ src = src.offset(1);
+ let device: u8 = *fresh2;
+ let mut alpha: u8 = 0xffu8;
+ if I::has_alpha {
+ let fresh3 = src;
+ src = src.offset(1);
+ alpha = *fresh3
+ }
+
+ let linear: f32 = *input_gamma_table_gray.offset(device as isize);
+ /* we could round here... */
+ let gray: u16 = (linear * PRECACHE_OUTPUT_MAX as f32) as u16;
+ *dest.add(F::kRIndex) = (output_table_r).data[gray as usize];
+ *dest.add(F::kGIndex) = (output_table_g).data[gray as usize];
+ *dest.add(F::kBIndex) = (output_table_b).data[gray as usize];
+ if F::kAIndex != 0xff {
+ *dest.add(F::kAIndex) = alpha
+ }
+ dest = dest.offset(components as isize);
+ i += 1
+ }
+}
+unsafe fn qcms_transform_data_gray_out_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_precache::<Gray, RGB>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_gray_rgba_out_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_precache::<Gray, RGBA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_gray_bgra_out_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_precache::<Gray, BGRA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_graya_rgba_out_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_precache::<GrayAlpha, RGBA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_graya_bgra_out_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_gray_template_precache::<GrayAlpha, BGRA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_template_lut_precache<F: Format>(
+ transform: &qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
+ let output_table_r = ((*transform).output_table_r).as_deref().unwrap();
+ let output_table_g = ((*transform).output_table_g).as_deref().unwrap();
+ let output_table_b = ((*transform).output_table_b).as_deref().unwrap();
+ let input_gamma_table_r = (*transform).input_gamma_table_r.as_ref().unwrap().as_ptr();
+ let input_gamma_table_g = (*transform).input_gamma_table_g.as_ref().unwrap().as_ptr();
+ let input_gamma_table_b = (*transform).input_gamma_table_b.as_ref().unwrap().as_ptr();
+
+ let mat = &transform.matrix;
+ let mut i: u32 = 0;
+ while (i as usize) < length {
+ let device_r: u8 = *src.add(F::kRIndex);
+ let device_g: u8 = *src.add(F::kGIndex);
+ let device_b: u8 = *src.add(F::kBIndex);
+ let mut alpha: u8 = 0;
+ if F::kAIndex != 0xff {
+ alpha = *src.add(F::kAIndex)
+ }
+ src = src.offset(components as isize);
+
+ let linear_r: f32 = *input_gamma_table_r.offset(device_r as isize);
+ let linear_g: f32 = *input_gamma_table_g.offset(device_g as isize);
+ let linear_b: f32 = *input_gamma_table_b.offset(device_b as isize);
+ let mut out_linear_r = mat[0][0] * linear_r + mat[1][0] * linear_g + mat[2][0] * linear_b;
+ let mut out_linear_g = mat[0][1] * linear_r + mat[1][1] * linear_g + mat[2][1] * linear_b;
+ let mut out_linear_b = mat[0][2] * linear_r + mat[1][2] * linear_g + mat[2][2] * linear_b;
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+ /* we could round here... */
+
+ let r: u16 = (out_linear_r * PRECACHE_OUTPUT_MAX as f32) as u16;
+ let g: u16 = (out_linear_g * PRECACHE_OUTPUT_MAX as f32) as u16;
+ let b: u16 = (out_linear_b * PRECACHE_OUTPUT_MAX as f32) as u16;
+ *dest.add(F::kRIndex) = (output_table_r).data[r as usize];
+ *dest.add(F::kGIndex) = (output_table_g).data[g as usize];
+ *dest.add(F::kBIndex) = (output_table_b).data[b as usize];
+ if F::kAIndex != 0xff {
+ *dest.add(F::kAIndex) = alpha
+ }
+ dest = dest.offset(components as isize);
+ i += 1
+ }
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_rgb_out_lut_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut_precache::<RGB>(transform, src, dest, length);
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_rgba_out_lut_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut_precache::<RGBA>(transform, src, dest, length);
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_bgra_out_lut_precache(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut_precache::<BGRA>(transform, src, dest, length);
+}
+// Not used
+/*
+static void qcms_transform_data_clut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
+ unsigned int i;
+ int xy_len = 1;
+ int x_len = transform->grid_size;
+ int len = x_len * x_len;
+ const float* r_table = transform->r_clut;
+ const float* g_table = transform->g_clut;
+ const float* b_table = transform->b_clut;
+
+ for (i = 0; i < length; i++) {
+ unsigned char in_r = *src++;
+ unsigned char in_g = *src++;
+ unsigned char in_b = *src++;
+ float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
+
+ int x = floorf(linear_r * (transform->grid_size-1));
+ int y = floorf(linear_g * (transform->grid_size-1));
+ int z = floorf(linear_b * (transform->grid_size-1));
+ int x_n = ceilf(linear_r * (transform->grid_size-1));
+ int y_n = ceilf(linear_g * (transform->grid_size-1));
+ int z_n = ceilf(linear_b * (transform->grid_size-1));
+ float x_d = linear_r * (transform->grid_size-1) - x;
+ float y_d = linear_g * (transform->grid_size-1) - y;
+ float z_d = linear_b * (transform->grid_size-1) - z;
+
+ float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
+ float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
+ float r_y1 = lerp(r_x1, r_x2, y_d);
+ float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
+ float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
+ float r_y2 = lerp(r_x3, r_x4, y_d);
+ float clut_r = lerp(r_y1, r_y2, z_d);
+
+ float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
+ float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
+ float g_y1 = lerp(g_x1, g_x2, y_d);
+ float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
+ float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
+ float g_y2 = lerp(g_x3, g_x4, y_d);
+ float clut_g = lerp(g_y1, g_y2, z_d);
+
+ float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
+ float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
+ float b_y1 = lerp(b_x1, b_x2, y_d);
+ float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
+ float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
+ float b_y2 = lerp(b_x3, b_x4, y_d);
+ float clut_b = lerp(b_y1, b_y2, z_d);
+
+ *dest++ = clamp_u8(clut_r*255.0f);
+ *dest++ = clamp_u8(clut_g*255.0f);
+ *dest++ = clamp_u8(clut_b*255.0f);
+ }
+}
+*/
+fn int_div_ceil(value: i32, div: i32) -> i32 {
+ (value + div - 1) / div
+}
+// Using lcms' tetra interpolation algorithm.
+unsafe extern "C" fn qcms_transform_data_tetra_clut_template<F: Format>(
+ transform: *const qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
+
+ let xy_len: i32 = 1;
+ let x_len: i32 = (*transform).grid_size as i32;
+ let len: i32 = x_len * x_len;
+ let table = (*transform).clut.as_ref().unwrap().as_ptr();
+ let r_table: *const f32 = table;
+ let g_table: *const f32 = table.offset(1);
+ let b_table: *const f32 = table.offset(2);
+
+ let mut i: u32 = 0;
+ while (i as usize) < length {
+ let c0_r: f32;
+ let c1_r: f32;
+ let c2_r: f32;
+ let c3_r: f32;
+ let c0_g: f32;
+ let c1_g: f32;
+ let c2_g: f32;
+ let c3_g: f32;
+ let c0_b: f32;
+ let c1_b: f32;
+ let c2_b: f32;
+ let c3_b: f32;
+ let in_r: u8 = *src.add(F::kRIndex);
+ let in_g: u8 = *src.add(F::kGIndex);
+ let in_b: u8 = *src.add(F::kBIndex);
+ let mut in_a: u8 = 0;
+ if F::kAIndex != 0xff {
+ in_a = *src.add(F::kAIndex)
+ }
+ src = src.offset(components as isize);
+ let linear_r: f32 = in_r as i32 as f32 / 255.0;
+ let linear_g: f32 = in_g as i32 as f32 / 255.0;
+ let linear_b: f32 = in_b as i32 as f32 / 255.0;
+ let x: i32 = in_r as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let y: i32 = in_g as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let z: i32 = in_b as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let x_n: i32 = int_div_ceil(in_r as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let y_n: i32 = int_div_ceil(in_g as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let z_n: i32 = int_div_ceil(in_b as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let rx: f32 = linear_r * ((*transform).grid_size as i32 - 1) as f32 - x as f32;
+ let ry: f32 = linear_g * ((*transform).grid_size as i32 - 1) as f32 - y as f32;
+ let rz: f32 = linear_b * ((*transform).grid_size as i32 - 1) as f32 - z as f32;
+ let CLU = |table: *const f32, x, y, z| {
+ *table.offset(((x * len + y * x_len + z * xy_len) * 3) as isize)
+ };
+
+ c0_r = CLU(r_table, x, y, z);
+ c0_g = CLU(g_table, x, y, z);
+ c0_b = CLU(b_table, x, y, z);
+ if rx >= ry {
+ if ry >= rz {
+ //rx >= ry && ry >= rz
+ c1_r = CLU(r_table, x_n, y, z) - c0_r;
+ c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+ c1_g = CLU(g_table, x_n, y, z) - c0_g;
+ c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+ c1_b = CLU(b_table, x_n, y, z) - c0_b;
+ c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+ } else if rx >= rz {
+ //rx >= rz && rz >= ry
+ c1_r = CLU(r_table, x_n, y, z) - c0_r;
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+ c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
+ c1_g = CLU(g_table, x_n, y, z) - c0_g;
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+ c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
+ c1_b = CLU(b_table, x_n, y, z) - c0_b;
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+ c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
+ } else {
+ //rz > rx && rx >= ry
+ c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+ c3_r = CLU(r_table, x, y, z_n) - c0_r;
+ c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+ c3_g = CLU(g_table, x, y, z_n) - c0_g;
+ c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+ c3_b = CLU(b_table, x, y, z_n) - c0_b;
+ }
+ } else if rx >= rz {
+ //ry > rx && rx >= rz
+ c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
+ c2_r = CLU(r_table, x, y_n, z) - c0_r;
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+ c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
+ c2_g = CLU(g_table, x, y_n, z) - c0_g;
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+ c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
+ c2_b = CLU(b_table, x, y_n, z) - c0_b;
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+ } else if ry >= rz {
+ //ry >= rz && rz > rx
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+ c2_r = CLU(r_table, x, y_n, z) - c0_r;
+ c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+ c2_g = CLU(g_table, x, y_n, z) - c0_g;
+ c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+ c2_b = CLU(b_table, x, y_n, z) - c0_b;
+ c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
+ } else {
+ //rz > ry && ry > rx
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+ c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
+ c3_r = CLU(r_table, x, y, z_n) - c0_r;
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+ c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
+ c3_g = CLU(g_table, x, y, z_n) - c0_g;
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+ c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
+ c3_b = CLU(b_table, x, y, z_n) - c0_b;
+ }
+ let clut_r = c0_r + c1_r * rx + c2_r * ry + c3_r * rz;
+ let clut_g = c0_g + c1_g * rx + c2_g * ry + c3_g * rz;
+ let clut_b = c0_b + c1_b * rx + c2_b * ry + c3_b * rz;
+ *dest.add(F::kRIndex) = clamp_u8(clut_r * 255.0);
+ *dest.add(F::kGIndex) = clamp_u8(clut_g * 255.0);
+ *dest.add(F::kBIndex) = clamp_u8(clut_b * 255.0);
+ if F::kAIndex != 0xff {
+ *dest.add(F::kAIndex) = in_a
+ }
+ dest = dest.offset(components as isize);
+ i += 1
+ }
+}
+
+unsafe fn tetra(
+ transform: &qcms_transform,
+ table: *const f32,
+ in_r: u8,
+ in_g: u8,
+ in_b: u8,
+) -> (f32, f32, f32) {
+ let r_table: *const f32 = table;
+ let g_table: *const f32 = table.offset(1);
+ let b_table: *const f32 = table.offset(2);
+ let linear_r: f32 = in_r as i32 as f32 / 255.0;
+ let linear_g: f32 = in_g as i32 as f32 / 255.0;
+ let linear_b: f32 = in_b as i32 as f32 / 255.0;
+ let xy_len: i32 = 1;
+ let x_len: i32 = (*transform).grid_size as i32;
+ let len: i32 = x_len * x_len;
+ let x: i32 = in_r as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let y: i32 = in_g as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let z: i32 = in_b as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let x_n: i32 = int_div_ceil(in_r as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let y_n: i32 = int_div_ceil(in_g as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let z_n: i32 = int_div_ceil(in_b as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let rx: f32 = linear_r * ((*transform).grid_size as i32 - 1) as f32 - x as f32;
+ let ry: f32 = linear_g * ((*transform).grid_size as i32 - 1) as f32 - y as f32;
+ let rz: f32 = linear_b * ((*transform).grid_size as i32 - 1) as f32 - z as f32;
+ let CLU = |table: *const f32, x, y, z| {
+ *table.offset(((x * len + y * x_len + z * xy_len) * 3) as isize)
+ };
+ let c0_r: f32;
+ let c1_r: f32;
+ let c2_r: f32;
+ let c3_r: f32;
+ let c0_g: f32;
+ let c1_g: f32;
+ let c2_g: f32;
+ let c3_g: f32;
+ let c0_b: f32;
+ let c1_b: f32;
+ let c2_b: f32;
+ let c3_b: f32;
+ c0_r = CLU(r_table, x, y, z);
+ c0_g = CLU(g_table, x, y, z);
+ c0_b = CLU(b_table, x, y, z);
+ if rx >= ry {
+ if ry >= rz {
+ //rx >= ry && ry >= rz
+ c1_r = CLU(r_table, x_n, y, z) - c0_r;
+ c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+ c1_g = CLU(g_table, x_n, y, z) - c0_g;
+ c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+ c1_b = CLU(b_table, x_n, y, z) - c0_b;
+ c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+ } else if rx >= rz {
+ //rx >= rz && rz >= ry
+ c1_r = CLU(r_table, x_n, y, z) - c0_r;
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+ c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
+ c1_g = CLU(g_table, x_n, y, z) - c0_g;
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+ c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
+ c1_b = CLU(b_table, x_n, y, z) - c0_b;
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+ c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
+ } else {
+ //rz > rx && rx >= ry
+ c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
+ c3_r = CLU(r_table, x, y, z_n) - c0_r;
+ c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
+ c3_g = CLU(g_table, x, y, z_n) - c0_g;
+ c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
+ c3_b = CLU(b_table, x, y, z_n) - c0_b;
+ }
+ } else if rx >= rz {
+ //ry > rx && rx >= rz
+ c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
+ c2_r = CLU(r_table, x, y_n, z) - c0_r;
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
+ c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
+ c2_g = CLU(g_table, x, y_n, z) - c0_g;
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
+ c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
+ c2_b = CLU(b_table, x, y_n, z) - c0_b;
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
+ } else if ry >= rz {
+ //ry >= rz && rz > rx
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+ c2_r = CLU(r_table, x, y_n, z) - c0_r;
+ c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+ c2_g = CLU(g_table, x, y_n, z) - c0_g;
+ c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+ c2_b = CLU(b_table, x, y_n, z) - c0_b;
+ c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
+ } else {
+ //rz > ry && ry > rx
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
+ c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
+ c3_r = CLU(r_table, x, y, z_n) - c0_r;
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
+ c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
+ c3_g = CLU(g_table, x, y, z_n) - c0_g;
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
+ c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
+ c3_b = CLU(b_table, x, y, z_n) - c0_b;
+ }
+ let clut_r = c0_r + c1_r * rx + c2_r * ry + c3_r * rz;
+ let clut_g = c0_g + c1_g * rx + c2_g * ry + c3_g * rz;
+ let clut_b = c0_b + c1_b * rx + c2_b * ry + c3_b * rz;
+ (clut_r, clut_g, clut_b)
+}
+
+#[inline]
+fn lerp(a: f32, b: f32, t: f32) -> f32 {
+ a * (1.0 - t) + b * t
+}
+
+// lerp between two tetrahedral interpolations
+// See lcms:Eval4InputsFloat
+#[allow(clippy::many_single_char_names)]
+unsafe fn qcms_transform_data_tetra_clut_cmyk(
+ transform: &qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let table = (*transform).clut.as_ref().unwrap().as_ptr();
+ assert!(
+ (*transform).clut.as_ref().unwrap().len()
+ >= ((transform.grid_size as i32).pow(4) * 3) as usize
+ );
+ for _ in 0..length {
+ let c: u8 = *src.add(0);
+ let m: u8 = *src.add(1);
+ let y: u8 = *src.add(2);
+ let k: u8 = *src.add(3);
+ src = src.offset(4);
+ let linear_k: f32 = k as i32 as f32 / 255.0;
+ let grid_size = (*transform).grid_size as i32;
+ let w: i32 = k as i32 * ((*transform).grid_size as i32 - 1) / 255;
+ let w_n: i32 = int_div_ceil(k as i32 * ((*transform).grid_size as i32 - 1), 255);
+ let t: f32 = linear_k * ((*transform).grid_size as i32 - 1) as f32 - w as f32;
+
+ let table1 = table.offset((w * grid_size * grid_size * grid_size * 3) as isize);
+ let table2 = table.offset((w_n * grid_size * grid_size * grid_size * 3) as isize);
+
+ let (r1, g1, b1) = tetra(transform, table1, c, m, y);
+ let (r2, g2, b2) = tetra(transform, table2, c, m, y);
+ let r = lerp(r1, r2, t);
+ let g = lerp(g1, g2, t);
+ let b = lerp(b1, b2, t);
+ *dest.add(0) = clamp_u8(r * 255.0);
+ *dest.add(1) = clamp_u8(g * 255.0);
+ *dest.add(2) = clamp_u8(b * 255.0);
+ dest = dest.offset(3);
+ }
+}
+
+unsafe fn qcms_transform_data_tetra_clut_rgb(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_tetra_clut_template::<RGB>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_tetra_clut_rgba(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_tetra_clut_template::<RGBA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_tetra_clut_bgra(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_tetra_clut_template::<BGRA>(transform, src, dest, length);
+}
+unsafe fn qcms_transform_data_template_lut<F: Format>(
+ transform: &qcms_transform,
+ mut src: *const u8,
+ mut dest: *mut u8,
+ length: usize,
+) {
+ let components: u32 = if F::kAIndex == 0xff { 3 } else { 4 } as u32;
+
+ let mat = &transform.matrix;
+ let mut i: u32 = 0;
+ let input_gamma_table_r = (*transform).input_gamma_table_r.as_ref().unwrap().as_ptr();
+ let input_gamma_table_g = (*transform).input_gamma_table_g.as_ref().unwrap().as_ptr();
+ let input_gamma_table_b = (*transform).input_gamma_table_b.as_ref().unwrap().as_ptr();
+ while (i as usize) < length {
+ let device_r: u8 = *src.add(F::kRIndex);
+ let device_g: u8 = *src.add(F::kGIndex);
+ let device_b: u8 = *src.add(F::kBIndex);
+ let mut alpha: u8 = 0;
+ if F::kAIndex != 0xff {
+ alpha = *src.add(F::kAIndex)
+ }
+ src = src.offset(components as isize);
+
+ let linear_r: f32 = *input_gamma_table_r.offset(device_r as isize);
+ let linear_g: f32 = *input_gamma_table_g.offset(device_g as isize);
+ let linear_b: f32 = *input_gamma_table_b.offset(device_b as isize);
+ let mut out_linear_r = mat[0][0] * linear_r + mat[1][0] * linear_g + mat[2][0] * linear_b;
+ let mut out_linear_g = mat[0][1] * linear_r + mat[1][1] * linear_g + mat[2][1] * linear_b;
+ let mut out_linear_b = mat[0][2] * linear_r + mat[1][2] * linear_g + mat[2][2] * linear_b;
+ out_linear_r = clamp_float(out_linear_r);
+ out_linear_g = clamp_float(out_linear_g);
+ out_linear_b = clamp_float(out_linear_b);
+
+ let out_device_r: f32 = lut_interp_linear(
+ out_linear_r as f64,
+ &(*transform).output_gamma_lut_r.as_ref().unwrap(),
+ );
+ let out_device_g: f32 = lut_interp_linear(
+ out_linear_g as f64,
+ (*transform).output_gamma_lut_g.as_ref().unwrap(),
+ );
+ let out_device_b: f32 = lut_interp_linear(
+ out_linear_b as f64,
+ (*transform).output_gamma_lut_b.as_ref().unwrap(),
+ );
+ *dest.add(F::kRIndex) = clamp_u8(out_device_r * 255f32);
+ *dest.add(F::kGIndex) = clamp_u8(out_device_g * 255f32);
+ *dest.add(F::kBIndex) = clamp_u8(out_device_b * 255f32);
+ if F::kAIndex != 0xff {
+ *dest.add(F::kAIndex) = alpha
+ }
+ dest = dest.offset(components as isize);
+ i += 1
+ }
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_rgb_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut::<RGB>(transform, src, dest, length);
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_rgba_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut::<RGBA>(transform, src, dest, length);
+}
+#[no_mangle]
+pub unsafe fn qcms_transform_data_bgra_out_lut(
+ transform: &qcms_transform,
+ src: *const u8,
+ dest: *mut u8,
+ length: usize,
+) {
+ qcms_transform_data_template_lut::<BGRA>(transform, src, dest, length);
+}
+
+fn precache_create() -> Arc<PrecacheOuput> {
+ Arc::new(PrecacheOuput::default())
+}
+
+#[no_mangle]
+pub unsafe extern "C" fn qcms_transform_release(t: *mut qcms_transform) {
+ drop(Box::from_raw(t));
+}
+
+const bradford_matrix: Matrix = Matrix {
+ m: [
+ [0.8951, 0.2664, -0.1614],
+ [-0.7502, 1.7135, 0.0367],
+ [0.0389, -0.0685, 1.0296],
+ ],
+};
+
+const bradford_matrix_inv: Matrix = Matrix {
+ m: [
+ [0.9869929, -0.1470543, 0.1599627],
+ [0.4323053, 0.5183603, 0.0492912],
+ [-0.0085287, 0.0400428, 0.9684867],
+ ],
+};
+
+// See ICCv4 E.3
+fn compute_whitepoint_adaption(X: f32, Y: f32, Z: f32) -> Matrix {
+ let p: f32 = (0.96422 * bradford_matrix.m[0][0]
+ + 1.000 * bradford_matrix.m[1][0]
+ + 0.82521 * bradford_matrix.m[2][0])
+ / (X * bradford_matrix.m[0][0] + Y * bradford_matrix.m[1][0] + Z * bradford_matrix.m[2][0]);
+ let y: f32 = (0.96422 * bradford_matrix.m[0][1]
+ + 1.000 * bradford_matrix.m[1][1]
+ + 0.82521 * bradford_matrix.m[2][1])
+ / (X * bradford_matrix.m[0][1] + Y * bradford_matrix.m[1][1] + Z * bradford_matrix.m[2][1]);
+ let b: f32 = (0.96422 * bradford_matrix.m[0][2]
+ + 1.000 * bradford_matrix.m[1][2]
+ + 0.82521 * bradford_matrix.m[2][2])
+ / (X * bradford_matrix.m[0][2] + Y * bradford_matrix.m[1][2] + Z * bradford_matrix.m[2][2]);
+ let white_adaption = Matrix {
+ m: [[p, 0., 0.], [0., y, 0.], [0., 0., b]],
+ };
+ Matrix::multiply(
+ bradford_matrix_inv,
+ Matrix::multiply(white_adaption, bradford_matrix),
+ )
+}
+#[no_mangle]
+pub extern "C" fn qcms_profile_precache_output_transform(mut profile: &mut Profile) {
+ /* we only support precaching on rgb profiles */
+ if profile.color_space != RGB_SIGNATURE {
+ return;
+ }
+ if SUPPORTS_ICCV4.load(Ordering::Relaxed) {
+ /* don't precache since we will use the B2A LUT */
+ if profile.B2A0.is_some() {
+ return;
+ }
+ /* don't precache since we will use the mBA LUT */
+ if profile.mBA.is_some() {
+ return;
+ }
+ }
+ /* don't precache if we do not have the TRC curves */
+ if profile.redTRC.is_none() || profile.greenTRC.is_none() || profile.blueTRC.is_none() {
+ return;
+ }
+ if profile.output_table_r.is_none() {
+ let mut output_table_r = precache_create();
+ if compute_precache(
+ profile.redTRC.as_deref().unwrap(),
+ &mut Arc::get_mut(&mut output_table_r).unwrap().data,
+ ) {
+ profile.output_table_r = Some(output_table_r);
+ }
+ }
+ if profile.output_table_g.is_none() {
+ let mut output_table_g = precache_create();
+ if compute_precache(
+ profile.greenTRC.as_deref().unwrap(),
+ &mut Arc::get_mut(&mut output_table_g).unwrap().data,
+ ) {
+ profile.output_table_g = Some(output_table_g);
+ }
+ }
+ if profile.output_table_b.is_none() {
+ let mut output_table_b = precache_create();
+ if compute_precache(
+ profile.blueTRC.as_deref().unwrap(),
+ &mut Arc::get_mut(&mut output_table_b).unwrap().data,
+ ) {
+ profile.output_table_b = Some(output_table_b);
+ }
+ };
+}
+/* Replace the current transformation with a LUT transformation using a given number of sample points */
+fn transform_precacheLUT_float(
+ mut transform: Box<qcms_transform>,
+ input: &Profile,
+ output: &Profile,
+ samples: i32,
+ in_type: DataType,
+) -> Option<Box<qcms_transform>> {
+ /* The range between which 2 consecutive sample points can be used to interpolate */
+ let lutSize: u32 = (3 * samples * samples * samples) as u32;
+
+ let mut src = Vec::with_capacity(lutSize as usize);
+ let dest = vec![0.; lutSize as usize];
+ /* Prepare a list of points we want to sample */
+ for x in 0..samples {
+ for y in 0..samples {
+ for z in 0..samples {
+ src.push(x as f32 / (samples - 1) as f32);
+ src.push(y as f32 / (samples - 1) as f32);
+ src.push(z as f32 / (samples - 1) as f32);
+ }
+ }
+ }
+ let lut = chain_transform(input, output, src, dest, lutSize as usize);
+ if let Some(lut) = lut {
+ (*transform).clut = Some(lut);
+ (*transform).grid_size = samples as u16;
+ if in_type == RGBA8 {
+ (*transform).transform_fn = Some(qcms_transform_data_tetra_clut_rgba)
+ } else if in_type == BGRA8 {
+ (*transform).transform_fn = Some(qcms_transform_data_tetra_clut_bgra)
+ } else if in_type == RGB8 {
+ (*transform).transform_fn = Some(qcms_transform_data_tetra_clut_rgb)
+ }
+ debug_assert!((*transform).transform_fn.is_some());
+ } else {
+ return None;
+ }
+
+ Some(transform)
+}
+
+fn transform_precacheLUT_cmyk_float(
+ mut transform: Box<qcms_transform>,
+ input: &Profile,
+ output: &Profile,
+ samples: i32,
+ in_type: DataType,
+) -> Option<Box<qcms_transform>> {
+ /* The range between which 2 consecutive sample points can be used to interpolate */
+ let lutSize: u32 = (4 * samples * samples * samples * samples) as u32;
+
+ let mut src = Vec::with_capacity(lutSize as usize);
+ let dest = vec![0.; lutSize as usize];
+ /* Prepare a list of points we want to sample */
+ for k in 0..samples {
+ for c in 0..samples {
+ for m in 0..samples {
+ for y in 0..samples {
+ src.push(c as f32 / (samples - 1) as f32);
+ src.push(m as f32 / (samples - 1) as f32);
+ src.push(y as f32 / (samples - 1) as f32);
+ src.push(k as f32 / (samples - 1) as f32);
+ }
+ }
+ }
+ }
+ let lut = chain_transform(input, output, src, dest, lutSize as usize);
+ if let Some(lut) = lut {
+ transform.clut = Some(lut);
+ transform.grid_size = samples as u16;
+ assert!(in_type == DataType::CMYK);
+ transform.transform_fn = Some(qcms_transform_data_tetra_clut_cmyk)
+ } else {
+ return None;
+ }
+
+ Some(transform)
+}
+
+pub fn transform_create(
+ input: &Profile,
+ in_type: DataType,
+ output: &Profile,
+ out_type: DataType,
+ _intent: Intent,
+) -> Option<Box<qcms_transform>> {
+ // Ensure the requested input and output types make sense.
+ let matching_format = match (in_type, out_type) {
+ (RGB8, RGB8) => true,
+ (RGBA8, RGBA8) => true,
+ (BGRA8, BGRA8) => true,
+ (Gray8, out_type) => matches!(out_type, RGB8 | RGBA8 | BGRA8),
+ (GrayA8, out_type) => matches!(out_type, RGBA8 | BGRA8),
+ (CMYK, RGB8) => true,
+ _ => false,
+ };
+ if !matching_format {
+ debug_assert!(false, "input/output type");
+ return None;
+ }
+ let mut transform: Box<qcms_transform> = Box::new(Default::default());
+ let mut precache: bool = false;
+ if output.output_table_r.is_some()
+ && output.output_table_g.is_some()
+ && output.output_table_b.is_some()
+ {
+ precache = true
+ }
+ // This precache assumes RGB_SIGNATURE (fails on GRAY_SIGNATURE, for instance)
+ if SUPPORTS_ICCV4.load(Ordering::Relaxed)
+ && (in_type == RGB8 || in_type == RGBA8 || in_type == BGRA8 || in_type == CMYK)
+ && (input.A2B0.is_some()
+ || output.B2A0.is_some()
+ || input.mAB.is_some()
+ || output.mAB.is_some())
+ {
+ if in_type == CMYK {
+ return transform_precacheLUT_cmyk_float(transform, input, output, 17, in_type);
+ }
+ // Precache the transformation to a CLUT 33x33x33 in size.
+ // 33 is used by many profiles and works well in pratice.
+ // This evenly divides 256 into blocks of 8x8x8.
+ // TODO For transforming small data sets of about 200x200 or less
+ // precaching should be avoided.
+ let result = transform_precacheLUT_float(transform, input, output, 33, in_type);
+ debug_assert!(result.is_some(), "precacheLUT failed");
+ return result;
+ }
+ if precache {
+ transform.output_table_r = Some(Arc::clone(output.output_table_r.as_ref().unwrap()));
+ transform.output_table_g = Some(Arc::clone(output.output_table_g.as_ref().unwrap()));
+ transform.output_table_b = Some(Arc::clone(output.output_table_b.as_ref().unwrap()));
+ } else {
+ if output.redTRC.is_none() || output.greenTRC.is_none() || output.blueTRC.is_none() {
+ return None;
+ }
+ transform.output_gamma_lut_r = build_output_lut(output.redTRC.as_deref().unwrap());
+ transform.output_gamma_lut_g = build_output_lut(output.greenTRC.as_deref().unwrap());
+ transform.output_gamma_lut_b = build_output_lut(output.blueTRC.as_deref().unwrap());
+
+ if transform.output_gamma_lut_r.is_none()
+ || transform.output_gamma_lut_g.is_none()
+ || transform.output_gamma_lut_b.is_none()
+ {
+ return None;
+ }
+ }
+ if input.color_space == RGB_SIGNATURE {
+ if precache {
+ #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
+ if is_x86_feature_detected!("avx") {
+ if in_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_rgb_out_lut_avx)
+ } else if in_type == RGBA8 {
+ transform.transform_fn = Some(qcms_transform_data_rgba_out_lut_avx)
+ } else if in_type == BGRA8 {
+ transform.transform_fn = Some(qcms_transform_data_bgra_out_lut_avx)
+ }
+ } else if cfg!(not(miri)) && is_x86_feature_detected!("sse2") {
+ if in_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_rgb_out_lut_sse2)
+ } else if in_type == RGBA8 {
+ transform.transform_fn = Some(qcms_transform_data_rgba_out_lut_sse2)
+ } else if in_type == BGRA8 {
+ transform.transform_fn = Some(qcms_transform_data_bgra_out_lut_sse2)
+ }
+ }
+
+ #[cfg(all(target_arch = "arm", feature = "neon"))]
+ let neon_supported = is_arm_feature_detected!("neon");
+ #[cfg(all(target_arch = "aarch64", feature = "neon"))]
+ let neon_supported = is_aarch64_feature_detected!("neon");
+
+ #[cfg(all(any(target_arch = "arm", target_arch = "aarch64"), feature = "neon"))]
+ if neon_supported {
+ if in_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_rgb_out_lut_neon)
+ } else if in_type == RGBA8 {
+ transform.transform_fn = Some(qcms_transform_data_rgba_out_lut_neon)
+ } else if in_type == BGRA8 {
+ transform.transform_fn = Some(qcms_transform_data_bgra_out_lut_neon)
+ }
+ }
+
+ if transform.transform_fn.is_none() {
+ if in_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_rgb_out_lut_precache)
+ } else if in_type == RGBA8 {
+ transform.transform_fn = Some(qcms_transform_data_rgba_out_lut_precache)
+ } else if in_type == BGRA8 {
+ transform.transform_fn = Some(qcms_transform_data_bgra_out_lut_precache)
+ }
+ }
+ } else if in_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_rgb_out_lut)
+ } else if in_type == RGBA8 {
+ transform.transform_fn = Some(qcms_transform_data_rgba_out_lut)
+ } else if in_type == BGRA8 {
+ transform.transform_fn = Some(qcms_transform_data_bgra_out_lut)
+ }
+ //XXX: avoid duplicating tables if we can
+ transform.input_gamma_table_r = build_input_gamma_table(input.redTRC.as_deref());
+ transform.input_gamma_table_g = build_input_gamma_table(input.greenTRC.as_deref());
+ transform.input_gamma_table_b = build_input_gamma_table(input.blueTRC.as_deref());
+ if transform.input_gamma_table_r.is_none()
+ || transform.input_gamma_table_g.is_none()
+ || transform.input_gamma_table_b.is_none()
+ {
+ return None;
+ }
+ /* build combined colorant matrix */
+
+ let in_matrix: Matrix = build_colorant_matrix(input);
+ let mut out_matrix: Matrix = build_colorant_matrix(output);
+ out_matrix = out_matrix.invert()?;
+
+ let result_0: Matrix = Matrix::multiply(out_matrix, in_matrix);
+ /* check for NaN values in the matrix and bail if we find any */
+ let mut i: u32 = 0;
+ while i < 3 {
+ let mut j: u32 = 0;
+ while j < 3 {
+ #[allow(clippy::eq_op, clippy::float_cmp)]
+ if result_0.m[i as usize][j as usize].is_nan() {
+ return None;
+ }
+ j += 1
+ }
+ i += 1
+ }
+ /* store the results in column major mode
+ * this makes doing the multiplication with sse easier */
+ transform.matrix[0][0] = result_0.m[0][0];
+ transform.matrix[1][0] = result_0.m[0][1];
+ transform.matrix[2][0] = result_0.m[0][2];
+ transform.matrix[0][1] = result_0.m[1][0];
+ transform.matrix[1][1] = result_0.m[1][1];
+ transform.matrix[2][1] = result_0.m[1][2];
+ transform.matrix[0][2] = result_0.m[2][0];
+ transform.matrix[1][2] = result_0.m[2][1];
+ transform.matrix[2][2] = result_0.m[2][2]
+ } else if input.color_space == GRAY_SIGNATURE {
+ transform.input_gamma_table_gray = build_input_gamma_table(input.grayTRC.as_deref());
+ transform.input_gamma_table_gray.as_ref()?;
+ if precache {
+ if out_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_out_precache)
+ } else if out_type == RGBA8 {
+ if in_type == Gray8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_rgba_out_precache)
+ } else {
+ transform.transform_fn = Some(qcms_transform_data_graya_rgba_out_precache)
+ }
+ } else if out_type == BGRA8 {
+ if in_type == Gray8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_bgra_out_precache)
+ } else {
+ transform.transform_fn = Some(qcms_transform_data_graya_bgra_out_precache)
+ }
+ }
+ } else if out_type == RGB8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_out_lut)
+ } else if out_type == RGBA8 {
+ if in_type == Gray8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_rgba_out_lut)
+ } else {
+ transform.transform_fn = Some(qcms_transform_data_graya_rgba_out_lut)
+ }
+ } else if out_type == BGRA8 {
+ if in_type == Gray8 {
+ transform.transform_fn = Some(qcms_transform_data_gray_bgra_out_lut)
+ } else {
+ transform.transform_fn = Some(qcms_transform_data_graya_bgra_out_lut)
+ }
+ }
+ } else {
+ debug_assert!(false, "unexpected colorspace");
+ return None;
+ }
+ debug_assert!(transform.transform_fn.is_some());
+ Some(transform)
+}
+/// A transform from an input profile to an output one.
+pub struct Transform {
+ src_ty: DataType,
+ dst_ty: DataType,
+ xfm: Box<qcms_transform>,
+}
+
+impl Transform {
+ /// Create a new transform from `input` to `output` for pixels of `DataType` `ty` with `intent`
+ pub fn new(input: &Profile, output: &Profile, ty: DataType, intent: Intent) -> Option<Self> {
+ transform_create(input, ty, output, ty, intent).map(|xfm| Transform {
+ src_ty: ty,
+ dst_ty: ty,
+ xfm,
+ })
+ }
+
+ /// Create a new transform from `input` to `output` for pixels of `DataType` `ty` with `intent`
+ pub fn new_to(
+ input: &Profile,
+ output: &Profile,
+ src_ty: DataType,
+ dst_ty: DataType,
+ intent: Intent,
+ ) -> Option<Self> {
+ transform_create(input, src_ty, output, dst_ty, intent).map(|xfm| Transform {
+ src_ty,
+ dst_ty,
+ xfm,
+ })
+ }
+
+ /// Apply the color space transform to `data`
+ pub fn apply(&self, data: &mut [u8]) {
+ if data.len() % self.src_ty.bytes_per_pixel() != 0 {
+ panic!(
+ "incomplete pixels: should be a multiple of {} got {}",
+ self.src_ty.bytes_per_pixel(),
+ data.len()
+ )
+ }
+ unsafe {
+ self.xfm.transform_fn.expect("non-null function pointer")(
+ &*self.xfm,
+ data.as_ptr(),
+ data.as_mut_ptr(),
+ data.len() / self.src_ty.bytes_per_pixel(),
+ );
+ }
+ }
+
+ /// Apply the color space transform to `data`
+ pub fn convert(&self, src: &[u8], dst: &mut [u8]) {
+ if src.len() % self.src_ty.bytes_per_pixel() != 0 {
+ panic!(
+ "incomplete pixels: should be a multiple of {} got {}",
+ self.src_ty.bytes_per_pixel(),
+ src.len()
+ )
+ }
+ if dst.len() % self.dst_ty.bytes_per_pixel() != 0 {
+ panic!(
+ "incomplete pixels: should be a multiple of {} got {}",
+ self.dst_ty.bytes_per_pixel(),
+ dst.len()
+ )
+ }
+ assert_eq!(
+ src.len() / self.src_ty.bytes_per_pixel(),
+ dst.len() / self.dst_ty.bytes_per_pixel()
+ );
+ unsafe {
+ self.xfm.transform_fn.expect("non-null function pointer")(
+ &*self.xfm,
+ src.as_ptr(),
+ dst.as_mut_ptr(),
+ src.len() / self.src_ty.bytes_per_pixel(),
+ );
+ }
+ }
+}
+
+#[no_mangle]
+pub extern "C" fn qcms_enable_iccv4() {
+ SUPPORTS_ICCV4.store(true, Ordering::Relaxed);
+}