summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/include/private/base/SkTArray.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/include/private/base/SkTArray.h')
-rw-r--r--gfx/skia/skia/include/private/base/SkTArray.h696
1 files changed, 696 insertions, 0 deletions
diff --git a/gfx/skia/skia/include/private/base/SkTArray.h b/gfx/skia/skia/include/private/base/SkTArray.h
new file mode 100644
index 0000000000..635d04e2a8
--- /dev/null
+++ b/gfx/skia/skia/include/private/base/SkTArray.h
@@ -0,0 +1,696 @@
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkTArray_DEFINED
+#define SkTArray_DEFINED
+
+#include "include/private/base/SkAlignedStorage.h"
+#include "include/private/base/SkAssert.h"
+#include "include/private/base/SkAttributes.h"
+#include "include/private/base/SkContainers.h"
+#include "include/private/base/SkMalloc.h"
+#include "include/private/base/SkMath.h"
+#include "include/private/base/SkSpan_impl.h"
+#include "include/private/base/SkTo.h"
+#include "include/private/base/SkTypeTraits.h" // IWYU pragma: keep
+
+#include <algorithm>
+#include <climits>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <initializer_list>
+#include <new>
+#include <utility>
+
+namespace skia_private {
+/** TArray<T> implements a typical, mostly std::vector-like array.
+ Each T will be default-initialized on allocation, and ~T will be called on destruction.
+
+ MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized)
+ - true: T will be bit-copied via memcpy.
+ - false: T will be moved via move-constructors.
+*/
+template <typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>> class TArray {
+public:
+ using value_type = T;
+
+ /**
+ * Creates an empty array with no initial storage
+ */
+ TArray() : fOwnMemory(true), fCapacity{0} {}
+
+ /**
+ * Creates an empty array that will preallocate space for reserveCount
+ * elements.
+ */
+ explicit TArray(int reserveCount) : TArray() { this->reserve_back(reserveCount); }
+
+ /**
+ * Copies one array to another. The new array will be heap allocated.
+ */
+ TArray(const TArray& that) : TArray(that.fData, that.fSize) {}
+
+ TArray(TArray&& that) {
+ if (that.fOwnMemory) {
+ this->setData(that);
+ that.setData({});
+ } else {
+ this->initData(that.fSize);
+ that.move(fData);
+ }
+ fSize = std::exchange(that.fSize, 0);
+ }
+
+ /**
+ * Creates a TArray by copying contents of a standard C array. The new
+ * array will be heap allocated. Be careful not to use this constructor
+ * when you really want the (void*, int) version.
+ */
+ TArray(const T* array, int count) {
+ this->initData(count);
+ this->copy(array);
+ }
+
+ /**
+ * Creates a TArray by copying contents of an initializer list.
+ */
+ TArray(std::initializer_list<T> data) : TArray(data.begin(), data.size()) {}
+
+ TArray& operator=(const TArray& that) {
+ if (this == &that) {
+ return *this;
+ }
+ this->clear();
+ this->checkRealloc(that.size(), kExactFit);
+ fSize = that.fSize;
+ this->copy(that.fData);
+ return *this;
+ }
+ TArray& operator=(TArray&& that) {
+ if (this != &that) {
+ this->clear();
+ if (that.fOwnMemory) {
+ // The storage is on the heap, so move the data pointer.
+ if (fOwnMemory) {
+ sk_free(fData);
+ }
+
+ fData = std::exchange(that.fData, nullptr);
+
+ // Can't use exchange with bitfields.
+ fCapacity = that.fCapacity;
+ that.fCapacity = 0;
+
+ fOwnMemory = true;
+ } else {
+ // The data is stored inline in that, so move it element-by-element.
+ this->checkRealloc(that.size(), kExactFit);
+ that.move(fData);
+ }
+ fSize = std::exchange(that.fSize, 0);
+ }
+ return *this;
+ }
+
+ ~TArray() {
+ this->destroyAll();
+ if (fOwnMemory) {
+ sk_free(fData);
+ }
+ }
+
+ /**
+ * Resets to size() = n newly constructed T objects and resets any reserve count.
+ */
+ void reset(int n) {
+ SkASSERT(n >= 0);
+ this->clear();
+ this->checkRealloc(n, kExactFit);
+ fSize = n;
+ for (int i = 0; i < this->size(); ++i) {
+ new (fData + i) T;
+ }
+ }
+
+ /**
+ * Resets to a copy of a C array and resets any reserve count.
+ */
+ void reset(const T* array, int count) {
+ SkASSERT(count >= 0);
+ this->clear();
+ this->checkRealloc(count, kExactFit);
+ fSize = count;
+ this->copy(array);
+ }
+
+ /**
+ * Ensures there is enough reserved space for n elements.
+ */
+ void reserve(int n) {
+ SkASSERT(n >= 0);
+ if (n > this->size()) {
+ this->checkRealloc(n - this->size(), kGrowing);
+ }
+ }
+
+ /**
+ * Ensures there is enough reserved space for n additional elements. The is guaranteed at least
+ * until the array size grows above n and subsequently shrinks below n, any version of reset()
+ * is called, or reserve_back() is called again.
+ */
+ void reserve_back(int n) {
+ SkASSERT(n >= 0);
+ if (n > 0) {
+ this->checkRealloc(n, kExactFit);
+ }
+ }
+
+ void removeShuffle(int n) {
+ SkASSERT(n < this->size());
+ int newCount = fSize - 1;
+ fSize = newCount;
+ fData[n].~T();
+ if (n != newCount) {
+ this->move(n, newCount);
+ }
+ }
+
+ // Is the array empty.
+ bool empty() const { return fSize == 0; }
+
+ /**
+ * Adds 1 new default-initialized T value and returns it by reference. Note
+ * the reference only remains valid until the next call that adds or removes
+ * elements.
+ */
+ T& push_back() {
+ void* newT = this->push_back_raw(1);
+ return *new (newT) T;
+ }
+
+ /**
+ * Version of above that uses a copy constructor to initialize the new item
+ */
+ T& push_back(const T& t) {
+ void* newT = this->push_back_raw(1);
+ return *new (newT) T(t);
+ }
+
+ /**
+ * Version of above that uses a move constructor to initialize the new item
+ */
+ T& push_back(T&& t) {
+ void* newT = this->push_back_raw(1);
+ return *new (newT) T(std::move(t));
+ }
+
+ /**
+ * Construct a new T at the back of this array.
+ */
+ template<class... Args> T& emplace_back(Args&&... args) {
+ void* newT = this->push_back_raw(1);
+ return *new (newT) T(std::forward<Args>(args)...);
+ }
+
+ /**
+ * Allocates n more default-initialized T values, and returns the address of
+ * the start of that new range. Note: this address is only valid until the
+ * next API call made on the array that might add or remove elements.
+ */
+ T* push_back_n(int n) {
+ SkASSERT(n >= 0);
+ T* newTs = TCast(this->push_back_raw(n));
+ for (int i = 0; i < n; ++i) {
+ new (&newTs[i]) T;
+ }
+ return newTs;
+ }
+
+ /**
+ * Version of above that uses a copy constructor to initialize all n items
+ * to the same T.
+ */
+ T* push_back_n(int n, const T& t) {
+ SkASSERT(n >= 0);
+ T* newTs = TCast(this->push_back_raw(n));
+ for (int i = 0; i < n; ++i) {
+ new (&newTs[i]) T(t);
+ }
+ return static_cast<T*>(newTs);
+ }
+
+ /**
+ * Version of above that uses a copy constructor to initialize the n items
+ * to separate T values.
+ */
+ T* push_back_n(int n, const T t[]) {
+ SkASSERT(n >= 0);
+ this->checkRealloc(n, kGrowing);
+ T* end = this->end();
+ for (int i = 0; i < n; ++i) {
+ new (end + i) T(t[i]);
+ }
+ fSize += n;
+ return end;
+ }
+
+ /**
+ * Version of above that uses the move constructor to set n items.
+ */
+ T* move_back_n(int n, T* t) {
+ SkASSERT(n >= 0);
+ this->checkRealloc(n, kGrowing);
+ T* end = this->end();
+ for (int i = 0; i < n; ++i) {
+ new (end + i) T(std::move(t[i]));
+ }
+ fSize += n;
+ return end;
+ }
+
+ /**
+ * Removes the last element. Not safe to call when size() == 0.
+ */
+ void pop_back() {
+ SkASSERT(fSize > 0);
+ --fSize;
+ fData[fSize].~T();
+ }
+
+ /**
+ * Removes the last n elements. Not safe to call when size() < n.
+ */
+ void pop_back_n(int n) {
+ SkASSERT(n >= 0);
+ SkASSERT(this->size() >= n);
+ int i = fSize;
+ while (i-- > fSize - n) {
+ (*this)[i].~T();
+ }
+ fSize -= n;
+ }
+
+ /**
+ * Pushes or pops from the back to resize. Pushes will be default
+ * initialized.
+ */
+ void resize_back(int newCount) {
+ SkASSERT(newCount >= 0);
+
+ if (newCount > this->size()) {
+ this->push_back_n(newCount - fSize);
+ } else if (newCount < this->size()) {
+ this->pop_back_n(fSize - newCount);
+ }
+ }
+
+ /** Swaps the contents of this array with that array. Does a pointer swap if possible,
+ otherwise copies the T values. */
+ void swap(TArray& that) {
+ using std::swap;
+ if (this == &that) {
+ return;
+ }
+ if (fOwnMemory && that.fOwnMemory) {
+ swap(fData, that.fData);
+ swap(fSize, that.fSize);
+
+ // Can't use swap because fCapacity is a bit field.
+ auto allocCount = fCapacity;
+ fCapacity = that.fCapacity;
+ that.fCapacity = allocCount;
+ } else {
+ // This could be more optimal...
+ TArray copy(std::move(that));
+ that = std::move(*this);
+ *this = std::move(copy);
+ }
+ }
+
+ T* begin() {
+ return fData;
+ }
+ const T* begin() const {
+ return fData;
+ }
+
+ // It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is
+ // valid and returns nullptr. See [expr.add] in the C++ standard.
+ T* end() {
+ if (fData == nullptr) {
+ SkASSERT(fSize == 0);
+ }
+ return fData + fSize;
+ }
+ const T* end() const {
+ if (fData == nullptr) {
+ SkASSERT(fSize == 0);
+ }
+ return fData + fSize;
+ }
+ T* data() { return fData; }
+ const T* data() const { return fData; }
+ int size() const { return fSize; }
+ size_t size_bytes() const { return this->bytes(fSize); }
+ void resize(size_t count) { this->resize_back((int)count); }
+
+ void clear() {
+ this->destroyAll();
+ fSize = 0;
+ }
+
+ void shrink_to_fit() {
+ if (!fOwnMemory || fSize == fCapacity) {
+ return;
+ }
+ if (fSize == 0) {
+ sk_free(fData);
+ fData = nullptr;
+ fCapacity = 0;
+ } else {
+ SkSpan<std::byte> allocation = Allocate(fSize);
+ this->move(TCast(allocation.data()));
+ if (fOwnMemory) {
+ sk_free(fData);
+ }
+ this->setDataFromBytes(allocation);
+ }
+ }
+
+ /**
+ * Get the i^th element.
+ */
+ T& operator[] (int i) {
+ SkASSERT(i < this->size());
+ SkASSERT(i >= 0);
+ return fData[i];
+ }
+
+ const T& operator[] (int i) const {
+ SkASSERT(i < this->size());
+ SkASSERT(i >= 0);
+ return fData[i];
+ }
+
+ T& at(int i) { return (*this)[i]; }
+ const T& at(int i) const { return (*this)[i]; }
+
+ /**
+ * equivalent to operator[](0)
+ */
+ T& front() { SkASSERT(fSize > 0); return fData[0];}
+
+ const T& front() const { SkASSERT(fSize > 0); return fData[0];}
+
+ /**
+ * equivalent to operator[](size() - 1)
+ */
+ T& back() { SkASSERT(fSize); return fData[fSize - 1];}
+
+ const T& back() const { SkASSERT(fSize > 0); return fData[fSize - 1];}
+
+ /**
+ * equivalent to operator[](size()-1-i)
+ */
+ T& fromBack(int i) {
+ SkASSERT(i >= 0);
+ SkASSERT(i < this->size());
+ return fData[fSize - i - 1];
+ }
+
+ const T& fromBack(int i) const {
+ SkASSERT(i >= 0);
+ SkASSERT(i < this->size());
+ return fData[fSize - i - 1];
+ }
+
+ bool operator==(const TArray<T, MEM_MOVE>& right) const {
+ int leftCount = this->size();
+ if (leftCount != right.size()) {
+ return false;
+ }
+ for (int index = 0; index < leftCount; ++index) {
+ if (fData[index] != right.fData[index]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ bool operator!=(const TArray<T, MEM_MOVE>& right) const {
+ return !(*this == right);
+ }
+
+ int capacity() const {
+ return fCapacity;
+ }
+
+protected:
+ // Creates an empty array that will use the passed storage block until it is insufficiently
+ // large to hold the entire array.
+ template <int InitialCapacity>
+ TArray(SkAlignedSTStorage<InitialCapacity, T>* storage, int size = 0) {
+ static_assert(InitialCapacity >= 0);
+ SkASSERT(size >= 0);
+ SkASSERT(storage->get() != nullptr);
+ if (size > InitialCapacity) {
+ this->initData(size);
+ } else {
+ this->setDataFromBytes(*storage);
+ fSize = size;
+
+ // setDataFromBytes always sets fOwnMemory to true, but we are actually using static
+ // storage here, which shouldn't ever be freed.
+ fOwnMemory = false;
+ }
+ }
+
+ // Copy a C array, using pre-allocated storage if preAllocCount >= count. Otherwise, storage
+ // will only be used when array shrinks to fit.
+ template <int InitialCapacity>
+ TArray(const T* array, int size, SkAlignedSTStorage<InitialCapacity, T>* storage)
+ : TArray{storage, size}
+ {
+ this->copy(array);
+ }
+
+private:
+ // Growth factors for checkRealloc.
+ static constexpr double kExactFit = 1.0;
+ static constexpr double kGrowing = 1.5;
+
+ static constexpr int kMinHeapAllocCount = 8;
+ static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
+
+ // Note for 32-bit machines kMaxCapacity will be <= SIZE_MAX. For 64-bit machines it will
+ // just be INT_MAX if the sizeof(T) < 2^32.
+ static constexpr int kMaxCapacity = SkToInt(std::min(SIZE_MAX / sizeof(T), (size_t)INT_MAX));
+
+ void setDataFromBytes(SkSpan<std::byte> allocation) {
+ T* data = TCast(allocation.data());
+ // We have gotten extra bytes back from the allocation limit, pin to kMaxCapacity. It
+ // would seem like the SkContainerAllocator should handle the divide, but it would have
+ // to a full divide instruction. If done here the size is known at compile, and usually
+ // can be implemented by a right shift. The full divide takes ~50X longer than the shift.
+ size_t size = std::min(allocation.size() / sizeof(T), SkToSizeT(kMaxCapacity));
+ setData(SkSpan<T>(data, size));
+ }
+
+ void setData(SkSpan<T> array) {
+ fData = array.data();
+ fCapacity = SkToU32(array.size());
+ fOwnMemory = true;
+ }
+
+ // We disable Control-Flow Integrity sanitization (go/cfi) when casting item-array buffers.
+ // CFI flags this code as dangerous because we are casting `buffer` to a T* while the buffer's
+ // contents might still be uninitialized memory. When T has a vtable, this is especially risky
+ // because we could hypothetically access a virtual method on fItemArray and jump to an
+ // unpredictable location in memory. Of course, TArray won't actually use fItemArray in this
+ // way, and we don't want to construct a T before the user requests one. There's no real risk
+ // here, so disable CFI when doing these casts.
+#ifdef __clang__
+ SK_NO_SANITIZE("cfi")
+#elif defined(__GNUC__)
+ SK_ATTRIBUTE(no_sanitize_undefined)
+#endif
+ static T* TCast(void* buffer) {
+ return (T*)buffer;
+ }
+
+ size_t bytes(int n) const {
+ SkASSERT(n <= kMaxCapacity);
+ return SkToSizeT(n) * sizeof(T);
+ }
+
+ static SkSpan<std::byte> Allocate(int capacity, double growthFactor = 1.0) {
+ return SkContainerAllocator{sizeof(T), kMaxCapacity}.allocate(capacity, growthFactor);
+ }
+
+ void initData(int count) {
+ this->setDataFromBytes(Allocate(count));
+ fSize = count;
+ }
+
+ void destroyAll() {
+ if (!this->empty()) {
+ T* cursor = this->begin();
+ T* const end = this->end();
+ do {
+ cursor->~T();
+ cursor++;
+ } while (cursor < end);
+ }
+ }
+
+ /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
+ * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
+ */
+ void copy(const T* src) {
+ if constexpr (std::is_trivially_copyable_v<T>) {
+ if (!this->empty() && src != nullptr) {
+ sk_careful_memcpy(fData, src, this->size_bytes());
+ }
+ } else {
+ for (int i = 0; i < this->size(); ++i) {
+ new (fData + i) T(src[i]);
+ }
+ }
+ }
+
+ void move(int dst, int src) {
+ if constexpr (MEM_MOVE) {
+ memcpy(static_cast<void*>(&fData[dst]),
+ static_cast<const void*>(&fData[src]),
+ sizeof(T));
+ } else {
+ new (&fData[dst]) T(std::move(fData[src]));
+ fData[src].~T();
+ }
+ }
+
+ void move(void* dst) {
+ if constexpr (MEM_MOVE) {
+ sk_careful_memcpy(dst, fData, this->bytes(fSize));
+ } else {
+ for (int i = 0; i < this->size(); ++i) {
+ new (static_cast<char*>(dst) + this->bytes(i)) T(std::move(fData[i]));
+ fData[i].~T();
+ }
+ }
+ }
+
+ // Helper function that makes space for n objects, adjusts the count, but does not initialize
+ // the new objects.
+ void* push_back_raw(int n) {
+ this->checkRealloc(n, kGrowing);
+ void* ptr = fData + fSize;
+ fSize += n;
+ return ptr;
+ }
+
+ void checkRealloc(int delta, double growthFactor) {
+ // This constant needs to be declared in the function where it is used to work around
+ // MSVC's persnickety nature about template definitions.
+ SkASSERT(delta >= 0);
+ SkASSERT(fSize >= 0);
+ SkASSERT(fCapacity >= 0);
+
+ // Return if there are enough remaining allocated elements to satisfy the request.
+ if (this->capacity() - fSize >= delta) {
+ return;
+ }
+
+ // Don't overflow fSize or size_t later in the memory allocation. Overflowing memory
+ // allocation really only applies to fSizes on 32-bit machines; on 64-bit machines this
+ // will probably never produce a check. Since kMaxCapacity is bounded above by INT_MAX,
+ // this also checks the bounds of fSize.
+ if (delta > kMaxCapacity - fSize) {
+ sk_report_container_overflow_and_die();
+ }
+ const int newCount = fSize + delta;
+
+ SkSpan<std::byte> allocation = Allocate(newCount, growthFactor);
+
+ this->move(TCast(allocation.data()));
+ if (fOwnMemory) {
+ sk_free(fData);
+ }
+ this->setDataFromBytes(allocation);
+ SkASSERT(this->capacity() >= newCount);
+ SkASSERT(fData != nullptr);
+ }
+
+ T* fData{nullptr};
+ int fSize{0};
+ uint32_t fOwnMemory : 1;
+ uint32_t fCapacity : 31;
+};
+
+template <typename T, bool M> static inline void swap(TArray<T, M>& a, TArray<T, M>& b) {
+ a.swap(b);
+}
+
+} // namespace skia_private
+
+/**
+ * Subclass of TArray that contains a preallocated memory block for the array.
+ */
+template <int N, typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>>
+class SkSTArray : private SkAlignedSTStorage<N,T>, public skia_private::TArray<T, MEM_MOVE> {
+private:
+ static_assert(N > 0);
+ using STORAGE = SkAlignedSTStorage<N,T>;
+ using INHERITED = skia_private::TArray<T, MEM_MOVE>;
+
+public:
+ SkSTArray()
+ : STORAGE{}, INHERITED(static_cast<STORAGE*>(this)) {}
+
+ SkSTArray(const T* array, int count)
+ : STORAGE{}, INHERITED(array, count, static_cast<STORAGE*>(this)) {}
+
+ SkSTArray(std::initializer_list<T> data) : SkSTArray(data.begin(), SkToInt(data.size())) {}
+
+ explicit SkSTArray(int reserveCount) : SkSTArray() {
+ this->reserve_back(reserveCount);
+ }
+
+ SkSTArray (const SkSTArray& that) : SkSTArray() { *this = that; }
+ explicit SkSTArray(const INHERITED& that) : SkSTArray() { *this = that; }
+ SkSTArray ( SkSTArray&& that) : SkSTArray() { *this = std::move(that); }
+ explicit SkSTArray( INHERITED&& that) : SkSTArray() { *this = std::move(that); }
+
+ SkSTArray& operator=(const SkSTArray& that) {
+ INHERITED::operator=(that);
+ return *this;
+ }
+ SkSTArray& operator=(const INHERITED& that) {
+ INHERITED::operator=(that);
+ return *this;
+ }
+
+ SkSTArray& operator=(SkSTArray&& that) {
+ INHERITED::operator=(std::move(that));
+ return *this;
+ }
+ SkSTArray& operator=(INHERITED&& that) {
+ INHERITED::operator=(std::move(that));
+ return *this;
+ }
+
+ // Force the use of TArray for data() and size().
+ using INHERITED::data;
+ using INHERITED::size;
+};
+
+// TODO: remove this typedef when all uses have been converted from SkTArray to TArray.
+template <typename T, bool MEM_MOVE = sk_is_trivially_relocatable_v<T>>
+using SkTArray = skia_private::TArray<T, MEM_MOVE>;
+
+#endif