diff options
Diffstat (limited to '')
-rw-r--r-- | gfx/skia/skia/src/base/SkCubics.cpp | 241 |
1 files changed, 241 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/base/SkCubics.cpp b/gfx/skia/skia/src/base/SkCubics.cpp new file mode 100644 index 0000000000..64a4beb007 --- /dev/null +++ b/gfx/skia/skia/src/base/SkCubics.cpp @@ -0,0 +1,241 @@ +/* + * Copyright 2023 Google LLC + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "src/base/SkCubics.h" + +#include "include/private/base/SkAssert.h" +#include "include/private/base/SkFloatingPoint.h" +#include "include/private/base/SkTPin.h" +#include "src/base/SkQuads.h" + +#include <algorithm> +#include <cmath> + +static constexpr double PI = 3.141592653589793; + +static bool nearly_equal(double x, double y) { + if (sk_double_nearly_zero(x)) { + return sk_double_nearly_zero(y); + } + return sk_doubles_nearly_equal_ulps(x, y); +} + +// When the A coefficient of a cubic is close to 0, there can be floating point error +// that arises from computing a very large root. In those cases, we would rather be +// precise about the smaller 2 roots, so we have this arbitrary cutoff for when A is +// really small or small compared to B. +static bool close_to_a_quadratic(double A, double B) { + if (sk_double_nearly_zero(B)) { + return sk_double_nearly_zero(A); + } + return std::abs(A / B) < 1.0e-7; +} + +int SkCubics::RootsReal(double A, double B, double C, double D, double solution[3]) { + if (close_to_a_quadratic(A, B)) { + return SkQuads::RootsReal(B, C, D, solution); + } + if (sk_double_nearly_zero(D)) { // 0 is one root + int num = SkQuads::RootsReal(A, B, C, solution); + for (int i = 0; i < num; ++i) { + if (sk_double_nearly_zero(solution[i])) { + return num; + } + } + solution[num++] = 0; + return num; + } + if (sk_double_nearly_zero(A + B + C + D)) { // 1 is one root + int num = SkQuads::RootsReal(A, A + B, -D, solution); + for (int i = 0; i < num; ++i) { + if (sk_doubles_nearly_equal_ulps(solution[i], 1)) { + return num; + } + } + solution[num++] = 1; + return num; + } + double a, b, c; + { + // If A is zero (e.g. B was nan and thus close_to_a_quadratic was false), we will + // temporarily have infinities rolling about, but will catch that when checking + // R2MinusQ3. + double invA = sk_ieee_double_divide(1, A); + a = B * invA; + b = C * invA; + c = D * invA; + } + double a2 = a * a; + double Q = (a2 - b * 3) / 9; + double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; + double R2 = R * R; + double Q3 = Q * Q * Q; + double R2MinusQ3 = R2 - Q3; + // If one of R2 Q3 is infinite or nan, subtracting them will also be infinite/nan. + // If both are infinite or nan, the subtraction will be nan. + // In either case, we have no finite roots. + if (!std::isfinite(R2MinusQ3)) { + return 0; + } + double adiv3 = a / 3; + double r; + double* roots = solution; + if (R2MinusQ3 < 0) { // we have 3 real roots + // the divide/root can, due to finite precisions, be slightly outside of -1...1 + const double theta = acos(SkTPin(R / std::sqrt(Q3), -1., 1.)); + const double neg2RootQ = -2 * std::sqrt(Q); + + r = neg2RootQ * cos(theta / 3) - adiv3; + *roots++ = r; + + r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; + if (!nearly_equal(solution[0], r)) { + *roots++ = r; + } + r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; + if (!nearly_equal(solution[0], r) && + (roots - solution == 1 || !nearly_equal(solution[1], r))) { + *roots++ = r; + } + } else { // we have 1 real root + const double sqrtR2MinusQ3 = std::sqrt(R2MinusQ3); + A = fabs(R) + sqrtR2MinusQ3; + A = std::cbrt(A); // cube root + if (R > 0) { + A = -A; + } + if (!sk_double_nearly_zero(A)) { + A += Q / A; + } + r = A - adiv3; + *roots++ = r; + if (!sk_double_nearly_zero(R2) && + sk_doubles_nearly_equal_ulps(R2, Q3)) { + r = -A / 2 - adiv3; + if (!nearly_equal(solution[0], r)) { + *roots++ = r; + } + } + } + return static_cast<int>(roots - solution); +} + +int SkCubics::RootsValidT(double A, double B, double C, double D, + double solution[3]) { + double allRoots[3] = {0, 0, 0}; + int realRoots = SkCubics::RootsReal(A, B, C, D, allRoots); + int foundRoots = 0; + for (int index = 0; index < realRoots; ++index) { + double tValue = allRoots[index]; + if (tValue >= 1.0 && tValue <= 1.00005) { + // Make sure we do not already have 1 (or something very close) in the list of roots. + if ((foundRoots < 1 || !sk_doubles_nearly_equal_ulps(solution[0], 1)) && + (foundRoots < 2 || !sk_doubles_nearly_equal_ulps(solution[1], 1))) { + solution[foundRoots++] = 1; + } + } else if (tValue >= -0.00005 && (tValue <= 0.0 || sk_double_nearly_zero(tValue))) { + // Make sure we do not already have 0 (or something very close) in the list of roots. + if ((foundRoots < 1 || !sk_double_nearly_zero(solution[0])) && + (foundRoots < 2 || !sk_double_nearly_zero(solution[1]))) { + solution[foundRoots++] = 0; + } + } else if (tValue > 0.0 && tValue < 1.0) { + solution[foundRoots++] = tValue; + } + } + return foundRoots; +} + +static bool approximately_zero(double x) { + // This cutoff for our binary search hopefully strikes a good balance between + // performance and accuracy. + return std::abs(x) < 0.00000001; +} + +static int find_extrema_valid_t(double A, double B, double C, + double t[2]) { + // To find the local min and max of a cubic, we take the derivative and + // solve when that is equal to 0. + // d/dt (A*t^3 + B*t^2 + C*t + D) = 3A*t^2 + 2B*t + C + double roots[2] = {0, 0}; + int numRoots = SkQuads::RootsReal(3*A, 2*B, C, roots); + int validRoots = 0; + for (int i = 0; i < numRoots; i++) { + double tValue = roots[i]; + if (tValue >= 0 && tValue <= 1.0) { + t[validRoots++] = tValue; + } + } + return validRoots; +} + +static double binary_search(double A, double B, double C, double D, double start, double stop) { + SkASSERT(start <= stop); + double left = SkCubics::EvalAt(A, B, C, D, start); + if (approximately_zero(left)) { + return start; + } + double right = SkCubics::EvalAt(A, B, C, D, stop); + if (!std::isfinite(left) || !std::isfinite(right)) { + return -1; // Not going to deal with one or more endpoints being non-finite. + } + if ((left > 0 && right > 0) || (left < 0 && right < 0)) { + return -1; // We can only have a root if one is above 0 and the other is below 0. + } + + constexpr int maxIterations = 1000; // prevent infinite loop + for (int i = 0; i < maxIterations; i++) { + double step = (start + stop) / 2; + double curr = SkCubics::EvalAt(A, B, C, D, step); + if (approximately_zero(curr)) { + return step; + } + if ((curr < 0 && left < 0) || (curr > 0 && left > 0)) { + // go right + start = step; + } else { + // go left + stop = step; + } + } + return -1; +} + +int SkCubics::BinarySearchRootsValidT(double A, double B, double C, double D, + double solution[3]) { + if (!std::isfinite(A) || !std::isfinite(B) || !std::isfinite(C) || !std::isfinite(D)) { + return 0; + } + double regions[4] = {0, 0, 0, 1}; + // Find local minima and maxima + double minMax[2] = {0, 0}; + int extremaCount = find_extrema_valid_t(A, B, C, minMax); + int startIndex = 2 - extremaCount; + if (extremaCount == 1) { + regions[startIndex + 1] = minMax[0]; + } + if (extremaCount == 2) { + // While the roots will be in the range 0 to 1 inclusive, they might not be sorted. + regions[startIndex + 1] = std::min(minMax[0], minMax[1]); + regions[startIndex + 2] = std::max(minMax[0], minMax[1]); + } + // Starting at regions[startIndex] and going up through regions[3], we have + // an ascending list of numbers in the range 0 to 1.0, between which are the possible + // locations of a root. + int foundRoots = 0; + for (;startIndex < 3; startIndex++) { + double root = binary_search(A, B, C, D, regions[startIndex], regions[startIndex + 1]); + if (root >= 0) { + // Check for duplicates + if ((foundRoots < 1 || !approximately_zero(solution[0] - root)) && + (foundRoots < 2 || !approximately_zero(solution[1] - root))) { + solution[foundRoots++] = root; + } + } + } + return foundRoots; +} |