summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp')
-rw-r--r--gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp3226
1 files changed, 3226 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp b/gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp
new file mode 100644
index 0000000000..d173fae687
--- /dev/null
+++ b/gfx/skia/skia/src/sksl/codegen/SkSLMetalCodeGenerator.cpp
@@ -0,0 +1,3226 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/sksl/codegen/SkSLMetalCodeGenerator.h"
+
+#include "include/core/SkSpan.h"
+#include "include/core/SkTypes.h"
+#include "include/private/SkSLIRNode.h"
+#include "include/private/SkSLLayout.h"
+#include "include/private/SkSLModifiers.h"
+#include "include/private/SkSLProgramElement.h"
+#include "include/private/SkSLStatement.h"
+#include "include/private/SkSLString.h"
+#include "include/private/base/SkTo.h"
+#include "include/sksl/SkSLErrorReporter.h"
+#include "include/sksl/SkSLOperator.h"
+#include "include/sksl/SkSLPosition.h"
+#include "src/base/SkScopeExit.h"
+#include "src/sksl/SkSLAnalysis.h"
+#include "src/sksl/SkSLBuiltinTypes.h"
+#include "src/sksl/SkSLCompiler.h"
+#include "src/sksl/SkSLContext.h"
+#include "src/sksl/SkSLIntrinsicList.h"
+#include "src/sksl/SkSLMemoryLayout.h"
+#include "src/sksl/SkSLOutputStream.h"
+#include "src/sksl/SkSLProgramSettings.h"
+#include "src/sksl/SkSLUtil.h"
+#include "src/sksl/analysis/SkSLProgramVisitor.h"
+#include "src/sksl/ir/SkSLBinaryExpression.h"
+#include "src/sksl/ir/SkSLBlock.h"
+#include "src/sksl/ir/SkSLConstructor.h"
+#include "src/sksl/ir/SkSLConstructorArrayCast.h"
+#include "src/sksl/ir/SkSLConstructorCompound.h"
+#include "src/sksl/ir/SkSLConstructorMatrixResize.h"
+#include "src/sksl/ir/SkSLDoStatement.h"
+#include "src/sksl/ir/SkSLExpression.h"
+#include "src/sksl/ir/SkSLExpressionStatement.h"
+#include "src/sksl/ir/SkSLExtension.h"
+#include "src/sksl/ir/SkSLFieldAccess.h"
+#include "src/sksl/ir/SkSLForStatement.h"
+#include "src/sksl/ir/SkSLFunctionCall.h"
+#include "src/sksl/ir/SkSLFunctionDeclaration.h"
+#include "src/sksl/ir/SkSLFunctionDefinition.h"
+#include "src/sksl/ir/SkSLFunctionPrototype.h"
+#include "src/sksl/ir/SkSLIfStatement.h"
+#include "src/sksl/ir/SkSLIndexExpression.h"
+#include "src/sksl/ir/SkSLInterfaceBlock.h"
+#include "src/sksl/ir/SkSLLiteral.h"
+#include "src/sksl/ir/SkSLModifiersDeclaration.h"
+#include "src/sksl/ir/SkSLNop.h"
+#include "src/sksl/ir/SkSLPostfixExpression.h"
+#include "src/sksl/ir/SkSLPrefixExpression.h"
+#include "src/sksl/ir/SkSLProgram.h"
+#include "src/sksl/ir/SkSLReturnStatement.h"
+#include "src/sksl/ir/SkSLSetting.h"
+#include "src/sksl/ir/SkSLStructDefinition.h"
+#include "src/sksl/ir/SkSLSwitchCase.h"
+#include "src/sksl/ir/SkSLSwitchStatement.h"
+#include "src/sksl/ir/SkSLSwizzle.h"
+#include "src/sksl/ir/SkSLTernaryExpression.h"
+#include "src/sksl/ir/SkSLVarDeclarations.h"
+#include "src/sksl/ir/SkSLVariable.h"
+#include "src/sksl/ir/SkSLVariableReference.h"
+#include "src/sksl/spirv.h"
+
+#include <algorithm>
+#include <cstddef>
+#include <functional>
+#include <limits>
+#include <memory>
+
+namespace SkSL {
+
+static const char* operator_name(Operator op) {
+ switch (op.kind()) {
+ case Operator::Kind::LOGICALXOR: return " != ";
+ default: return op.operatorName();
+ }
+}
+
+class MetalCodeGenerator::GlobalStructVisitor {
+public:
+ virtual ~GlobalStructVisitor() = default;
+ virtual void visitInterfaceBlock(const InterfaceBlock& block, std::string_view blockName) {}
+ virtual void visitTexture(const Type& type, const Modifiers& modifiers,
+ std::string_view name) {}
+ virtual void visitSampler(const Type& type, std::string_view name) {}
+ virtual void visitConstantVariable(const VarDeclaration& decl) {}
+ virtual void visitNonconstantVariable(const Variable& var, const Expression* value) {}
+};
+
+class MetalCodeGenerator::ThreadgroupStructVisitor {
+public:
+ virtual ~ThreadgroupStructVisitor() = default;
+ virtual void visitNonconstantVariable(const Variable& var) = 0;
+};
+
+void MetalCodeGenerator::write(std::string_view s) {
+ if (s.empty()) {
+ return;
+ }
+ if (fAtLineStart) {
+ for (int i = 0; i < fIndentation; i++) {
+ fOut->writeText(" ");
+ }
+ }
+ fOut->writeText(std::string(s).c_str());
+ fAtLineStart = false;
+}
+
+void MetalCodeGenerator::writeLine(std::string_view s) {
+ this->write(s);
+ fOut->writeText(fLineEnding);
+ fAtLineStart = true;
+}
+
+void MetalCodeGenerator::finishLine() {
+ if (!fAtLineStart) {
+ this->writeLine();
+ }
+}
+
+void MetalCodeGenerator::writeExtension(const Extension& ext) {
+ this->writeLine("#extension " + std::string(ext.name()) + " : enable");
+}
+
+std::string MetalCodeGenerator::typeName(const Type& type) {
+ // we need to know the modifiers for textures
+ switch (type.typeKind()) {
+ case Type::TypeKind::kArray:
+ SkASSERT(!type.isUnsizedArray());
+ SkASSERTF(type.columns() > 0, "invalid array size: %s", type.description().c_str());
+ return String::printf("array<%s, %d>",
+ this->typeName(type.componentType()).c_str(), type.columns());
+
+ case Type::TypeKind::kVector:
+ return this->typeName(type.componentType()) + std::to_string(type.columns());
+
+ case Type::TypeKind::kMatrix:
+ return this->typeName(type.componentType()) + std::to_string(type.columns()) + "x" +
+ std::to_string(type.rows());
+
+ case Type::TypeKind::kSampler:
+ if (type.dimensions() != SpvDim2D) {
+ fContext.fErrors->error(Position(), "Unsupported texture dimensions");
+ }
+ return "sampler2D";
+
+ case Type::TypeKind::kTexture:
+ switch (type.textureAccess()) {
+ case Type::TextureAccess::kSample: return "texture2d<half>";
+ case Type::TextureAccess::kRead: return "texture2d<half, access::read>";
+ case Type::TextureAccess::kWrite: return "texture2d<half, access::write>";
+ case Type::TextureAccess::kReadWrite: return "texture2d<half, access::read_write>";
+ default: break;
+ }
+ SkUNREACHABLE;
+ case Type::TypeKind::kAtomic:
+ // SkSL currently only supports the atomicUint type.
+ SkASSERT(type.matches(*fContext.fTypes.fAtomicUInt));
+ return "atomic_uint";
+ default:
+ return std::string(type.name());
+ }
+}
+
+void MetalCodeGenerator::writeStructDefinition(const StructDefinition& s) {
+ const Type& type = s.type();
+ this->writeLine("struct " + type.displayName() + " {");
+ fIndentation++;
+ this->writeFields(type.fields(), type.fPosition);
+ fIndentation--;
+ this->writeLine("};");
+}
+
+void MetalCodeGenerator::writeType(const Type& type) {
+ this->write(this->typeName(type));
+}
+
+void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) {
+ switch (expr.kind()) {
+ case Expression::Kind::kBinary:
+ this->writeBinaryExpression(expr.as<BinaryExpression>(), parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorArray:
+ case Expression::Kind::kConstructorStruct:
+ this->writeAnyConstructor(expr.asAnyConstructor(), "{", "}", parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorArrayCast:
+ this->writeConstructorArrayCast(expr.as<ConstructorArrayCast>(), parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorCompound:
+ this->writeConstructorCompound(expr.as<ConstructorCompound>(), parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorDiagonalMatrix:
+ case Expression::Kind::kConstructorSplat:
+ this->writeAnyConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorMatrixResize:
+ this->writeConstructorMatrixResize(expr.as<ConstructorMatrixResize>(),
+ parentPrecedence);
+ break;
+ case Expression::Kind::kConstructorScalarCast:
+ case Expression::Kind::kConstructorCompoundCast:
+ this->writeCastConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence);
+ break;
+ case Expression::Kind::kFieldAccess:
+ this->writeFieldAccess(expr.as<FieldAccess>());
+ break;
+ case Expression::Kind::kLiteral:
+ this->writeLiteral(expr.as<Literal>());
+ break;
+ case Expression::Kind::kFunctionCall:
+ this->writeFunctionCall(expr.as<FunctionCall>());
+ break;
+ case Expression::Kind::kPrefix:
+ this->writePrefixExpression(expr.as<PrefixExpression>(), parentPrecedence);
+ break;
+ case Expression::Kind::kPostfix:
+ this->writePostfixExpression(expr.as<PostfixExpression>(), parentPrecedence);
+ break;
+ case Expression::Kind::kSetting:
+ this->writeExpression(*expr.as<Setting>().toLiteral(fContext), parentPrecedence);
+ break;
+ case Expression::Kind::kSwizzle:
+ this->writeSwizzle(expr.as<Swizzle>());
+ break;
+ case Expression::Kind::kVariableReference:
+ this->writeVariableReference(expr.as<VariableReference>());
+ break;
+ case Expression::Kind::kTernary:
+ this->writeTernaryExpression(expr.as<TernaryExpression>(), parentPrecedence);
+ break;
+ case Expression::Kind::kIndex:
+ this->writeIndexExpression(expr.as<IndexExpression>());
+ break;
+ default:
+ SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str());
+ break;
+ }
+}
+
+// returns true if we should pass by reference instead of by value
+static bool pass_by_reference(const Type& type, const Modifiers& modifiers) {
+ return (modifiers.fFlags & Modifiers::kOut_Flag) && !type.isUnsizedArray();
+}
+
+// returns true if we need to specify an address space modifier
+static bool needs_address_space(const Type& type, const Modifiers& modifiers) {
+ return type.isUnsizedArray() || pass_by_reference(type, modifiers);
+}
+
+// returns true if the InterfaceBlock has the `buffer` modifier
+static bool is_buffer(const InterfaceBlock& block) {
+ return block.var()->modifiers().fFlags & Modifiers::kBuffer_Flag;
+}
+
+// returns true if the InterfaceBlock has the `readonly` modifier
+static bool is_readonly(const InterfaceBlock& block) {
+ return block.var()->modifiers().fFlags & Modifiers::kReadOnly_Flag;
+}
+
+std::string MetalCodeGenerator::getOutParamHelper(const FunctionCall& call,
+ const ExpressionArray& arguments,
+ const SkTArray<VariableReference*>& outVars) {
+ // It's possible for out-param function arguments to contain an out-param function call
+ // expression. Emit the function into a temporary stream to prevent the nested helper from
+ // clobbering the current helper as we recursively evaluate argument expressions.
+ StringStream tmpStream;
+ AutoOutputStream outputToExtraFunctions(this, &tmpStream, &fIndentation);
+
+ const FunctionDeclaration& function = call.function();
+
+ std::string name = "_skOutParamHelper" + std::to_string(fSwizzleHelperCount++) +
+ "_" + function.mangledName();
+ const char* separator = "";
+
+ // Emit a prototype for the function we'll be calling through to in our helper.
+ if (!function.isBuiltin()) {
+ this->writeFunctionDeclaration(function);
+ this->writeLine(";");
+ }
+
+ // Synthesize a helper function that takes the same inputs as `function`, except in places where
+ // `outVars` is non-null; in those places, we take the type of the VariableReference.
+ //
+ // float _skOutParamHelper0_originalFuncName(float _var0, float _var1, float& outParam) {
+ this->writeType(call.type());
+ this->write(" ");
+ this->write(name);
+ this->write("(");
+ this->writeFunctionRequirementParams(function, separator);
+
+ SkASSERT(outVars.size() == arguments.size());
+ SkASSERT(SkToSizeT(outVars.size()) == function.parameters().size());
+
+ // We need to detect cases where the caller passes the same variable as an out-param more than
+ // once, and avoid reusing the variable name. (In those cases we can actually just ignore the
+ // redundant input parameter entirely, and not give it any name.)
+ SkTHashSet<const Variable*> writtenVars;
+
+ for (int index = 0; index < arguments.size(); ++index) {
+ this->write(separator);
+ separator = ", ";
+
+ const Variable* param = function.parameters()[index];
+ this->writeModifiers(param->modifiers());
+
+ const Type* type = outVars[index] ? &outVars[index]->type() : &arguments[index]->type();
+ this->writeType(*type);
+
+ if (pass_by_reference(param->type(), param->modifiers())) {
+ this->write("&");
+ }
+ if (outVars[index]) {
+ const Variable* var = outVars[index]->variable();
+ if (!writtenVars.contains(var)) {
+ writtenVars.add(var);
+
+ this->write(" ");
+ fIgnoreVariableReferenceModifiers = true;
+ this->writeVariableReference(*outVars[index]);
+ fIgnoreVariableReferenceModifiers = false;
+ }
+ } else {
+ this->write(" _var");
+ this->write(std::to_string(index));
+ }
+ }
+ this->writeLine(") {");
+
+ ++fIndentation;
+ for (int index = 0; index < outVars.size(); ++index) {
+ if (!outVars[index]) {
+ continue;
+ }
+ // float3 _var2[ = outParam.zyx];
+ this->writeType(arguments[index]->type());
+ this->write(" _var");
+ this->write(std::to_string(index));
+
+ const Variable* param = function.parameters()[index];
+ if (param->modifiers().fFlags & Modifiers::kIn_Flag) {
+ this->write(" = ");
+ fIgnoreVariableReferenceModifiers = true;
+ this->writeExpression(*arguments[index], Precedence::kAssignment);
+ fIgnoreVariableReferenceModifiers = false;
+ }
+
+ this->writeLine(";");
+ }
+
+ // [int _skResult = ] myFunction(inputs, outputs, _globals, _var0, _var1, _var2, _var3);
+ bool hasResult = (call.type().name() != "void");
+ if (hasResult) {
+ this->writeType(call.type());
+ this->write(" _skResult = ");
+ }
+
+ this->writeName(function.mangledName());
+ this->write("(");
+ separator = "";
+ this->writeFunctionRequirementArgs(function, separator);
+
+ for (int index = 0; index < arguments.size(); ++index) {
+ this->write(separator);
+ separator = ", ";
+
+ this->write("_var");
+ this->write(std::to_string(index));
+ }
+ this->writeLine(");");
+
+ for (int index = 0; index < outVars.size(); ++index) {
+ if (!outVars[index]) {
+ continue;
+ }
+ // outParam.zyx = _var2;
+ fIgnoreVariableReferenceModifiers = true;
+ this->writeExpression(*arguments[index], Precedence::kAssignment);
+ fIgnoreVariableReferenceModifiers = false;
+ this->write(" = _var");
+ this->write(std::to_string(index));
+ this->writeLine(";");
+ }
+
+ if (hasResult) {
+ this->writeLine("return _skResult;");
+ }
+
+ --fIndentation;
+ this->writeLine("}");
+
+ // Write the function out to `fExtraFunctions`.
+ write_stringstream(tmpStream, fExtraFunctions);
+
+ return name;
+}
+
+std::string MetalCodeGenerator::getBitcastIntrinsic(const Type& outType) {
+ return "as_type<" + outType.displayName() + ">";
+}
+
+void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) {
+ const FunctionDeclaration& function = c.function();
+
+ // Many intrinsics need to be rewritten in Metal.
+ if (function.isIntrinsic()) {
+ if (this->writeIntrinsicCall(c, function.intrinsicKind())) {
+ return;
+ }
+ }
+
+ // Determine whether or not we need to emulate GLSL's out-param semantics for Metal using a
+ // helper function. (Specifically, out-parameters in GLSL are only written back to the original
+ // variable at the end of the function call; also, swizzles are supported, whereas Metal doesn't
+ // allow a swizzle to be passed to a `floatN&`.)
+ const ExpressionArray& arguments = c.arguments();
+ const std::vector<Variable*>& parameters = function.parameters();
+ SkASSERT(SkToSizeT(arguments.size()) == parameters.size());
+
+ bool foundOutParam = false;
+ SkSTArray<16, VariableReference*> outVars;
+ outVars.push_back_n(arguments.size(), (VariableReference*)nullptr);
+
+ for (int index = 0; index < arguments.size(); ++index) {
+ // If this is an out parameter...
+ if (parameters[index]->modifiers().fFlags & Modifiers::kOut_Flag) {
+ // Find the expression's inner variable being written to.
+ Analysis::AssignmentInfo info;
+ // Assignability was verified at IRGeneration time, so this should always succeed.
+ SkAssertResult(Analysis::IsAssignable(*arguments[index], &info));
+ outVars[index] = info.fAssignedVar;
+ foundOutParam = true;
+ }
+ }
+
+ if (foundOutParam) {
+ // Out parameters need to be written back to at the end of the function. To do this, we
+ // synthesize a helper function which evaluates the out-param expression into a temporary
+ // variable, calls the original function, then writes the temp var back into the out param
+ // using the original out-param expression. (This lets us support things like swizzles and
+ // array indices.)
+ this->write(getOutParamHelper(c, arguments, outVars));
+ } else {
+ this->write(function.mangledName());
+ }
+
+ this->write("(");
+ const char* separator = "";
+ this->writeFunctionRequirementArgs(function, separator);
+ for (int i = 0; i < arguments.size(); ++i) {
+ this->write(separator);
+ separator = ", ";
+
+ if (outVars[i]) {
+ this->writeExpression(*outVars[i], Precedence::kSequence);
+ } else {
+ this->writeExpression(*arguments[i], Precedence::kSequence);
+ }
+ }
+ this->write(")");
+}
+
+static constexpr char kInverse2x2[] = R"(
+template <typename T>
+matrix<T, 2, 2> mat2_inverse(matrix<T, 2, 2> m) {
+return matrix<T, 2, 2>(m[1].y, -m[0].y, -m[1].x, m[0].x) * (1/determinant(m));
+}
+)";
+
+static constexpr char kInverse3x3[] = R"(
+template <typename T>
+matrix<T, 3, 3> mat3_inverse(matrix<T, 3, 3> m) {
+T
+ a00 = m[0].x, a01 = m[0].y, a02 = m[0].z,
+ a10 = m[1].x, a11 = m[1].y, a12 = m[1].z,
+ a20 = m[2].x, a21 = m[2].y, a22 = m[2].z,
+ b01 = a22*a11 - a12*a21,
+ b11 = -a22*a10 + a12*a20,
+ b21 = a21*a10 - a11*a20,
+ det = a00*b01 + a01*b11 + a02*b21;
+return matrix<T, 3, 3>(
+ b01, (-a22*a01 + a02*a21), ( a12*a01 - a02*a11),
+ b11, ( a22*a00 - a02*a20), (-a12*a00 + a02*a10),
+ b21, (-a21*a00 + a01*a20), ( a11*a00 - a01*a10)) * (1/det);
+}
+)";
+
+static constexpr char kInverse4x4[] = R"(
+template <typename T>
+matrix<T, 4, 4> mat4_inverse(matrix<T, 4, 4> m) {
+T
+ a00 = m[0].x, a01 = m[0].y, a02 = m[0].z, a03 = m[0].w,
+ a10 = m[1].x, a11 = m[1].y, a12 = m[1].z, a13 = m[1].w,
+ a20 = m[2].x, a21 = m[2].y, a22 = m[2].z, a23 = m[2].w,
+ a30 = m[3].x, a31 = m[3].y, a32 = m[3].z, a33 = m[3].w,
+ b00 = a00*a11 - a01*a10,
+ b01 = a00*a12 - a02*a10,
+ b02 = a00*a13 - a03*a10,
+ b03 = a01*a12 - a02*a11,
+ b04 = a01*a13 - a03*a11,
+ b05 = a02*a13 - a03*a12,
+ b06 = a20*a31 - a21*a30,
+ b07 = a20*a32 - a22*a30,
+ b08 = a20*a33 - a23*a30,
+ b09 = a21*a32 - a22*a31,
+ b10 = a21*a33 - a23*a31,
+ b11 = a22*a33 - a23*a32,
+ det = b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06;
+return matrix<T, 4, 4>(
+ a11*b11 - a12*b10 + a13*b09,
+ a02*b10 - a01*b11 - a03*b09,
+ a31*b05 - a32*b04 + a33*b03,
+ a22*b04 - a21*b05 - a23*b03,
+ a12*b08 - a10*b11 - a13*b07,
+ a00*b11 - a02*b08 + a03*b07,
+ a32*b02 - a30*b05 - a33*b01,
+ a20*b05 - a22*b02 + a23*b01,
+ a10*b10 - a11*b08 + a13*b06,
+ a01*b08 - a00*b10 - a03*b06,
+ a30*b04 - a31*b02 + a33*b00,
+ a21*b02 - a20*b04 - a23*b00,
+ a11*b07 - a10*b09 - a12*b06,
+ a00*b09 - a01*b07 + a02*b06,
+ a31*b01 - a30*b03 - a32*b00,
+ a20*b03 - a21*b01 + a22*b00) * (1/det);
+}
+)";
+
+std::string MetalCodeGenerator::getInversePolyfill(const ExpressionArray& arguments) {
+ // Only use polyfills for a function taking a single-argument square matrix.
+ SkASSERT(arguments.size() == 1);
+ const Type& type = arguments.front()->type();
+ if (type.isMatrix() && type.rows() == type.columns()) {
+ switch (type.rows()) {
+ case 2:
+ if (!fWrittenInverse2) {
+ fWrittenInverse2 = true;
+ fExtraFunctions.writeText(kInverse2x2);
+ }
+ return "mat2_inverse";
+ case 3:
+ if (!fWrittenInverse3) {
+ fWrittenInverse3 = true;
+ fExtraFunctions.writeText(kInverse3x3);
+ }
+ return "mat3_inverse";
+ case 4:
+ if (!fWrittenInverse4) {
+ fWrittenInverse4 = true;
+ fExtraFunctions.writeText(kInverse4x4);
+ }
+ return "mat4_inverse";
+ }
+ }
+ SkDEBUGFAILF("no polyfill for inverse(%s)", type.description().c_str());
+ return "inverse";
+}
+
+void MetalCodeGenerator::writeMatrixCompMult() {
+ static constexpr char kMatrixCompMult[] = R"(
+template <typename T, int C, int R>
+matrix<T, C, R> matrixCompMult(matrix<T, C, R> a, const matrix<T, C, R> b) {
+ for (int c = 0; c < C; ++c) { a[c] *= b[c]; }
+ return a;
+}
+)";
+ if (!fWrittenMatrixCompMult) {
+ fWrittenMatrixCompMult = true;
+ fExtraFunctions.writeText(kMatrixCompMult);
+ }
+}
+
+void MetalCodeGenerator::writeOuterProduct() {
+ static constexpr char kOuterProduct[] = R"(
+template <typename T, int C, int R>
+matrix<T, C, R> outerProduct(const vec<T, R> a, const vec<T, C> b) {
+ matrix<T, C, R> m;
+ for (int c = 0; c < C; ++c) { m[c] = a * b[c]; }
+ return m;
+}
+)";
+ if (!fWrittenOuterProduct) {
+ fWrittenOuterProduct = true;
+ fExtraFunctions.writeText(kOuterProduct);
+ }
+}
+
+std::string MetalCodeGenerator::getTempVariable(const Type& type) {
+ std::string tempVar = "_skTemp" + std::to_string(fVarCount++);
+ this->fFunctionHeader += " " + this->typeName(type) + " " + tempVar + ";\n";
+ return tempVar;
+}
+
+void MetalCodeGenerator::writeSimpleIntrinsic(const FunctionCall& c) {
+ // Write out an intrinsic function call exactly as-is. No muss no fuss.
+ this->write(c.function().name());
+ this->writeArgumentList(c.arguments());
+}
+
+void MetalCodeGenerator::writeArgumentList(const ExpressionArray& arguments) {
+ this->write("(");
+ const char* separator = "";
+ for (const std::unique_ptr<Expression>& arg : arguments) {
+ this->write(separator);
+ separator = ", ";
+ this->writeExpression(*arg, Precedence::kSequence);
+ }
+ this->write(")");
+}
+
+bool MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind) {
+ const ExpressionArray& arguments = c.arguments();
+ switch (kind) {
+ case k_read_IntrinsicKind: {
+ this->writeExpression(*arguments[0], Precedence::kTopLevel);
+ this->write(".read(");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_write_IntrinsicKind: {
+ this->writeExpression(*arguments[0], Precedence::kTopLevel);
+ this->write(".write(");
+ this->writeExpression(*arguments[2], Precedence::kSequence);
+ this->write(", ");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_width_IntrinsicKind: {
+ this->writeExpression(*arguments[0], Precedence::kTopLevel);
+ this->write(".get_width()");
+ return true;
+ }
+ case k_height_IntrinsicKind: {
+ this->writeExpression(*arguments[0], Precedence::kTopLevel);
+ this->write(".get_height()");
+ return true;
+ }
+ case k_mod_IntrinsicKind: {
+ // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y)
+ std::string tmpX = this->getTempVariable(arguments[0]->type());
+ std::string tmpY = this->getTempVariable(arguments[1]->type());
+ this->write("(" + tmpX + " = ");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(", " + tmpY + " = ");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+ this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))");
+ return true;
+ }
+ // GLSL declares scalar versions of most geometric intrinsics, but these don't exist in MSL
+ case k_distance_IntrinsicKind: {
+ if (arguments[0]->type().columns() == 1) {
+ this->write("abs(");
+ this->writeExpression(*arguments[0], Precedence::kAdditive);
+ this->write(" - ");
+ this->writeExpression(*arguments[1], Precedence::kAdditive);
+ this->write(")");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_dot_IntrinsicKind: {
+ if (arguments[0]->type().columns() == 1) {
+ this->write("(");
+ this->writeExpression(*arguments[0], Precedence::kMultiplicative);
+ this->write(" * ");
+ this->writeExpression(*arguments[1], Precedence::kMultiplicative);
+ this->write(")");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_faceforward_IntrinsicKind: {
+ if (arguments[0]->type().columns() == 1) {
+ // ((((Nref) * (I) < 0) ? 1 : -1) * (N))
+ this->write("((((");
+ this->writeExpression(*arguments[2], Precedence::kSequence);
+ this->write(") * (");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+ this->write(") < 0) ? 1 : -1) * (");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("))");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_length_IntrinsicKind: {
+ this->write(arguments[0]->type().columns() == 1 ? "abs(" : "length(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_normalize_IntrinsicKind: {
+ this->write(arguments[0]->type().columns() == 1 ? "sign(" : "normalize(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_packUnorm2x16_IntrinsicKind: {
+ this->write("pack_float_to_unorm2x16(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_unpackUnorm2x16_IntrinsicKind: {
+ this->write("unpack_unorm2x16_to_float(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_packSnorm2x16_IntrinsicKind: {
+ this->write("pack_float_to_snorm2x16(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_unpackSnorm2x16_IntrinsicKind: {
+ this->write("unpack_snorm2x16_to_float(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_packUnorm4x8_IntrinsicKind: {
+ this->write("pack_float_to_unorm4x8(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_unpackUnorm4x8_IntrinsicKind: {
+ this->write("unpack_unorm4x8_to_float(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_packSnorm4x8_IntrinsicKind: {
+ this->write("pack_float_to_snorm4x8(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_unpackSnorm4x8_IntrinsicKind: {
+ this->write("unpack_snorm4x8_to_float(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_packHalf2x16_IntrinsicKind: {
+ this->write("as_type<uint>(half2(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("))");
+ return true;
+ }
+ case k_unpackHalf2x16_IntrinsicKind: {
+ this->write("float2(as_type<half2>(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("))");
+ return true;
+ }
+ case k_floatBitsToInt_IntrinsicKind:
+ case k_floatBitsToUint_IntrinsicKind:
+ case k_intBitsToFloat_IntrinsicKind:
+ case k_uintBitsToFloat_IntrinsicKind: {
+ this->write(this->getBitcastIntrinsic(c.type()));
+ this->write("(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_degrees_IntrinsicKind: {
+ this->write("((");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(") * 57.2957795)");
+ return true;
+ }
+ case k_radians_IntrinsicKind: {
+ this->write("((");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(") * 0.0174532925)");
+ return true;
+ }
+ case k_dFdx_IntrinsicKind: {
+ this->write("dfdx");
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ case k_dFdy_IntrinsicKind: {
+ if (!fRTFlipName.empty()) {
+ this->write("(" + fRTFlipName + ".y * dfdy");
+ } else {
+ this->write("(dfdy");
+ }
+ this->writeArgumentList(c.arguments());
+ this->write(")");
+ return true;
+ }
+ case k_inverse_IntrinsicKind: {
+ this->write(this->getInversePolyfill(arguments));
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ case k_inversesqrt_IntrinsicKind: {
+ this->write("rsqrt");
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ case k_atan_IntrinsicKind: {
+ this->write(c.arguments().size() == 2 ? "atan2" : "atan");
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ case k_reflect_IntrinsicKind: {
+ if (arguments[0]->type().columns() == 1) {
+ // We need to synthesize `I - 2 * N * I * N`.
+ std::string tmpI = this->getTempVariable(arguments[0]->type());
+ std::string tmpN = this->getTempVariable(arguments[1]->type());
+
+ // (_skTempI = ...
+ this->write("(" + tmpI + " = ");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+
+ // , _skTempN = ...
+ this->write(", " + tmpN + " = ");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+
+ // , _skTempI - 2 * _skTempN * _skTempI * _skTempN)
+ this->write(", " + tmpI + " - 2 * " + tmpN + " * " + tmpI + " * " + tmpN + ")");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_refract_IntrinsicKind: {
+ if (arguments[0]->type().columns() == 1) {
+ // Metal does implement refract for vectors; rather than reimplementing refract from
+ // scratch, we can replace the call with `refract(float2(I,0), float2(N,0), eta).x`.
+ this->write("(refract(float2(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(", 0), float2(");
+ this->writeExpression(*arguments[1], Precedence::kSequence);
+ this->write(", 0), ");
+ this->writeExpression(*arguments[2], Precedence::kSequence);
+ this->write(").x)");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_roundEven_IntrinsicKind: {
+ this->write("rint");
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ case k_bitCount_IntrinsicKind: {
+ this->write("popcount(");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write(")");
+ return true;
+ }
+ case k_findLSB_IntrinsicKind: {
+ // Create a temp variable to store the expression, to avoid double-evaluating it.
+ std::string skTemp = this->getTempVariable(arguments[0]->type());
+ std::string exprType = this->typeName(arguments[0]->type());
+
+ // ctz returns numbits(type) on zero inputs; GLSL documents it as generating -1 instead.
+ // Use select to detect zero inputs and force a -1 result.
+
+ // (_skTemp1 = (.....), select(ctz(_skTemp1), int4(-1), _skTemp1 == int4(0)))
+ this->write("(");
+ this->write(skTemp);
+ this->write(" = (");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("), select(ctz(");
+ this->write(skTemp);
+ this->write("), ");
+ this->write(exprType);
+ this->write("(-1), ");
+ this->write(skTemp);
+ this->write(" == ");
+ this->write(exprType);
+ this->write("(0)))");
+ return true;
+ }
+ case k_findMSB_IntrinsicKind: {
+ // Create a temp variable to store the expression, to avoid double-evaluating it.
+ std::string skTemp1 = this->getTempVariable(arguments[0]->type());
+ std::string exprType = this->typeName(arguments[0]->type());
+
+ // GLSL findMSB is actually quite different from Metal's clz:
+ // - For signed negative numbers, it returns the first zero bit, not the first one bit!
+ // - For an empty input (0/~0 depending on sign), findMSB gives -1; clz is numbits(type)
+
+ // (_skTemp1 = (.....),
+ this->write("(");
+ this->write(skTemp1);
+ this->write(" = (");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("), ");
+
+ // Signed input types might be negative; we need another helper variable to negate the
+ // input (since we can only find one bits, not zero bits).
+ std::string skTemp2;
+ if (arguments[0]->type().isSigned()) {
+ // ... _skTemp2 = (select(_skTemp1, ~_skTemp1, _skTemp1 < 0)),
+ skTemp2 = this->getTempVariable(arguments[0]->type());
+ this->write(skTemp2);
+ this->write(" = (select(");
+ this->write(skTemp1);
+ this->write(", ~");
+ this->write(skTemp1);
+ this->write(", ");
+ this->write(skTemp1);
+ this->write(" < 0)), ");
+ } else {
+ skTemp2 = skTemp1;
+ }
+
+ // ... select(int4(clz(_skTemp2)), int4(-1), _skTemp2 == int4(0)))
+ this->write("select(");
+ this->write(this->typeName(c.type()));
+ this->write("(clz(");
+ this->write(skTemp2);
+ this->write(")), ");
+ this->write(this->typeName(c.type()));
+ this->write("(-1), ");
+ this->write(skTemp2);
+ this->write(" == ");
+ this->write(exprType);
+ this->write("(0)))");
+ return true;
+ }
+ case k_sign_IntrinsicKind: {
+ if (arguments[0]->type().componentType().isInteger()) {
+ // Create a temp variable to store the expression, to avoid double-evaluating it.
+ std::string skTemp = this->getTempVariable(arguments[0]->type());
+ std::string exprType = this->typeName(arguments[0]->type());
+
+ // (_skTemp = (.....),
+ this->write("(");
+ this->write(skTemp);
+ this->write(" = (");
+ this->writeExpression(*arguments[0], Precedence::kSequence);
+ this->write("), ");
+
+ // ... select(select(int4(0), int4(-1), _skTemp < 0), int4(1), _skTemp > 0))
+ this->write("select(select(");
+ this->write(exprType);
+ this->write("(0), ");
+ this->write(exprType);
+ this->write("(-1), ");
+ this->write(skTemp);
+ this->write(" < 0), ");
+ this->write(exprType);
+ this->write("(1), ");
+ this->write(skTemp);
+ this->write(" > 0))");
+ } else {
+ this->writeSimpleIntrinsic(c);
+ }
+ return true;
+ }
+ case k_matrixCompMult_IntrinsicKind: {
+ this->writeMatrixCompMult();
+ this->writeSimpleIntrinsic(c);
+ return true;
+ }
+ case k_outerProduct_IntrinsicKind: {
+ this->writeOuterProduct();
+ this->writeSimpleIntrinsic(c);
+ return true;
+ }
+ case k_mix_IntrinsicKind: {
+ SkASSERT(c.arguments().size() == 3);
+ if (arguments[2]->type().componentType().isBoolean()) {
+ // The Boolean forms of GLSL mix() use the select() intrinsic in Metal.
+ this->write("select");
+ this->writeArgumentList(c.arguments());
+ return true;
+ }
+ // The basic form of mix() is supported by Metal as-is.
+ this->writeSimpleIntrinsic(c);
+ return true;
+ }
+ case k_equal_IntrinsicKind:
+ case k_greaterThan_IntrinsicKind:
+ case k_greaterThanEqual_IntrinsicKind:
+ case k_lessThan_IntrinsicKind:
+ case k_lessThanEqual_IntrinsicKind:
+ case k_notEqual_IntrinsicKind: {
+ this->write("(");
+ this->writeExpression(*c.arguments()[0], Precedence::kRelational);
+ switch (kind) {
+ case k_equal_IntrinsicKind:
+ this->write(" == ");
+ break;
+ case k_notEqual_IntrinsicKind:
+ this->write(" != ");
+ break;
+ case k_lessThan_IntrinsicKind:
+ this->write(" < ");
+ break;
+ case k_lessThanEqual_IntrinsicKind:
+ this->write(" <= ");
+ break;
+ case k_greaterThan_IntrinsicKind:
+ this->write(" > ");
+ break;
+ case k_greaterThanEqual_IntrinsicKind:
+ this->write(" >= ");
+ break;
+ default:
+ SK_ABORT("unsupported comparison intrinsic kind");
+ }
+ this->writeExpression(*c.arguments()[1], Precedence::kRelational);
+ this->write(")");
+ return true;
+ }
+ case k_storageBarrier_IntrinsicKind:
+ this->write("threadgroup_barrier(mem_flags::mem_device)");
+ return true;
+ case k_workgroupBarrier_IntrinsicKind:
+ this->write("threadgroup_barrier(mem_flags::mem_threadgroup)");
+ return true;
+ case k_atomicAdd_IntrinsicKind:
+ this->write("atomic_fetch_add_explicit(&");
+ this->writeExpression(*c.arguments()[0], Precedence::kSequence);
+ this->write(", ");
+ this->writeExpression(*c.arguments()[1], Precedence::kSequence);
+ this->write(", memory_order_relaxed)");
+ return true;
+ case k_atomicLoad_IntrinsicKind:
+ this->write("atomic_load_explicit(&");
+ this->writeExpression(*c.arguments()[0], Precedence::kSequence);
+ this->write(", memory_order_relaxed)");
+ return true;
+ case k_atomicStore_IntrinsicKind:
+ this->write("atomic_store_explicit(&");
+ this->writeExpression(*c.arguments()[0], Precedence::kSequence);
+ this->write(", ");
+ this->writeExpression(*c.arguments()[1], Precedence::kSequence);
+ this->write(", memory_order_relaxed)");
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Assembles a matrix of type floatRxC by resizing another matrix named `x0`.
+// Cells that don't exist in the source matrix will be populated with identity-matrix values.
+void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int rows, int columns) {
+ SkASSERT(rows <= 4);
+ SkASSERT(columns <= 4);
+
+ std::string matrixType = this->typeName(sourceMatrix.componentType());
+
+ const char* separator = "";
+ for (int c = 0; c < columns; ++c) {
+ fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows);
+ separator = "), ";
+
+ // Determine how many values to take from the source matrix for this row.
+ int swizzleLength = 0;
+ if (c < sourceMatrix.columns()) {
+ swizzleLength = std::min<>(rows, sourceMatrix.rows());
+ }
+
+ // Emit all the values from the source matrix row.
+ bool firstItem;
+ switch (swizzleLength) {
+ case 0: firstItem = true; break;
+ case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break;
+ case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break;
+ case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break;
+ case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break;
+ default: SkUNREACHABLE;
+ }
+
+ // Emit the placeholder identity-matrix cells.
+ for (int r = swizzleLength; r < rows; ++r) {
+ fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0");
+ firstItem = false;
+ }
+ }
+
+ fExtraFunctions.writeText(")");
+}
+
+// Assembles a matrix of type floatCxR by concatenating an arbitrary mix of values, named `x0`,
+// `x1`, etc. An error is written if the expression list don't contain exactly C*R scalars.
+void MetalCodeGenerator::assembleMatrixFromExpressions(const AnyConstructor& ctor,
+ int columns, int rows) {
+ SkASSERT(rows <= 4);
+ SkASSERT(columns <= 4);
+
+ std::string matrixType = this->typeName(ctor.type().componentType());
+ size_t argIndex = 0;
+ int argPosition = 0;
+ auto args = ctor.argumentSpan();
+
+ static constexpr char kSwizzle[] = "xyzw";
+ const char* separator = "";
+ for (int c = 0; c < columns; ++c) {
+ fExtraFunctions.printf("%s%s%d(", separator, matrixType.c_str(), rows);
+ separator = "), ";
+
+ const char* columnSeparator = "";
+ for (int r = 0; r < rows;) {
+ fExtraFunctions.writeText(columnSeparator);
+ columnSeparator = ", ";
+
+ if (argIndex < args.size()) {
+ const Type& argType = args[argIndex]->type();
+ switch (argType.typeKind()) {
+ case Type::TypeKind::kScalar: {
+ fExtraFunctions.printf("x%zu", argIndex);
+ ++r;
+ ++argPosition;
+ break;
+ }
+ case Type::TypeKind::kVector: {
+ fExtraFunctions.printf("x%zu.", argIndex);
+ do {
+ fExtraFunctions.write8(kSwizzle[argPosition]);
+ ++r;
+ ++argPosition;
+ } while (r < rows && argPosition < argType.columns());
+ break;
+ }
+ case Type::TypeKind::kMatrix: {
+ fExtraFunctions.printf("x%zu[%d].", argIndex, argPosition / argType.rows());
+ do {
+ fExtraFunctions.write8(kSwizzle[argPosition]);
+ ++r;
+ ++argPosition;
+ } while (r < rows && (argPosition % argType.rows()) != 0);
+ break;
+ }
+ default: {
+ SkDEBUGFAIL("incorrect type of argument for matrix constructor");
+ fExtraFunctions.writeText("<error>");
+ break;
+ }
+ }
+
+ if (argPosition >= argType.columns() * argType.rows()) {
+ ++argIndex;
+ argPosition = 0;
+ }
+ } else {
+ SkDEBUGFAIL("not enough arguments for matrix constructor");
+ fExtraFunctions.writeText("<error>");
+ }
+ }
+ }
+
+ if (argPosition != 0 || argIndex != args.size()) {
+ SkDEBUGFAIL("incorrect number of arguments for matrix constructor");
+ fExtraFunctions.writeText(", <error>");
+ }
+
+ fExtraFunctions.writeText(")");
+}
+
+// Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape.
+// Keeps track of previously generated constructors so that we won't generate more than one
+// constructor for any given permutation of input argument types. Returns the name of the
+// generated constructor method.
+std::string MetalCodeGenerator::getMatrixConstructHelper(const AnyConstructor& c) {
+ const Type& type = c.type();
+ int columns = type.columns();
+ int rows = type.rows();
+ auto args = c.argumentSpan();
+ std::string typeName = this->typeName(type);
+
+ // Create the helper-method name and use it as our lookup key.
+ std::string name = String::printf("%s_from", typeName.c_str());
+ for (const std::unique_ptr<Expression>& expr : args) {
+ String::appendf(&name, "_%s", this->typeName(expr->type()).c_str());
+ }
+
+ // If a helper-method has not been synthesized yet, create it now.
+ if (!fHelpers.contains(name)) {
+ fHelpers.add(name);
+
+ // Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C
+ // components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot
+ // supply a mixture of scalars and vectors.)
+ fExtraFunctions.printf("%s %s(", typeName.c_str(), name.c_str());
+
+ size_t argIndex = 0;
+ const char* argSeparator = "";
+ for (const std::unique_ptr<Expression>& expr : args) {
+ fExtraFunctions.printf("%s%s x%zu", argSeparator,
+ this->typeName(expr->type()).c_str(), argIndex++);
+ argSeparator = ", ";
+ }
+
+ fExtraFunctions.printf(") {\n return %s(", typeName.c_str());
+
+ if (args.size() == 1 && args.front()->type().isMatrix()) {
+ this->assembleMatrixFromMatrix(args.front()->type(), rows, columns);
+ } else {
+ this->assembleMatrixFromExpressions(c, columns, rows);
+ }
+
+ fExtraFunctions.writeText(");\n}\n");
+ }
+ return name;
+}
+
+bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const ConstructorCompound& c) {
+ SkASSERT(c.type().isMatrix());
+
+ // GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it
+ // expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C
+ // scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of
+ // scalars can be constructed trivially. In more complex cases, we generate a helper function
+ // that converts our inputs into a properly-shaped matrix.
+ // A matrix construct helper method is always used if any input argument is a matrix.
+ // Helper methods are also necessary when any argument would span multiple rows. For instance:
+ //
+ // float2 x = (1, 2);
+ // float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline
+ // | 2 4 6 |
+ //
+ // float2 x = (2, 3);
+ // float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used
+ // | 2 4 6 |
+ //
+ // float4 x = (1, 2, 3, 4);
+ // float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used
+ // | 2 4 |
+ //
+
+ int position = 0;
+ for (const std::unique_ptr<Expression>& expr : c.arguments()) {
+ // If an input argument is a matrix, we need a helper function.
+ if (expr->type().isMatrix()) {
+ return true;
+ }
+ position += expr->type().columns();
+ if (position > c.type().rows()) {
+ // An input argument would span multiple rows; a helper function is required.
+ return true;
+ }
+ if (position == c.type().rows()) {
+ // We've advanced to the end of a row. Wrap to the start of the next row.
+ position = 0;
+ }
+ }
+
+ return false;
+}
+
+void MetalCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c,
+ Precedence parentPrecedence) {
+ // Matrix-resize via casting doesn't natively exist in Metal at all, so we always need to use a
+ // matrix-construct helper here.
+ this->write(this->getMatrixConstructHelper(c));
+ this->write("(");
+ this->writeExpression(*c.argument(), Precedence::kSequence);
+ this->write(")");
+}
+
+void MetalCodeGenerator::writeConstructorCompound(const ConstructorCompound& c,
+ Precedence parentPrecedence) {
+ if (c.type().isVector()) {
+ this->writeConstructorCompoundVector(c, parentPrecedence);
+ } else if (c.type().isMatrix()) {
+ this->writeConstructorCompoundMatrix(c, parentPrecedence);
+ } else {
+ fContext.fErrors->error(c.fPosition, "unsupported compound constructor");
+ }
+}
+
+void MetalCodeGenerator::writeConstructorArrayCast(const ConstructorArrayCast& c,
+ Precedence parentPrecedence) {
+ const Type& inType = c.argument()->type().componentType();
+ const Type& outType = c.type().componentType();
+ std::string inTypeName = this->typeName(inType);
+ std::string outTypeName = this->typeName(outType);
+
+ std::string name = "array_of_" + outTypeName + "_from_" + inTypeName;
+ if (!fHelpers.contains(name)) {
+ fHelpers.add(name);
+ fExtraFunctions.printf(R"(
+template <size_t N>
+array<%s, N> %s(thread const array<%s, N>& x) {
+ array<%s, N> result;
+ for (int i = 0; i < N; ++i) {
+ result[i] = %s(x[i]);
+ }
+ return result;
+}
+)",
+ outTypeName.c_str(), name.c_str(), inTypeName.c_str(),
+ outTypeName.c_str(),
+ outTypeName.c_str());
+ }
+
+ this->write(name);
+ this->write("(");
+ this->writeExpression(*c.argument(), Precedence::kSequence);
+ this->write(")");
+}
+
+std::string MetalCodeGenerator::getVectorFromMat2x2ConstructorHelper(const Type& matrixType) {
+ SkASSERT(matrixType.isMatrix());
+ SkASSERT(matrixType.rows() == 2);
+ SkASSERT(matrixType.columns() == 2);
+
+ std::string baseType = this->typeName(matrixType.componentType());
+ std::string name = String::printf("%s4_from_%s2x2", baseType.c_str(), baseType.c_str());
+ if (!fHelpers.contains(name)) {
+ fHelpers.add(name);
+
+ fExtraFunctions.printf(R"(
+%s4 %s(%s2x2 x) {
+ return %s4(x[0].xy, x[1].xy);
+}
+)", baseType.c_str(), name.c_str(), baseType.c_str(), baseType.c_str());
+ }
+
+ return name;
+}
+
+void MetalCodeGenerator::writeConstructorCompoundVector(const ConstructorCompound& c,
+ Precedence parentPrecedence) {
+ SkASSERT(c.type().isVector());
+
+ // Metal supports constructing vectors from a mix of scalars and vectors, but not matrices.
+ // GLSL supports vec4(mat2x2), so we detect that case here and emit a helper function.
+ if (c.type().columns() == 4 && c.argumentSpan().size() == 1) {
+ const Expression& expr = *c.argumentSpan().front();
+ if (expr.type().isMatrix()) {
+ this->write(this->getVectorFromMat2x2ConstructorHelper(expr.type()));
+ this->write("(");
+ this->writeExpression(expr, Precedence::kSequence);
+ this->write(")");
+ return;
+ }
+ }
+
+ this->writeAnyConstructor(c, "(", ")", parentPrecedence);
+}
+
+void MetalCodeGenerator::writeConstructorCompoundMatrix(const ConstructorCompound& c,
+ Precedence parentPrecedence) {
+ SkASSERT(c.type().isMatrix());
+
+ // Emit and invoke a matrix-constructor helper method if one is necessary.
+ if (this->matrixConstructHelperIsNeeded(c)) {
+ this->write(this->getMatrixConstructHelper(c));
+ this->write("(");
+ const char* separator = "";
+ for (const std::unique_ptr<Expression>& expr : c.arguments()) {
+ this->write(separator);
+ separator = ", ";
+ this->writeExpression(*expr, Precedence::kSequence);
+ }
+ this->write(")");
+ return;
+ }
+
+ // Metal doesn't allow creating matrices by passing in scalars and vectors in a jumble; it
+ // requires your scalars to be grouped up into columns. Because `matrixConstructHelperIsNeeded`
+ // returned false, we know that none of our scalars/vectors "wrap" across across a column, so we
+ // can group our inputs up and synthesize a constructor for each column.
+ const Type& matrixType = c.type();
+ const Type& columnType = matrixType.componentType().toCompound(
+ fContext, /*columns=*/matrixType.rows(), /*rows=*/1);
+
+ this->writeType(matrixType);
+ this->write("(");
+ const char* separator = "";
+ int scalarCount = 0;
+ for (const std::unique_ptr<Expression>& arg : c.arguments()) {
+ this->write(separator);
+ separator = ", ";
+ if (arg->type().columns() < matrixType.rows()) {
+ // Write a `floatN(` constructor to group scalars and smaller vectors together.
+ if (!scalarCount) {
+ this->writeType(columnType);
+ this->write("(");
+ }
+ scalarCount += arg->type().columns();
+ }
+ this->writeExpression(*arg, Precedence::kSequence);
+ if (scalarCount && scalarCount == matrixType.rows()) {
+ // Close our `floatN(...` constructor block from above.
+ this->write(")");
+ scalarCount = 0;
+ }
+ }
+ this->write(")");
+}
+
+void MetalCodeGenerator::writeAnyConstructor(const AnyConstructor& c,
+ const char* leftBracket,
+ const char* rightBracket,
+ Precedence parentPrecedence) {
+ this->writeType(c.type());
+ this->write(leftBracket);
+ const char* separator = "";
+ for (const std::unique_ptr<Expression>& arg : c.argumentSpan()) {
+ this->write(separator);
+ separator = ", ";
+ this->writeExpression(*arg, Precedence::kSequence);
+ }
+ this->write(rightBracket);
+}
+
+void MetalCodeGenerator::writeCastConstructor(const AnyConstructor& c,
+ const char* leftBracket,
+ const char* rightBracket,
+ Precedence parentPrecedence) {
+ return this->writeAnyConstructor(c, leftBracket, rightBracket, parentPrecedence);
+}
+
+void MetalCodeGenerator::writeFragCoord() {
+ if (!fRTFlipName.empty()) {
+ this->write("float4(_fragCoord.x, ");
+ this->write(fRTFlipName.c_str());
+ this->write(".x + ");
+ this->write(fRTFlipName.c_str());
+ this->write(".y * _fragCoord.y, 0.0, _fragCoord.w)");
+ } else {
+ this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)");
+ }
+}
+
+static bool is_compute_builtin(const Variable& var) {
+ switch (var.modifiers().fLayout.fBuiltin) {
+ case SK_NUMWORKGROUPS_BUILTIN:
+ case SK_WORKGROUPID_BUILTIN:
+ case SK_LOCALINVOCATIONID_BUILTIN:
+ case SK_GLOBALINVOCATIONID_BUILTIN:
+ case SK_LOCALINVOCATIONINDEX_BUILTIN:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+
+// true if the var is part of the Inputs struct
+static bool is_input(const Variable& var) {
+ SkASSERT(var.storage() == VariableStorage::kGlobal);
+ return var.modifiers().fFlags & Modifiers::kIn_Flag &&
+ (var.modifiers().fLayout.fBuiltin == -1 || is_compute_builtin(var)) &&
+ var.type().typeKind() != Type::TypeKind::kTexture;
+}
+
+// true if the var is part of the Outputs struct
+static bool is_output(const Variable& var) {
+ SkASSERT(var.storage() == VariableStorage::kGlobal);
+ // inout vars get written into the Inputs struct, so we exclude them from Outputs
+ return (var.modifiers().fFlags & Modifiers::kOut_Flag) &&
+ !(var.modifiers().fFlags & Modifiers::kIn_Flag) &&
+ var.modifiers().fLayout.fBuiltin == -1 &&
+ var.type().typeKind() != Type::TypeKind::kTexture;
+}
+
+// true if the var is part of the Uniforms struct
+static bool is_uniforms(const Variable& var) {
+ SkASSERT(var.storage() == VariableStorage::kGlobal);
+ return var.modifiers().fFlags & Modifiers::kUniform_Flag &&
+ var.type().typeKind() != Type::TypeKind::kSampler;
+}
+
+// true if the var is part of the Threadgroups struct
+static bool is_threadgroup(const Variable& var) {
+ SkASSERT(var.storage() == VariableStorage::kGlobal);
+ return var.modifiers().fFlags & Modifiers::kWorkgroup_Flag;
+}
+
+// true if the var is part of the Globals struct
+static bool is_in_globals(const Variable& var) {
+ SkASSERT(var.storage() == VariableStorage::kGlobal);
+ return !(var.modifiers().fFlags & Modifiers::kConst_Flag);
+}
+
+void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) {
+ // When assembling out-param helper functions, we copy variables into local clones with matching
+ // names. We never want to prepend "_in." or "_globals." when writing these variables since
+ // we're actually targeting the clones.
+ if (fIgnoreVariableReferenceModifiers) {
+ this->writeName(ref.variable()->mangledName());
+ return;
+ }
+
+ switch (ref.variable()->modifiers().fLayout.fBuiltin) {
+ case SK_FRAGCOLOR_BUILTIN:
+ this->write("_out.sk_FragColor");
+ break;
+ case SK_FRAGCOORD_BUILTIN:
+ this->writeFragCoord();
+ break;
+ case SK_VERTEXID_BUILTIN:
+ this->write("sk_VertexID");
+ break;
+ case SK_INSTANCEID_BUILTIN:
+ this->write("sk_InstanceID");
+ break;
+ case SK_CLOCKWISE_BUILTIN:
+ // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter
+ // clockwise to match Skia convention.
+ if (!fRTFlipName.empty()) {
+ this->write("(" + fRTFlipName + ".y < 0 ? _frontFacing : !_frontFacing)");
+ } else {
+ this->write("_frontFacing");
+ }
+ break;
+ default:
+ const Variable& var = *ref.variable();
+ if (var.storage() == Variable::Storage::kGlobal) {
+ if (is_input(var)) {
+ this->write("_in.");
+ } else if (is_output(var)) {
+ this->write("_out.");
+ } else if (is_uniforms(var)) {
+ this->write("_uniforms.");
+ } else if (is_threadgroup(var)) {
+ this->write("_threadgroups.");
+ } else if (is_in_globals(var)) {
+ this->write("_globals.");
+ }
+ }
+ this->writeName(var.mangledName());
+ }
+}
+
+void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) {
+ // Metal does not seem to handle assignment into `vec.zyx[i]` properly--it compiles, but the
+ // results are wrong. We rewrite the expression as `vec[uint3(2,1,0)[i]]` instead. (Filed with
+ // Apple as FB12055941.)
+ if (expr.base()->is<Swizzle>()) {
+ const Swizzle& swizzle = expr.base()->as<Swizzle>();
+ if (swizzle.components().size() > 1) {
+ this->writeExpression(*swizzle.base(), Precedence::kPostfix);
+ this->write("[uint" + std::to_string(swizzle.components().size()) + "(");
+ auto separator = SkSL::String::Separator();
+ for (int8_t component : swizzle.components()) {
+ this->write(separator());
+ this->write(std::to_string(component));
+ }
+ this->write(")[");
+ this->writeExpression(*expr.index(), Precedence::kTopLevel);
+ this->write("]]");
+ return;
+ }
+ }
+
+ this->writeExpression(*expr.base(), Precedence::kPostfix);
+ this->write("[");
+ this->writeExpression(*expr.index(), Precedence::kTopLevel);
+ this->write("]");
+}
+
+void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) {
+ const Type::Field* field = &f.base()->type().fields()[f.fieldIndex()];
+ if (FieldAccess::OwnerKind::kDefault == f.ownerKind()) {
+ this->writeExpression(*f.base(), Precedence::kPostfix);
+ this->write(".");
+ }
+ switch (field->fModifiers.fLayout.fBuiltin) {
+ case SK_POSITION_BUILTIN:
+ this->write("_out.sk_Position");
+ break;
+ case SK_POINTSIZE_BUILTIN:
+ this->write("_out.sk_PointSize");
+ break;
+ default:
+ if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) {
+ this->write("_globals.");
+ this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]);
+ this->write("->");
+ }
+ this->writeName(field->fName);
+ }
+}
+
+void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
+ this->writeExpression(*swizzle.base(), Precedence::kPostfix);
+ this->write(".");
+ for (int c : swizzle.components()) {
+ SkASSERT(c >= 0 && c <= 3);
+ this->write(&("x\0y\0z\0w\0"[c * 2]));
+ }
+}
+
+void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right,
+ const Type& result) {
+ SkASSERT(left.isMatrix());
+ SkASSERT(right.isMatrix());
+ SkASSERT(result.isMatrix());
+
+ std::string key = "Matrix *= " + this->typeName(left) + ":" + this->typeName(right);
+
+ if (!fHelpers.contains(key)) {
+ fHelpers.add(key);
+ fExtraFunctions.printf("thread %s& operator*=(thread %s& left, thread const %s& right) {\n"
+ " left = left * right;\n"
+ " return left;\n"
+ "}\n",
+ this->typeName(result).c_str(), this->typeName(left).c_str(),
+ this->typeName(right).c_str());
+ }
+}
+
+void MetalCodeGenerator::writeMatrixEqualityHelpers(const Type& left, const Type& right) {
+ SkASSERT(left.isMatrix());
+ SkASSERT(right.isMatrix());
+ SkASSERT(left.rows() == right.rows());
+ SkASSERT(left.columns() == right.columns());
+
+ std::string key = "Matrix == " + this->typeName(left) + ":" + this->typeName(right);
+
+ if (!fHelpers.contains(key)) {
+ fHelpers.add(key);
+ fExtraFunctionPrototypes.printf(R"(
+thread bool operator==(const %s left, const %s right);
+thread bool operator!=(const %s left, const %s right);
+)",
+ this->typeName(left).c_str(),
+ this->typeName(right).c_str(),
+ this->typeName(left).c_str(),
+ this->typeName(right).c_str());
+
+ fExtraFunctions.printf(
+ "thread bool operator==(const %s left, const %s right) {\n"
+ " return ",
+ this->typeName(left).c_str(), this->typeName(right).c_str());
+
+ const char* separator = "";
+ for (int index=0; index<left.columns(); ++index) {
+ fExtraFunctions.printf("%sall(left[%d] == right[%d])", separator, index, index);
+ separator = " &&\n ";
+ }
+
+ fExtraFunctions.printf(
+ ";\n"
+ "}\n"
+ "thread bool operator!=(const %s left, const %s right) {\n"
+ " return !(left == right);\n"
+ "}\n",
+ this->typeName(left).c_str(), this->typeName(right).c_str());
+ }
+}
+
+void MetalCodeGenerator::writeMatrixDivisionHelpers(const Type& type) {
+ SkASSERT(type.isMatrix());
+
+ std::string key = "Matrix / " + this->typeName(type);
+
+ if (!fHelpers.contains(key)) {
+ fHelpers.add(key);
+ std::string typeName = this->typeName(type);
+
+ fExtraFunctions.printf(
+ "thread %s operator/(const %s left, const %s right) {\n"
+ " return %s(",
+ typeName.c_str(), typeName.c_str(), typeName.c_str(), typeName.c_str());
+
+ const char* separator = "";
+ for (int index=0; index<type.columns(); ++index) {
+ fExtraFunctions.printf("%sleft[%d] / right[%d]", separator, index, index);
+ separator = ", ";
+ }
+
+ fExtraFunctions.printf(");\n"
+ "}\n"
+ "thread %s& operator/=(thread %s& left, thread const %s& right) {\n"
+ " left = left / right;\n"
+ " return left;\n"
+ "}\n",
+ typeName.c_str(), typeName.c_str(), typeName.c_str());
+ }
+}
+
+void MetalCodeGenerator::writeArrayEqualityHelpers(const Type& type) {
+ SkASSERT(type.isArray());
+
+ // If the array's component type needs a helper as well, we need to emit that one first.
+ this->writeEqualityHelpers(type.componentType(), type.componentType());
+
+ std::string key = "ArrayEquality []";
+ if (!fHelpers.contains(key)) {
+ fHelpers.add(key);
+ fExtraFunctionPrototypes.writeText(R"(
+template <typename T1, typename T2>
+bool operator==(const array_ref<T1> left, const array_ref<T2> right);
+template <typename T1, typename T2>
+bool operator!=(const array_ref<T1> left, const array_ref<T2> right);
+)");
+ fExtraFunctions.writeText(R"(
+template <typename T1, typename T2>
+bool operator==(const array_ref<T1> left, const array_ref<T2> right) {
+ if (left.size() != right.size()) {
+ return false;
+ }
+ for (size_t index = 0; index < left.size(); ++index) {
+ if (!all(left[index] == right[index])) {
+ return false;
+ }
+ }
+ return true;
+}
+
+template <typename T1, typename T2>
+bool operator!=(const array_ref<T1> left, const array_ref<T2> right) {
+ return !(left == right);
+}
+)");
+ }
+}
+
+void MetalCodeGenerator::writeStructEqualityHelpers(const Type& type) {
+ SkASSERT(type.isStruct());
+ std::string key = "StructEquality " + this->typeName(type);
+
+ if (!fHelpers.contains(key)) {
+ fHelpers.add(key);
+ // If one of the struct's fields needs a helper as well, we need to emit that one first.
+ for (const Type::Field& field : type.fields()) {
+ this->writeEqualityHelpers(*field.fType, *field.fType);
+ }
+
+ // Write operator== and operator!= for this struct, since those are assumed to exist in SkSL
+ // and GLSL but do not exist by default in Metal.
+ fExtraFunctionPrototypes.printf(R"(
+thread bool operator==(thread const %s& left, thread const %s& right);
+thread bool operator!=(thread const %s& left, thread const %s& right);
+)",
+ this->typeName(type).c_str(),
+ this->typeName(type).c_str(),
+ this->typeName(type).c_str(),
+ this->typeName(type).c_str());
+
+ fExtraFunctions.printf(
+ "thread bool operator==(thread const %s& left, thread const %s& right) {\n"
+ " return ",
+ this->typeName(type).c_str(),
+ this->typeName(type).c_str());
+
+ const char* separator = "";
+ for (const Type::Field& field : type.fields()) {
+ if (field.fType->isArray()) {
+ fExtraFunctions.printf(
+ "%s(make_array_ref(left.%.*s) == make_array_ref(right.%.*s))",
+ separator,
+ (int)field.fName.size(), field.fName.data(),
+ (int)field.fName.size(), field.fName.data());
+ } else {
+ fExtraFunctions.printf("%sall(left.%.*s == right.%.*s)",
+ separator,
+ (int)field.fName.size(), field.fName.data(),
+ (int)field.fName.size(), field.fName.data());
+ }
+ separator = " &&\n ";
+ }
+ fExtraFunctions.printf(
+ ";\n"
+ "}\n"
+ "thread bool operator!=(thread const %s& left, thread const %s& right) {\n"
+ " return !(left == right);\n"
+ "}\n",
+ this->typeName(type).c_str(),
+ this->typeName(type).c_str());
+ }
+}
+
+void MetalCodeGenerator::writeEqualityHelpers(const Type& leftType, const Type& rightType) {
+ if (leftType.isArray() && rightType.isArray()) {
+ this->writeArrayEqualityHelpers(leftType);
+ return;
+ }
+ if (leftType.isStruct() && rightType.isStruct()) {
+ this->writeStructEqualityHelpers(leftType);
+ return;
+ }
+ if (leftType.isMatrix() && rightType.isMatrix()) {
+ this->writeMatrixEqualityHelpers(leftType, rightType);
+ return;
+ }
+}
+
+void MetalCodeGenerator::writeNumberAsMatrix(const Expression& expr, const Type& matrixType) {
+ SkASSERT(expr.type().isNumber());
+ SkASSERT(matrixType.isMatrix());
+
+ // Componentwise multiply the scalar against a matrix of the desired size which contains all 1s.
+ this->write("(");
+ this->writeType(matrixType);
+ this->write("(");
+
+ const char* separator = "";
+ for (int index = matrixType.slotCount(); index--;) {
+ this->write(separator);
+ this->write("1.0");
+ separator = ", ";
+ }
+
+ this->write(") * ");
+ this->writeExpression(expr, Precedence::kMultiplicative);
+ this->write(")");
+}
+
+void MetalCodeGenerator::writeBinaryExpressionElement(const Expression& expr,
+ Operator op,
+ const Expression& other,
+ Precedence precedence) {
+ bool needMatrixSplatOnScalar = other.type().isMatrix() && expr.type().isNumber() &&
+ op.isValidForMatrixOrVector() &&
+ op.removeAssignment().kind() != Operator::Kind::STAR;
+ if (needMatrixSplatOnScalar) {
+ this->writeNumberAsMatrix(expr, other.type());
+ } else if (op.isEquality() && expr.type().isArray()) {
+ this->write("make_array_ref(");
+ this->writeExpression(expr, precedence);
+ this->write(")");
+ } else {
+ this->writeExpression(expr, precedence);
+ }
+}
+
+void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
+ Precedence parentPrecedence) {
+ const Expression& left = *b.left();
+ const Expression& right = *b.right();
+ const Type& leftType = left.type();
+ const Type& rightType = right.type();
+ Operator op = b.getOperator();
+ Precedence precedence = op.getBinaryPrecedence();
+ bool needParens = precedence >= parentPrecedence;
+ switch (op.kind()) {
+ case Operator::Kind::EQEQ:
+ this->writeEqualityHelpers(leftType, rightType);
+ if (leftType.isVector()) {
+ this->write("all");
+ needParens = true;
+ }
+ break;
+ case Operator::Kind::NEQ:
+ this->writeEqualityHelpers(leftType, rightType);
+ if (leftType.isVector()) {
+ this->write("any");
+ needParens = true;
+ }
+ break;
+ default:
+ break;
+ }
+ if (leftType.isMatrix() && rightType.isMatrix() && op.kind() == Operator::Kind::STAREQ) {
+ this->writeMatrixTimesEqualHelper(leftType, rightType, b.type());
+ }
+ if (op.removeAssignment().kind() == Operator::Kind::SLASH &&
+ ((leftType.isMatrix() && rightType.isMatrix()) ||
+ (leftType.isScalar() && rightType.isMatrix()) ||
+ (leftType.isMatrix() && rightType.isScalar()))) {
+ this->writeMatrixDivisionHelpers(leftType.isMatrix() ? leftType : rightType);
+ }
+
+ if (needParens) {
+ this->write("(");
+ }
+
+ this->writeBinaryExpressionElement(left, op, right, precedence);
+
+ if (op.kind() != Operator::Kind::EQ && op.isAssignment() &&
+ left.kind() == Expression::Kind::kSwizzle && !Analysis::HasSideEffects(left)) {
+ // This doesn't compile in Metal:
+ // float4 x = float4(1);
+ // x.xy *= float2x2(...);
+ // with the error message "non-const reference cannot bind to vector element",
+ // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation
+ // as long as the LHS has no side effects, and hope for the best otherwise.
+ this->write(" = ");
+ this->writeExpression(left, Precedence::kAssignment);
+ this->write(operator_name(op.removeAssignment()));
+ precedence = op.removeAssignment().getBinaryPrecedence();
+ } else {
+ this->write(operator_name(op));
+ }
+
+ this->writeBinaryExpressionElement(right, op, left, precedence);
+
+ if (needParens) {
+ this->write(")");
+ }
+}
+
+void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t,
+ Precedence parentPrecedence) {
+ if (Precedence::kTernary >= parentPrecedence) {
+ this->write("(");
+ }
+ this->writeExpression(*t.test(), Precedence::kTernary);
+ this->write(" ? ");
+ this->writeExpression(*t.ifTrue(), Precedence::kTernary);
+ this->write(" : ");
+ this->writeExpression(*t.ifFalse(), Precedence::kTernary);
+ if (Precedence::kTernary >= parentPrecedence) {
+ this->write(")");
+ }
+}
+
+void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p,
+ Precedence parentPrecedence) {
+ // According to the MSL specification, the arithmetic unary operators (+ and –) do not act
+ // upon matrix type operands. We treat the unary "+" as NOP for all operands.
+ const Operator op = p.getOperator();
+ if (op.kind() == Operator::Kind::PLUS) {
+ return this->writeExpression(*p.operand(), Precedence::kPrefix);
+ }
+
+ const bool matrixNegation =
+ op.kind() == Operator::Kind::MINUS && p.operand()->type().isMatrix();
+ const bool needParens = Precedence::kPrefix >= parentPrecedence || matrixNegation;
+
+ if (needParens) {
+ this->write("(");
+ }
+
+ // Transform the unary "-" on a matrix type to a multiplication by -1.
+ if (matrixNegation) {
+ this->write("-1.0 * ");
+ } else {
+ this->write(p.getOperator().tightOperatorName());
+ }
+ this->writeExpression(*p.operand(), Precedence::kPrefix);
+
+ if (needParens) {
+ this->write(")");
+ }
+}
+
+void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p,
+ Precedence parentPrecedence) {
+ if (Precedence::kPostfix >= parentPrecedence) {
+ this->write("(");
+ }
+ this->writeExpression(*p.operand(), Precedence::kPostfix);
+ this->write(p.getOperator().tightOperatorName());
+ if (Precedence::kPostfix >= parentPrecedence) {
+ this->write(")");
+ }
+}
+
+void MetalCodeGenerator::writeLiteral(const Literal& l) {
+ const Type& type = l.type();
+ if (type.isFloat()) {
+ this->write(l.description(OperatorPrecedence::kTopLevel));
+ if (!l.type().highPrecision()) {
+ this->write("h");
+ }
+ return;
+ }
+ if (type.isInteger()) {
+ if (type.matches(*fContext.fTypes.fUInt)) {
+ this->write(std::to_string(l.intValue() & 0xffffffff));
+ this->write("u");
+ } else if (type.matches(*fContext.fTypes.fUShort)) {
+ this->write(std::to_string(l.intValue() & 0xffff));
+ this->write("u");
+ } else {
+ this->write(std::to_string(l.intValue()));
+ }
+ return;
+ }
+ SkASSERT(type.isBoolean());
+ this->write(l.description(OperatorPrecedence::kTopLevel));
+}
+
+void MetalCodeGenerator::writeFunctionRequirementArgs(const FunctionDeclaration& f,
+ const char*& separator) {
+ Requirements requirements = this->requirements(f);
+ if (requirements & kInputs_Requirement) {
+ this->write(separator);
+ this->write("_in");
+ separator = ", ";
+ }
+ if (requirements & kOutputs_Requirement) {
+ this->write(separator);
+ this->write("_out");
+ separator = ", ";
+ }
+ if (requirements & kUniforms_Requirement) {
+ this->write(separator);
+ this->write("_uniforms");
+ separator = ", ";
+ }
+ if (requirements & kGlobals_Requirement) {
+ this->write(separator);
+ this->write("_globals");
+ separator = ", ";
+ }
+ if (requirements & kFragCoord_Requirement) {
+ this->write(separator);
+ this->write("_fragCoord");
+ separator = ", ";
+ }
+ if (requirements & kThreadgroups_Requirement) {
+ this->write(separator);
+ this->write("_threadgroups");
+ separator = ", ";
+ }
+}
+
+void MetalCodeGenerator::writeFunctionRequirementParams(const FunctionDeclaration& f,
+ const char*& separator) {
+ Requirements requirements = this->requirements(f);
+ if (requirements & kInputs_Requirement) {
+ this->write(separator);
+ this->write("Inputs _in");
+ separator = ", ";
+ }
+ if (requirements & kOutputs_Requirement) {
+ this->write(separator);
+ this->write("thread Outputs& _out");
+ separator = ", ";
+ }
+ if (requirements & kUniforms_Requirement) {
+ this->write(separator);
+ this->write("Uniforms _uniforms");
+ separator = ", ";
+ }
+ if (requirements & kGlobals_Requirement) {
+ this->write(separator);
+ this->write("thread Globals& _globals");
+ separator = ", ";
+ }
+ if (requirements & kFragCoord_Requirement) {
+ this->write(separator);
+ this->write("float4 _fragCoord");
+ separator = ", ";
+ }
+ if (requirements & kThreadgroups_Requirement) {
+ this->write(separator);
+ this->write("threadgroup Threadgroups& _threadgroups");
+ separator = ", ";
+ }
+}
+
+int MetalCodeGenerator::getUniformBinding(const Modifiers& m) {
+ return (m.fLayout.fBinding >= 0) ? m.fLayout.fBinding
+ : fProgram.fConfig->fSettings.fDefaultUniformBinding;
+}
+
+int MetalCodeGenerator::getUniformSet(const Modifiers& m) {
+ return (m.fLayout.fSet >= 0) ? m.fLayout.fSet
+ : fProgram.fConfig->fSettings.fDefaultUniformSet;
+}
+
+bool MetalCodeGenerator::writeFunctionDeclaration(const FunctionDeclaration& f) {
+ fRTFlipName = fProgram.fInputs.fUseFlipRTUniform
+ ? "_globals._anonInterface0->" SKSL_RTFLIP_NAME
+ : "";
+ const char* separator = "";
+ if (f.isMain()) {
+ if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ this->write("fragment Outputs fragmentMain");
+ } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write("vertex Outputs vertexMain");
+ } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ this->write("kernel void computeMain");
+ } else {
+ fContext.fErrors->error(Position(), "unsupported kind of program");
+ return false;
+ }
+ this->write("(");
+ if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ this->write("Inputs _in [[stage_in]]");
+ separator = ", ";
+ }
+ if (-1 != fUniformBuffer) {
+ this->write(separator);
+ this->write("constant Uniforms& _uniforms [[buffer(" +
+ std::to_string(fUniformBuffer) + ")]]");
+ separator = ", ";
+ }
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<GlobalVarDeclaration>()) {
+ const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
+ const VarDeclaration& decl = decls.varDeclaration();
+ const Variable* var = decl.var();
+ const SkSL::Type::TypeKind varKind = var->type().typeKind();
+
+ if (varKind == Type::TypeKind::kSampler || varKind == Type::TypeKind::kTexture) {
+ if (var->type().dimensions() != SpvDim2D) {
+ // Not yet implemented--Skia currently only uses 2D textures.
+ fContext.fErrors->error(decls.fPosition, "Unsupported texture dimensions");
+ return false;
+ }
+
+ int binding = getUniformBinding(var->modifiers());
+ this->write(separator);
+ separator = ", ";
+
+ if (varKind == Type::TypeKind::kSampler) {
+ this->writeType(var->type().textureType());
+ this->write(" ");
+ this->writeName(var->mangledName());
+ this->write(kTextureSuffix);
+ this->write(" [[texture(");
+ this->write(std::to_string(binding));
+ this->write(")]], sampler ");
+ this->writeName(var->mangledName());
+ this->write(kSamplerSuffix);
+ this->write(" [[sampler(");
+ this->write(std::to_string(binding));
+ this->write(")]]");
+ } else {
+ SkASSERT(varKind == Type::TypeKind::kTexture);
+ this->writeType(var->type());
+ this->write(" ");
+ this->writeName(var->mangledName());
+ this->write(" [[texture(");
+ this->write(std::to_string(binding));
+ this->write(")]]");
+ }
+ } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ std::string type, attr;
+ switch (var->modifiers().fLayout.fBuiltin) {
+ case SK_NUMWORKGROUPS_BUILTIN:
+ type = "uint3 ";
+ attr = " [[threadgroups_per_grid]]";
+ break;
+ case SK_WORKGROUPID_BUILTIN:
+ type = "uint3 ";
+ attr = " [[threadgroup_position_in_grid]]";
+ break;
+ case SK_LOCALINVOCATIONID_BUILTIN:
+ type = "uint3 ";
+ attr = " [[thread_position_in_threadgroup]]";
+ break;
+ case SK_GLOBALINVOCATIONID_BUILTIN:
+ type = "uint3 ";
+ attr = " [[thread_position_in_grid]]";
+ break;
+ case SK_LOCALINVOCATIONINDEX_BUILTIN:
+ type = "uint ";
+ attr = " [[thread_index_in_threadgroup]]";
+ break;
+ default:
+ break;
+ }
+ if (!attr.empty()) {
+ this->write(separator);
+ this->write(type);
+ this->write(var->name());
+ this->write(attr);
+ separator = ", ";
+ }
+ }
+ } else if (e->is<InterfaceBlock>()) {
+ const InterfaceBlock& intf = e->as<InterfaceBlock>();
+ if (intf.typeName() == "sk_PerVertex") {
+ continue;
+ }
+ this->write(separator);
+ if (is_readonly(intf)) {
+ this->write("const ");
+ }
+ this->write(is_buffer(intf) ? "device " : "constant ");
+ this->writeType(intf.var()->type());
+ this->write("& " );
+ this->write(fInterfaceBlockNameMap[&intf]);
+ this->write(" [[buffer(");
+ this->write(std::to_string(this->getUniformBinding(intf.var()->modifiers())));
+ this->write(")]]");
+ separator = ", ";
+ }
+ }
+ if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ if (fProgram.fInputs.fUseFlipRTUniform && fInterfaceBlockNameMap.empty()) {
+ this->write(separator);
+ this->write("constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]");
+ fRTFlipName = "_anonInterface0." SKSL_RTFLIP_NAME;
+ separator = ", ";
+ }
+ this->write(separator);
+ this->write("bool _frontFacing [[front_facing]]");
+ this->write(", float4 _fragCoord [[position]]");
+ separator = ", ";
+ } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write(separator);
+ this->write("uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]");
+ separator = ", ";
+ }
+ } else {
+ this->writeType(f.returnType());
+ this->write(" ");
+ this->writeName(f.mangledName());
+ this->write("(");
+ this->writeFunctionRequirementParams(f, separator);
+ }
+ for (const Variable* param : f.parameters()) {
+ if (f.isMain() && param->modifiers().fLayout.fBuiltin != -1) {
+ continue;
+ }
+ this->write(separator);
+ separator = ", ";
+ this->writeModifiers(param->modifiers());
+ this->writeType(param->type());
+ if (pass_by_reference(param->type(), param->modifiers())) {
+ this->write("&");
+ }
+ this->write(" ");
+ this->writeName(param->mangledName());
+ }
+ this->write(")");
+ return true;
+}
+
+void MetalCodeGenerator::writeFunctionPrototype(const FunctionPrototype& f) {
+ this->writeFunctionDeclaration(f.declaration());
+ this->writeLine(";");
+}
+
+static bool is_block_ending_with_return(const Statement* stmt) {
+ // This function detects (potentially nested) blocks that end in a return statement.
+ if (!stmt->is<Block>()) {
+ return false;
+ }
+ const StatementArray& block = stmt->as<Block>().children();
+ for (int index = block.size(); index--; ) {
+ stmt = block[index].get();
+ if (stmt->is<ReturnStatement>()) {
+ return true;
+ }
+ if (stmt->is<Block>()) {
+ return is_block_ending_with_return(stmt);
+ }
+ if (!stmt->is<Nop>()) {
+ break;
+ }
+ }
+ return false;
+}
+
+void MetalCodeGenerator::writeComputeMainInputs() {
+ // Compute shaders only have input variables (e.g. sk_GlobalInvocationID) and access program
+ // inputs/outputs via the Globals and Uniforms structs. We collect the allowed "in" parameters
+ // into an Input struct here, since the rest of the code expects the normal _in / _out pattern.
+ this->write("Inputs _in = { ");
+ const char* separator = "";
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<GlobalVarDeclaration>()) {
+ const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
+ const Variable* var = decls.varDeclaration().var();
+ if (is_input(*var)) {
+ this->write(separator);
+ separator = ", ";
+ this->writeName(var->mangledName());
+ }
+ }
+ }
+ this->writeLine(" };");
+}
+
+void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) {
+ SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut);
+
+ if (!this->writeFunctionDeclaration(f.declaration())) {
+ return;
+ }
+
+ fCurrentFunction = &f.declaration();
+ SkScopeExit clearCurrentFunction([&] { fCurrentFunction = nullptr; });
+
+ this->writeLine(" {");
+
+ if (f.declaration().isMain()) {
+ fIndentation++;
+ this->writeGlobalInit();
+ if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ this->writeThreadgroupInit();
+ this->writeComputeMainInputs();
+ }
+ else {
+ this->writeLine("Outputs _out;");
+ this->writeLine("(void)_out;");
+ }
+ fIndentation--;
+ }
+
+ fFunctionHeader.clear();
+ StringStream buffer;
+ {
+ AutoOutputStream outputToBuffer(this, &buffer);
+ fIndentation++;
+ for (const std::unique_ptr<Statement>& stmt : f.body()->as<Block>().children()) {
+ if (!stmt->isEmpty()) {
+ this->writeStatement(*stmt);
+ this->finishLine();
+ }
+ }
+ if (f.declaration().isMain()) {
+ // If the main function doesn't end with a return, we need to synthesize one here.
+ if (!is_block_ending_with_return(f.body().get())) {
+ this->writeReturnStatementFromMain();
+ this->finishLine();
+ }
+ }
+ fIndentation--;
+ this->writeLine("}");
+ }
+ this->write(fFunctionHeader);
+ this->write(buffer.str());
+}
+
+void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers) {
+ if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) &&
+ (modifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag))) {
+ this->write("device ");
+ } else if (modifiers.fFlags & Modifiers::kOut_Flag) {
+ this->write("thread ");
+ }
+ if (modifiers.fFlags & Modifiers::kConst_Flag) {
+ this->write("const ");
+ }
+}
+
+void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
+ if (intf.typeName() == "sk_PerVertex") {
+ return;
+ }
+ const Type* structType = &intf.var()->type().componentType();
+ this->writeModifiers(intf.var()->modifiers());
+ this->write("struct ");
+ this->writeType(*structType);
+ this->writeLine(" {");
+ fIndentation++;
+ this->writeFields(structType->fields(), structType->fPosition, &intf);
+ if (fProgram.fInputs.fUseFlipRTUniform) {
+ this->writeLine("float2 " SKSL_RTFLIP_NAME ";");
+ }
+ fIndentation--;
+ this->write("}");
+ if (intf.instanceName().size()) {
+ this->write(" ");
+ this->write(intf.instanceName());
+ if (intf.arraySize() > 0) {
+ this->write("[");
+ this->write(std::to_string(intf.arraySize()));
+ this->write("]");
+ }
+ fInterfaceBlockNameMap.set(&intf, intf.instanceName());
+ } else {
+ fInterfaceBlockNameMap.set(&intf, *fProgram.fSymbols->takeOwnershipOfString(
+ "_anonInterface" + std::to_string(fAnonInterfaceCount++)));
+ }
+ this->writeLine(";");
+}
+
+void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, Position parentPos,
+ const InterfaceBlock* parentIntf) {
+ MemoryLayout memoryLayout(MemoryLayout::Standard::kMetal);
+ int currentOffset = 0;
+ for (const Type::Field& field : fields) {
+ int fieldOffset = field.fModifiers.fLayout.fOffset;
+ const Type* fieldType = field.fType;
+ if (!memoryLayout.isSupported(*fieldType)) {
+ fContext.fErrors->error(parentPos, "type '" + std::string(fieldType->name()) +
+ "' is not permitted here");
+ return;
+ }
+ if (fieldOffset != -1) {
+ if (currentOffset > fieldOffset) {
+ fContext.fErrors->error(field.fPosition,
+ "offset of field '" + std::string(field.fName) +
+ "' must be at least " + std::to_string(currentOffset));
+ return;
+ } else if (currentOffset < fieldOffset) {
+ this->write("char pad");
+ this->write(std::to_string(fPaddingCount++));
+ this->write("[");
+ this->write(std::to_string(fieldOffset - currentOffset));
+ this->writeLine("];");
+ currentOffset = fieldOffset;
+ }
+ int alignment = memoryLayout.alignment(*fieldType);
+ if (fieldOffset % alignment) {
+ fContext.fErrors->error(field.fPosition,
+ "offset of field '" + std::string(field.fName) +
+ "' must be a multiple of " + std::to_string(alignment));
+ return;
+ }
+ }
+ if (fieldType->isUnsizedArray()) {
+ // An unsized array always appears as the last member of a storage block. We declare
+ // it as a one-element array and allow dereferencing past the capacity.
+ // TODO(armansito): This is because C++ does not support flexible array members like C99
+ // does. This generally works but it can lead to UB as compilers are free to insert
+ // padding past the first element of the array. An alternative approach is to declare
+ // the struct without the unsized array member and replace variable references with a
+ // buffer offset calculation based on sizeof().
+ this->writeModifiers(field.fModifiers);
+ this->writeType(fieldType->componentType());
+ this->write(" ");
+ this->writeName(field.fName);
+ this->write("[1]");
+ } else {
+ size_t fieldSize = memoryLayout.size(*fieldType);
+ if (fieldSize > static_cast<size_t>(std::numeric_limits<int>::max() - currentOffset)) {
+ fContext.fErrors->error(parentPos, "field offset overflow");
+ return;
+ }
+ currentOffset += fieldSize;
+ this->writeModifiers(field.fModifiers);
+ this->writeType(*fieldType);
+ this->write(" ");
+ this->writeName(field.fName);
+ }
+ this->writeLine(";");
+ if (parentIntf) {
+ fInterfaceBlockMap.set(&field, parentIntf);
+ }
+ }
+}
+
+void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
+ this->writeExpression(value, Precedence::kTopLevel);
+}
+
+void MetalCodeGenerator::writeName(std::string_view name) {
+ if (fReservedWords.contains(name)) {
+ this->write("_"); // adding underscore before name to avoid conflict with reserved words
+ }
+ this->write(name);
+}
+
+void MetalCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl) {
+ this->writeModifiers(varDecl.var()->modifiers());
+ this->writeType(varDecl.var()->type());
+ this->write(" ");
+ this->writeName(varDecl.var()->mangledName());
+ if (varDecl.value()) {
+ this->write(" = ");
+ this->writeVarInitializer(*varDecl.var(), *varDecl.value());
+ }
+ this->write(";");
+}
+
+void MetalCodeGenerator::writeStatement(const Statement& s) {
+ switch (s.kind()) {
+ case Statement::Kind::kBlock:
+ this->writeBlock(s.as<Block>());
+ break;
+ case Statement::Kind::kExpression:
+ this->writeExpressionStatement(s.as<ExpressionStatement>());
+ break;
+ case Statement::Kind::kReturn:
+ this->writeReturnStatement(s.as<ReturnStatement>());
+ break;
+ case Statement::Kind::kVarDeclaration:
+ this->writeVarDeclaration(s.as<VarDeclaration>());
+ break;
+ case Statement::Kind::kIf:
+ this->writeIfStatement(s.as<IfStatement>());
+ break;
+ case Statement::Kind::kFor:
+ this->writeForStatement(s.as<ForStatement>());
+ break;
+ case Statement::Kind::kDo:
+ this->writeDoStatement(s.as<DoStatement>());
+ break;
+ case Statement::Kind::kSwitch:
+ this->writeSwitchStatement(s.as<SwitchStatement>());
+ break;
+ case Statement::Kind::kBreak:
+ this->write("break;");
+ break;
+ case Statement::Kind::kContinue:
+ this->write("continue;");
+ break;
+ case Statement::Kind::kDiscard:
+ this->write("discard_fragment();");
+ break;
+ case Statement::Kind::kNop:
+ this->write(";");
+ break;
+ default:
+ SkDEBUGFAILF("unsupported statement: %s", s.description().c_str());
+ break;
+ }
+}
+
+void MetalCodeGenerator::writeBlock(const Block& b) {
+ // Write scope markers if this block is a scope, or if the block is empty (since we need to emit
+ // something here to make the code valid).
+ bool isScope = b.isScope() || b.isEmpty();
+ if (isScope) {
+ this->writeLine("{");
+ fIndentation++;
+ }
+ for (const std::unique_ptr<Statement>& stmt : b.children()) {
+ if (!stmt->isEmpty()) {
+ this->writeStatement(*stmt);
+ this->finishLine();
+ }
+ }
+ if (isScope) {
+ fIndentation--;
+ this->write("}");
+ }
+}
+
+void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) {
+ this->write("if (");
+ this->writeExpression(*stmt.test(), Precedence::kTopLevel);
+ this->write(") ");
+ this->writeStatement(*stmt.ifTrue());
+ if (stmt.ifFalse()) {
+ this->write(" else ");
+ this->writeStatement(*stmt.ifFalse());
+ }
+}
+
+void MetalCodeGenerator::writeForStatement(const ForStatement& f) {
+ // Emit loops of the form 'for(;test;)' as 'while(test)', which is probably how they started
+ if (!f.initializer() && f.test() && !f.next()) {
+ this->write("while (");
+ this->writeExpression(*f.test(), Precedence::kTopLevel);
+ this->write(") ");
+ this->writeStatement(*f.statement());
+ return;
+ }
+
+ this->write("for (");
+ if (f.initializer() && !f.initializer()->isEmpty()) {
+ this->writeStatement(*f.initializer());
+ } else {
+ this->write("; ");
+ }
+ if (f.test()) {
+ this->writeExpression(*f.test(), Precedence::kTopLevel);
+ }
+ this->write("; ");
+ if (f.next()) {
+ this->writeExpression(*f.next(), Precedence::kTopLevel);
+ }
+ this->write(") ");
+ this->writeStatement(*f.statement());
+}
+
+void MetalCodeGenerator::writeDoStatement(const DoStatement& d) {
+ this->write("do ");
+ this->writeStatement(*d.statement());
+ this->write(" while (");
+ this->writeExpression(*d.test(), Precedence::kTopLevel);
+ this->write(");");
+}
+
+void MetalCodeGenerator::writeExpressionStatement(const ExpressionStatement& s) {
+ if (fProgram.fConfig->fSettings.fOptimize && !Analysis::HasSideEffects(*s.expression())) {
+ // Don't emit dead expressions.
+ return;
+ }
+ this->writeExpression(*s.expression(), Precedence::kTopLevel);
+ this->write(";");
+}
+
+void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
+ this->write("switch (");
+ this->writeExpression(*s.value(), Precedence::kTopLevel);
+ this->writeLine(") {");
+ fIndentation++;
+ for (const std::unique_ptr<Statement>& stmt : s.cases()) {
+ const SwitchCase& c = stmt->as<SwitchCase>();
+ if (c.isDefault()) {
+ this->writeLine("default:");
+ } else {
+ this->write("case ");
+ this->write(std::to_string(c.value()));
+ this->writeLine(":");
+ }
+ if (!c.statement()->isEmpty()) {
+ fIndentation++;
+ this->writeStatement(*c.statement());
+ this->finishLine();
+ fIndentation--;
+ }
+ }
+ fIndentation--;
+ this->write("}");
+}
+
+void MetalCodeGenerator::writeReturnStatementFromMain() {
+ // main functions in Metal return a magic _out parameter that doesn't exist in SkSL.
+ if (ProgramConfig::IsVertex(fProgram.fConfig->fKind) ||
+ ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ this->write("return _out;");
+ } else if (ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ this->write("return;");
+ } else {
+ SkDEBUGFAIL("unsupported kind of program");
+ }
+}
+
+void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
+ if (fCurrentFunction && fCurrentFunction->isMain()) {
+ if (r.expression()) {
+ if (r.expression()->type().matches(*fContext.fTypes.fHalf4)) {
+ this->write("_out.sk_FragColor = ");
+ this->writeExpression(*r.expression(), Precedence::kTopLevel);
+ this->writeLine(";");
+ } else {
+ fContext.fErrors->error(r.fPosition,
+ "Metal does not support returning '" +
+ r.expression()->type().description() + "' from main()");
+ }
+ }
+ this->writeReturnStatementFromMain();
+ return;
+ }
+
+ this->write("return");
+ if (r.expression()) {
+ this->write(" ");
+ this->writeExpression(*r.expression(), Precedence::kTopLevel);
+ }
+ this->write(";");
+}
+
+void MetalCodeGenerator::writeHeader() {
+ this->write("#include <metal_stdlib>\n");
+ this->write("#include <simd/simd.h>\n");
+ this->write("using namespace metal;\n");
+}
+
+void MetalCodeGenerator::writeSampler2DPolyfill() {
+ class : public GlobalStructVisitor {
+ public:
+ void visitSampler(const Type&, std::string_view) override {
+ if (fWrotePolyfill) {
+ return;
+ }
+ fWrotePolyfill = true;
+
+ std::string polyfill = SkSL::String::printf(R"(
+struct sampler2D {
+ texture2d<half> tex;
+ sampler smp;
+};
+half4 sample(sampler2D i, float2 p, float b=%g) { return i.tex.sample(i.smp, p, bias(b)); }
+half4 sample(sampler2D i, float3 p, float b=%g) { return i.tex.sample(i.smp, p.xy / p.z, bias(b)); }
+half4 sampleLod(sampler2D i, float2 p, float lod) { return i.tex.sample(i.smp, p, level(lod)); }
+half4 sampleLod(sampler2D i, float3 p, float lod) {
+ return i.tex.sample(i.smp, p.xy / p.z, level(lod));
+}
+half4 sampleGrad(sampler2D i, float2 p, float2 dPdx, float2 dPdy) {
+ return i.tex.sample(i.smp, p, gradient2d(dPdx, dPdy));
+}
+
+)",
+ fTextureBias,
+ fTextureBias);
+ fCodeGen->write(polyfill.c_str());
+ }
+
+ MetalCodeGenerator* fCodeGen = nullptr;
+ float fTextureBias = 0.0f;
+ bool fWrotePolyfill = false;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ visitor.fTextureBias = fProgram.fConfig->fSettings.fSharpenTextures ? kSharpenTexturesBias
+ : 0.0f;
+ this->visitGlobalStruct(&visitor);
+}
+
+void MetalCodeGenerator::writeUniformStruct() {
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<GlobalVarDeclaration>()) {
+ const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
+ const Variable& var = *decls.varDeclaration().var();
+ if (var.modifiers().fFlags & Modifiers::kUniform_Flag &&
+ var.type().typeKind() != Type::TypeKind::kSampler &&
+ var.type().typeKind() != Type::TypeKind::kTexture) {
+ int uniformSet = this->getUniformSet(var.modifiers());
+ // Make sure that the program's uniform-set value is consistent throughout.
+ if (-1 == fUniformBuffer) {
+ this->write("struct Uniforms {\n");
+ fUniformBuffer = uniformSet;
+ } else if (uniformSet != fUniformBuffer) {
+ fContext.fErrors->error(decls.fPosition,
+ "Metal backend requires all uniforms to have the same "
+ "'layout(set=...)'");
+ }
+ this->write(" ");
+ this->writeType(var.type());
+ this->write(" ");
+ this->writeName(var.mangledName());
+ this->write(";\n");
+ }
+ }
+ }
+ if (-1 != fUniformBuffer) {
+ this->write("};\n");
+ }
+}
+
+void MetalCodeGenerator::writeInputStruct() {
+ this->write("struct Inputs {\n");
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<GlobalVarDeclaration>()) {
+ const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
+ const Variable& var = *decls.varDeclaration().var();
+ if (is_input(var)) {
+ this->write(" ");
+ if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) &&
+ needs_address_space(var.type(), var.modifiers())) {
+ // TODO: address space support
+ this->write("device ");
+ }
+ this->writeType(var.type());
+ if (pass_by_reference(var.type(), var.modifiers())) {
+ this->write("&");
+ }
+ this->write(" ");
+ this->writeName(var.mangledName());
+ if (-1 != var.modifiers().fLayout.fLocation) {
+ if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write(" [[attribute(" +
+ std::to_string(var.modifiers().fLayout.fLocation) + ")]]");
+ } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ this->write(" [[user(locn" +
+ std::to_string(var.modifiers().fLayout.fLocation) + ")]]");
+ }
+ }
+ this->write(";\n");
+ }
+ }
+ }
+ this->write("};\n");
+}
+
+void MetalCodeGenerator::writeOutputStruct() {
+ this->write("struct Outputs {\n");
+ if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write(" float4 sk_Position [[position]];\n");
+ } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ this->write(" half4 sk_FragColor [[color(0)]];\n");
+ }
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<GlobalVarDeclaration>()) {
+ const GlobalVarDeclaration& decls = e->as<GlobalVarDeclaration>();
+ const Variable& var = *decls.varDeclaration().var();
+ if (is_output(var)) {
+ this->write(" ");
+ if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) &&
+ needs_address_space(var.type(), var.modifiers())) {
+ // TODO: address space support
+ this->write("device ");
+ }
+ this->writeType(var.type());
+ if (ProgramConfig::IsCompute(fProgram.fConfig->fKind) &&
+ pass_by_reference(var.type(), var.modifiers())) {
+ this->write("&");
+ }
+ this->write(" ");
+ this->writeName(var.mangledName());
+
+ int location = var.modifiers().fLayout.fLocation;
+ if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind) && location < 0 &&
+ var.type().typeKind() != Type::TypeKind::kTexture) {
+ fContext.fErrors->error(var.fPosition,
+ "Metal out variables must have 'layout(location=...)'");
+ } else if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write(" [[user(locn" + std::to_string(location) + ")]]");
+ } else if (ProgramConfig::IsFragment(fProgram.fConfig->fKind)) {
+ this->write(" [[color(" + std::to_string(location) + ")");
+ int colorIndex = var.modifiers().fLayout.fIndex;
+ if (colorIndex) {
+ this->write(", index(" + std::to_string(colorIndex) + ")");
+ }
+ this->write("]]");
+ }
+ this->write(";\n");
+ }
+ }
+ }
+ if (ProgramConfig::IsVertex(fProgram.fConfig->fKind)) {
+ this->write(" float sk_PointSize [[point_size]];\n");
+ }
+ this->write("};\n");
+}
+
+void MetalCodeGenerator::writeInterfaceBlocks() {
+ bool wroteInterfaceBlock = false;
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<InterfaceBlock>()) {
+ this->writeInterfaceBlock(e->as<InterfaceBlock>());
+ wroteInterfaceBlock = true;
+ }
+ }
+ if (!wroteInterfaceBlock && fProgram.fInputs.fUseFlipRTUniform) {
+ this->writeLine("struct sksl_synthetic_uniforms {");
+ this->writeLine(" float2 " SKSL_RTFLIP_NAME ";");
+ this->writeLine("};");
+ }
+}
+
+void MetalCodeGenerator::writeStructDefinitions() {
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<StructDefinition>()) {
+ this->writeStructDefinition(e->as<StructDefinition>());
+ }
+ }
+}
+
+void MetalCodeGenerator::writeConstantVariables() {
+ class : public GlobalStructVisitor {
+ public:
+ void visitConstantVariable(const VarDeclaration& decl) override {
+ fCodeGen->write("constant ");
+ fCodeGen->writeVarDeclaration(decl);
+ fCodeGen->finishLine();
+ }
+
+ MetalCodeGenerator* fCodeGen = nullptr;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ this->visitGlobalStruct(&visitor);
+}
+
+void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) {
+ for (const ProgramElement* element : fProgram.elements()) {
+ if (element->is<InterfaceBlock>()) {
+ const auto* ib = &element->as<InterfaceBlock>();
+ if (ib->typeName() != "sk_PerVertex") {
+ visitor->visitInterfaceBlock(*ib, fInterfaceBlockNameMap[ib]);
+ }
+ continue;
+ }
+ if (!element->is<GlobalVarDeclaration>()) {
+ continue;
+ }
+ const GlobalVarDeclaration& global = element->as<GlobalVarDeclaration>();
+ const VarDeclaration& decl = global.varDeclaration();
+ const Variable& var = *decl.var();
+ if (var.type().typeKind() == Type::TypeKind::kSampler) {
+ visitor->visitSampler(var.type(), var.mangledName());
+ continue;
+ }
+ if (var.type().typeKind() == Type::TypeKind::kTexture) {
+ visitor->visitTexture(var.type(), var.modifiers(), var.mangledName());
+ continue;
+ }
+ if (!(var.modifiers().fFlags & ~Modifiers::kConst_Flag) &&
+ var.modifiers().fLayout.fBuiltin == -1) {
+ if (is_in_globals(var)) {
+ // Visit a regular global variable.
+ visitor->visitNonconstantVariable(var, decl.value().get());
+ } else {
+ // Visit a constant-expression variable.
+ SkASSERT(var.modifiers().fFlags & Modifiers::kConst_Flag);
+ visitor->visitConstantVariable(decl);
+ }
+ }
+ }
+}
+
+void MetalCodeGenerator::writeGlobalStruct() {
+ class : public GlobalStructVisitor {
+ public:
+ void visitInterfaceBlock(const InterfaceBlock& block,
+ std::string_view blockName) override {
+ this->addElement();
+ fCodeGen->write(" ");
+ if (is_readonly(block)) {
+ fCodeGen->write("const ");
+ }
+ fCodeGen->write(is_buffer(block) ? "device " : "constant ");
+ fCodeGen->write(block.typeName());
+ fCodeGen->write("* ");
+ fCodeGen->writeName(blockName);
+ fCodeGen->write(";\n");
+ }
+ void visitTexture(const Type& type, const Modifiers& modifiers,
+ std::string_view name) override {
+ this->addElement();
+ fCodeGen->write(" ");
+ fCodeGen->writeType(type);
+ fCodeGen->write(" ");
+ fCodeGen->writeName(name);
+ fCodeGen->write(";\n");
+ }
+ void visitSampler(const Type&, std::string_view name) override {
+ this->addElement();
+ fCodeGen->write(" sampler2D ");
+ fCodeGen->writeName(name);
+ fCodeGen->write(";\n");
+ }
+ void visitConstantVariable(const VarDeclaration& decl) override {
+ // Constants aren't added to the global struct.
+ }
+ void visitNonconstantVariable(const Variable& var, const Expression* value) override {
+ this->addElement();
+ fCodeGen->write(" ");
+ fCodeGen->writeModifiers(var.modifiers());
+ fCodeGen->writeType(var.type());
+ fCodeGen->write(" ");
+ fCodeGen->writeName(var.mangledName());
+ fCodeGen->write(";\n");
+ }
+ void addElement() {
+ if (fFirst) {
+ fCodeGen->write("struct Globals {\n");
+ fFirst = false;
+ }
+ }
+ void finish() {
+ if (!fFirst) {
+ fCodeGen->writeLine("};");
+ fFirst = true;
+ }
+ }
+
+ MetalCodeGenerator* fCodeGen = nullptr;
+ bool fFirst = true;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ this->visitGlobalStruct(&visitor);
+ visitor.finish();
+}
+
+void MetalCodeGenerator::writeGlobalInit() {
+ class : public GlobalStructVisitor {
+ public:
+ void visitInterfaceBlock(const InterfaceBlock& blockType,
+ std::string_view blockName) override {
+ this->addElement();
+ fCodeGen->write("&");
+ fCodeGen->writeName(blockName);
+ }
+ void visitTexture(const Type&, const Modifiers& modifiers, std::string_view name) override {
+ this->addElement();
+ fCodeGen->writeName(name);
+ }
+ void visitSampler(const Type&, std::string_view name) override {
+ this->addElement();
+ fCodeGen->write("{");
+ fCodeGen->writeName(name);
+ fCodeGen->write(kTextureSuffix);
+ fCodeGen->write(", ");
+ fCodeGen->writeName(name);
+ fCodeGen->write(kSamplerSuffix);
+ fCodeGen->write("}");
+ }
+ void visitConstantVariable(const VarDeclaration& decl) override {
+ // Constant-expression variables aren't put in the global struct.
+ }
+ void visitNonconstantVariable(const Variable& var, const Expression* value) override {
+ this->addElement();
+ if (value) {
+ fCodeGen->writeVarInitializer(var, *value);
+ } else {
+ fCodeGen->write("{}");
+ }
+ }
+ void addElement() {
+ if (fFirst) {
+ fCodeGen->write("Globals _globals{");
+ fFirst = false;
+ } else {
+ fCodeGen->write(", ");
+ }
+ }
+ void finish() {
+ if (!fFirst) {
+ fCodeGen->writeLine("};");
+ fCodeGen->writeLine("(void)_globals;");
+ }
+ }
+ MetalCodeGenerator* fCodeGen = nullptr;
+ bool fFirst = true;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ this->visitGlobalStruct(&visitor);
+ visitor.finish();
+}
+
+void MetalCodeGenerator::visitThreadgroupStruct(ThreadgroupStructVisitor* visitor) {
+ for (const ProgramElement* element : fProgram.elements()) {
+ if (!element->is<GlobalVarDeclaration>()) {
+ continue;
+ }
+ const GlobalVarDeclaration& global = element->as<GlobalVarDeclaration>();
+ const VarDeclaration& decl = global.varDeclaration();
+ const Variable& var = *decl.var();
+ if (var.modifiers().fFlags & Modifiers::kWorkgroup_Flag) {
+ SkASSERT(!decl.value());
+ SkASSERT(!(var.modifiers().fFlags & Modifiers::kConst_Flag));
+ visitor->visitNonconstantVariable(var);
+ }
+ }
+}
+
+void MetalCodeGenerator::writeThreadgroupStruct() {
+ class : public ThreadgroupStructVisitor {
+ public:
+ void visitNonconstantVariable(const Variable& var) override {
+ this->addElement();
+ fCodeGen->write(" ");
+ fCodeGen->writeModifiers(var.modifiers());
+ fCodeGen->writeType(var.type());
+ fCodeGen->write(" ");
+ fCodeGen->writeName(var.mangledName());
+ fCodeGen->write(";\n");
+ }
+ void addElement() {
+ if (fFirst) {
+ fCodeGen->write("struct Threadgroups {\n");
+ fFirst = false;
+ }
+ }
+ void finish() {
+ if (!fFirst) {
+ fCodeGen->writeLine("};");
+ fFirst = true;
+ }
+ }
+
+ MetalCodeGenerator* fCodeGen = nullptr;
+ bool fFirst = true;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ this->visitThreadgroupStruct(&visitor);
+ visitor.finish();
+}
+
+void MetalCodeGenerator::writeThreadgroupInit() {
+ class : public ThreadgroupStructVisitor {
+ public:
+ void visitNonconstantVariable(const Variable& var) override {
+ this->addElement();
+ fCodeGen->write("{}");
+ }
+ void addElement() {
+ if (fFirst) {
+ fCodeGen->write("threadgroup Threadgroups _threadgroups{");
+ fFirst = false;
+ } else {
+ fCodeGen->write(", ");
+ }
+ }
+ void finish() {
+ if (!fFirst) {
+ fCodeGen->writeLine("};");
+ fCodeGen->writeLine("(void)_threadgroups;");
+ }
+ }
+ MetalCodeGenerator* fCodeGen = nullptr;
+ bool fFirst = true;
+ } visitor;
+
+ visitor.fCodeGen = this;
+ this->visitThreadgroupStruct(&visitor);
+ visitor.finish();
+}
+
+void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) {
+ switch (e.kind()) {
+ case ProgramElement::Kind::kExtension:
+ break;
+ case ProgramElement::Kind::kGlobalVar:
+ break;
+ case ProgramElement::Kind::kInterfaceBlock:
+ // handled in writeInterfaceBlocks, do nothing
+ break;
+ case ProgramElement::Kind::kStructDefinition:
+ // Handled in writeStructDefinitions. Do nothing.
+ break;
+ case ProgramElement::Kind::kFunction:
+ this->writeFunction(e.as<FunctionDefinition>());
+ break;
+ case ProgramElement::Kind::kFunctionPrototype:
+ this->writeFunctionPrototype(e.as<FunctionPrototype>());
+ break;
+ case ProgramElement::Kind::kModifiers:
+ this->writeModifiers(e.as<ModifiersDeclaration>().modifiers());
+ this->writeLine(";");
+ break;
+ default:
+ SkDEBUGFAILF("unsupported program element: %s\n", e.description().c_str());
+ break;
+ }
+}
+
+MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) {
+ class RequirementsVisitor : public ProgramVisitor {
+ public:
+ using ProgramVisitor::visitStatement;
+
+ bool visitExpression(const Expression& e) override {
+ switch (e.kind()) {
+ case Expression::Kind::kFunctionCall: {
+ const FunctionCall& f = e.as<FunctionCall>();
+ fRequirements |= fCodeGen->requirements(f.function());
+ break;
+ }
+ case Expression::Kind::kFieldAccess: {
+ const FieldAccess& f = e.as<FieldAccess>();
+ if (f.ownerKind() == FieldAccess::OwnerKind::kAnonymousInterfaceBlock) {
+ fRequirements |= kGlobals_Requirement;
+ return false; // don't recurse into the base variable
+ }
+ break;
+ }
+ case Expression::Kind::kVariableReference: {
+ const Variable& var = *e.as<VariableReference>().variable();
+
+ if (var.modifiers().fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
+ fRequirements |= kGlobals_Requirement | kFragCoord_Requirement;
+ } else if (var.storage() == Variable::Storage::kGlobal) {
+ if (is_input(var)) {
+ fRequirements |= kInputs_Requirement;
+ } else if (is_output(var)) {
+ fRequirements |= kOutputs_Requirement;
+ } else if (is_uniforms(var)) {
+ fRequirements |= kUniforms_Requirement;
+ } else if (is_threadgroup(var)) {
+ fRequirements |= kThreadgroups_Requirement;
+ } else if (is_in_globals(var)) {
+ fRequirements |= kGlobals_Requirement;
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ return INHERITED::visitExpression(e);
+ }
+
+ MetalCodeGenerator* fCodeGen;
+ Requirements fRequirements = kNo_Requirements;
+ using INHERITED = ProgramVisitor;
+ };
+
+ RequirementsVisitor visitor;
+ if (s) {
+ visitor.fCodeGen = this;
+ visitor.visitStatement(*s);
+ }
+ return visitor.fRequirements;
+}
+
+MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) {
+ Requirements* found = fRequirements.find(&f);
+ if (!found) {
+ fRequirements.set(&f, kNo_Requirements);
+ for (const ProgramElement* e : fProgram.elements()) {
+ if (e->is<FunctionDefinition>()) {
+ const FunctionDefinition& def = e->as<FunctionDefinition>();
+ if (&def.declaration() == &f) {
+ Requirements reqs = this->requirements(def.body().get());
+ fRequirements.set(&f, reqs);
+ return reqs;
+ }
+ }
+ }
+ // We never found a definition for this declared function, but it's legal to prototype a
+ // function without ever giving a definition, as long as you don't call it.
+ return kNo_Requirements;
+ }
+ return *found;
+}
+
+bool MetalCodeGenerator::generateCode() {
+ StringStream header;
+ {
+ AutoOutputStream outputToHeader(this, &header, &fIndentation);
+ this->writeHeader();
+ this->writeConstantVariables();
+ this->writeSampler2DPolyfill();
+ this->writeStructDefinitions();
+ this->writeUniformStruct();
+ this->writeInputStruct();
+ if (!ProgramConfig::IsCompute(fProgram.fConfig->fKind)) {
+ this->writeOutputStruct();
+ }
+ this->writeInterfaceBlocks();
+ this->writeGlobalStruct();
+ this->writeThreadgroupStruct();
+
+ // Emit prototypes for every built-in function; these aren't always added in perfect order.
+ for (const ProgramElement* e : fProgram.fSharedElements) {
+ if (e->is<FunctionDefinition>()) {
+ this->writeFunctionDeclaration(e->as<FunctionDefinition>().declaration());
+ this->writeLine(";");
+ }
+ }
+ }
+ StringStream body;
+ {
+ AutoOutputStream outputToBody(this, &body, &fIndentation);
+
+ for (const ProgramElement* e : fProgram.elements()) {
+ this->writeProgramElement(*e);
+ }
+ }
+ write_stringstream(header, *fOut);
+ write_stringstream(fExtraFunctionPrototypes, *fOut);
+ write_stringstream(fExtraFunctions, *fOut);
+ write_stringstream(body, *fOut);
+ return fContext.fErrors->errorCount() == 0;
+}
+
+} // namespace SkSL