summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/utils/SkPolyUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/utils/SkPolyUtils.cpp')
-rw-r--r--gfx/skia/skia/src/utils/SkPolyUtils.cpp1774
1 files changed, 1774 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/utils/SkPolyUtils.cpp b/gfx/skia/skia/src/utils/SkPolyUtils.cpp
new file mode 100644
index 0000000000..334fa7576b
--- /dev/null
+++ b/gfx/skia/skia/src/utils/SkPolyUtils.cpp
@@ -0,0 +1,1774 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/utils/SkPolyUtils.h"
+
+#include "include/core/SkRect.h"
+#include "include/core/SkTypes.h"
+#include "include/private/base/SkDebug.h"
+#include "include/private/base/SkFloatingPoint.h"
+#include "include/private/base/SkMalloc.h"
+#include "include/private/base/SkTArray.h"
+#include "include/private/base/SkTDArray.h"
+#include "include/private/base/SkTemplates.h"
+#include "src/base/SkTDPQueue.h"
+#include "src/base/SkTInternalLList.h"
+#include "src/base/SkVx.h"
+#include "src/core/SkPointPriv.h"
+#include "src/core/SkRectPriv.h"
+
+#include <algorithm>
+#include <cstdint>
+#include <limits>
+#include <new>
+
+using namespace skia_private;
+
+#if !defined(SK_ENABLE_OPTIMIZE_SIZE)
+
+//////////////////////////////////////////////////////////////////////////////////
+// Helper data structures and functions
+
+struct OffsetSegment {
+ SkPoint fP0;
+ SkVector fV;
+};
+
+constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
+
+// Computes perpDot for point p compared to segment defined by origin p0 and vector v.
+// A positive value means the point is to the left of the segment,
+// negative is to the right, 0 is collinear.
+static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
+ SkVector w = p - p0;
+ SkScalar perpDot = v.cross(w);
+ if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
+ return ((perpDot > 0) ? 1 : -1);
+ }
+
+ return 0;
+}
+
+// Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
+int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
+ if (polygonSize < 3) {
+ return 0;
+ }
+
+ // compute area and use sign to determine winding
+ SkScalar quadArea = 0;
+ SkVector v0 = polygonVerts[1] - polygonVerts[0];
+ for (int curr = 2; curr < polygonSize; ++curr) {
+ SkVector v1 = polygonVerts[curr] - polygonVerts[0];
+ quadArea += v0.cross(v1);
+ v0 = v1;
+ }
+ if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
+ return 0;
+ }
+ // 1 == ccw, -1 == cw
+ return (quadArea > 0) ? 1 : -1;
+}
+
+// Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
+bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
+ SkPoint* vector) {
+ SkASSERT(side == -1 || side == 1);
+ // if distances are equal, can just outset by the perpendicular
+ SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
+ if (!perp.setLength(offset*side)) {
+ return false;
+ }
+ *vector = perp;
+ return true;
+}
+
+// check interval to see if intersection is in segment
+static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
+ return (denomPositive && (numer < 0 || numer > denom)) ||
+ (!denomPositive && (numer > 0 || numer < denom));
+}
+
+// special zero-length test when we're using vdotv as a denominator
+static inline bool zero_length(const SkPoint& v, SkScalar vdotv) {
+ return !(SkScalarsAreFinite(v.fX, v.fY) && vdotv);
+}
+
+// Compute the intersection 'p' between segments s0 and s1, if any.
+// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
+// Returns false if there is no intersection.
+// If the length squared of a segment is 0, then we treat the segment as degenerate
+// and use only the first endpoint for tests.
+static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
+ SkPoint* p, SkScalar* s, SkScalar* t) {
+ const SkVector& v0 = s0.fV;
+ const SkVector& v1 = s1.fV;
+ SkVector w = s1.fP0 - s0.fP0;
+ SkScalar denom = v0.cross(v1);
+ bool denomPositive = (denom > 0);
+ SkScalar sNumer, tNumer;
+ if (SkScalarNearlyZero(denom, kCrossTolerance)) {
+ // segments are parallel, but not collinear
+ if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
+ !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
+ return false;
+ }
+
+ // Check for zero-length segments
+ SkScalar v0dotv0 = v0.dot(v0);
+ if (zero_length(v0, v0dotv0)) {
+ // Both are zero-length
+ SkScalar v1dotv1 = v1.dot(v1);
+ if (zero_length(v1, v1dotv1)) {
+ // Check if they're the same point
+ if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
+ *p = s0.fP0;
+ *s = 0;
+ *t = 0;
+ return true;
+ } else {
+ // Intersection is indeterminate
+ return false;
+ }
+ }
+ // Otherwise project segment0's origin onto segment1
+ tNumer = v1.dot(-w);
+ denom = v1dotv1;
+ if (outside_interval(tNumer, denom, true)) {
+ return false;
+ }
+ sNumer = 0;
+ } else {
+ // Project segment1's endpoints onto segment0
+ sNumer = v0.dot(w);
+ denom = v0dotv0;
+ tNumer = 0;
+ if (outside_interval(sNumer, denom, true)) {
+ // The first endpoint doesn't lie on segment0
+ // If segment1 is degenerate, then there's no collision
+ SkScalar v1dotv1 = v1.dot(v1);
+ if (zero_length(v1, v1dotv1)) {
+ return false;
+ }
+
+ // Otherwise try the other one
+ SkScalar oldSNumer = sNumer;
+ sNumer = v0.dot(w + v1);
+ tNumer = denom;
+ if (outside_interval(sNumer, denom, true)) {
+ // it's possible that segment1's interval surrounds segment0
+ // this is false if params have the same signs, and in that case no collision
+ if (sNumer*oldSNumer > 0) {
+ return false;
+ }
+ // otherwise project segment0's endpoint onto segment1 instead
+ sNumer = 0;
+ tNumer = v1.dot(-w);
+ denom = v1dotv1;
+ }
+ }
+ }
+ } else {
+ sNumer = w.cross(v1);
+ if (outside_interval(sNumer, denom, denomPositive)) {
+ return false;
+ }
+ tNumer = w.cross(v0);
+ if (outside_interval(tNumer, denom, denomPositive)) {
+ return false;
+ }
+ }
+
+ SkScalar localS = sNumer/denom;
+ SkScalar localT = tNumer/denom;
+
+ *p = s0.fP0 + v0*localS;
+ *s = localS;
+ *t = localT;
+
+ return true;
+}
+
+bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
+ if (polygonSize < 3) {
+ return false;
+ }
+
+ SkScalar lastPerpDot = 0;
+ int xSignChangeCount = 0;
+ int ySignChangeCount = 0;
+
+ int prevIndex = polygonSize - 1;
+ int currIndex = 0;
+ int nextIndex = 1;
+ SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
+ SkScalar lastVx = v0.fX;
+ SkScalar lastVy = v0.fY;
+ SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
+ for (int i = 0; i < polygonSize; ++i) {
+ if (!polygonVerts[i].isFinite()) {
+ return false;
+ }
+
+ // Check that winding direction is always the same (otherwise we have a reflex vertex)
+ SkScalar perpDot = v0.cross(v1);
+ if (lastPerpDot*perpDot < 0) {
+ return false;
+ }
+ if (0 != perpDot) {
+ lastPerpDot = perpDot;
+ }
+
+ // Check that the signs of the edge vectors don't change more than twice per coordinate
+ if (lastVx*v1.fX < 0) {
+ xSignChangeCount++;
+ }
+ if (lastVy*v1.fY < 0) {
+ ySignChangeCount++;
+ }
+ if (xSignChangeCount > 2 || ySignChangeCount > 2) {
+ return false;
+ }
+ prevIndex = currIndex;
+ currIndex = nextIndex;
+ nextIndex = (currIndex + 1) % polygonSize;
+ if (v1.fX != 0) {
+ lastVx = v1.fX;
+ }
+ if (v1.fY != 0) {
+ lastVy = v1.fY;
+ }
+ v0 = v1;
+ v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
+ }
+
+ return true;
+}
+
+struct OffsetEdge {
+ OffsetEdge* fPrev;
+ OffsetEdge* fNext;
+ OffsetSegment fOffset;
+ SkPoint fIntersection;
+ SkScalar fTValue;
+ uint16_t fIndex;
+ uint16_t fEnd;
+
+ void init(uint16_t start = 0, uint16_t end = 0) {
+ fIntersection = fOffset.fP0;
+ fTValue = SK_ScalarMin;
+ fIndex = start;
+ fEnd = end;
+ }
+
+ // special intersection check that looks for endpoint intersection
+ bool checkIntersection(const OffsetEdge* that,
+ SkPoint* p, SkScalar* s, SkScalar* t) {
+ if (this->fEnd == that->fIndex) {
+ SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
+ if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
+ *p = p1;
+ *s = SK_Scalar1;
+ *t = 0;
+ return true;
+ }
+ }
+
+ return compute_intersection(this->fOffset, that->fOffset, p, s, t);
+ }
+
+ // computes the line intersection and then the "distance" from that to this
+ // this is really a signed squared distance, where negative means that
+ // the intersection lies inside this->fOffset
+ SkScalar computeCrossingDistance(const OffsetEdge* that) {
+ const OffsetSegment& s0 = this->fOffset;
+ const OffsetSegment& s1 = that->fOffset;
+ const SkVector& v0 = s0.fV;
+ const SkVector& v1 = s1.fV;
+
+ SkScalar denom = v0.cross(v1);
+ if (SkScalarNearlyZero(denom, kCrossTolerance)) {
+ // segments are parallel
+ return SK_ScalarMax;
+ }
+
+ SkVector w = s1.fP0 - s0.fP0;
+ SkScalar localS = w.cross(v1) / denom;
+ if (localS < 0) {
+ localS = -localS;
+ } else {
+ localS -= SK_Scalar1;
+ }
+
+ localS *= SkScalarAbs(localS);
+ localS *= v0.dot(v0);
+
+ return localS;
+ }
+
+};
+
+static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
+ // remove from linked list
+ node->fPrev->fNext = node->fNext;
+ node->fNext->fPrev = node->fPrev;
+ if (node == *head) {
+ *head = (node->fNext == node) ? nullptr : node->fNext;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////////
+
+// The objective here is to inset all of the edges by the given distance, and then
+// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
+// we should only be making left-hand turns (for cw polygons, we use the winding
+// parameter to reverse this). We detect this by checking whether the second intersection
+// on an edge is closer to its tail than the first one.
+//
+// We might also have the case that there is no intersection between two neighboring inset edges.
+// In this case, one edge will lie to the right of the other and should be discarded along with
+// its previous intersection (if any).
+//
+// Note: the assumption is that inputPolygon is convex and has no coincident points.
+//
+bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+ SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
+ if (inputPolygonSize < 3) {
+ return false;
+ }
+
+ // restrict this to match other routines
+ // practically we don't want anything bigger than this anyway
+ if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
+ return false;
+ }
+
+ // can't inset by a negative or non-finite amount
+ if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) {
+ return false;
+ }
+
+ // insetting close to zero just returns the original poly
+ if (inset <= SK_ScalarNearlyZero) {
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ *insetPolygon->append() = inputPolygonVerts[i];
+ }
+ return true;
+ }
+
+ // get winding direction
+ int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
+ if (0 == winding) {
+ return false;
+ }
+
+ // set up
+ AutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
+ int prev = inputPolygonSize - 1;
+ for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
+ int next = (curr + 1) % inputPolygonSize;
+ if (!inputPolygonVerts[curr].isFinite()) {
+ return false;
+ }
+ // check for convexity just to be sure
+ if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
+ inputPolygonVerts[next])*winding < 0) {
+ return false;
+ }
+ SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
+ SkVector perp = SkVector::Make(-v.fY, v.fX);
+ perp.setLength(inset*winding);
+ edgeData[curr].fPrev = &edgeData[prev];
+ edgeData[curr].fNext = &edgeData[next];
+ edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
+ edgeData[curr].fOffset.fV = v;
+ edgeData[curr].init();
+ }
+
+ OffsetEdge* head = &edgeData[0];
+ OffsetEdge* currEdge = head;
+ OffsetEdge* prevEdge = currEdge->fPrev;
+ int insetVertexCount = inputPolygonSize;
+ unsigned int iterations = 0;
+ unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
+ while (head && prevEdge != currEdge) {
+ ++iterations;
+ // we should check each edge against each other edge at most once
+ if (iterations > maxIterations) {
+ return false;
+ }
+
+ SkScalar s, t;
+ SkPoint intersection;
+ if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
+ &intersection, &s, &t)) {
+ // if new intersection is further back on previous inset from the prior intersection
+ if (s < prevEdge->fTValue) {
+ // no point in considering this one again
+ remove_node(prevEdge, &head);
+ --insetVertexCount;
+ // go back one segment
+ prevEdge = prevEdge->fPrev;
+ // we've already considered this intersection, we're done
+ } else if (currEdge->fTValue > SK_ScalarMin &&
+ SkPointPriv::EqualsWithinTolerance(intersection,
+ currEdge->fIntersection,
+ 1.0e-6f)) {
+ break;
+ } else {
+ // add intersection
+ currEdge->fIntersection = intersection;
+ currEdge->fTValue = t;
+
+ // go to next segment
+ prevEdge = currEdge;
+ currEdge = currEdge->fNext;
+ }
+ } else {
+ // if prev to right side of curr
+ int side = winding*compute_side(currEdge->fOffset.fP0,
+ currEdge->fOffset.fV,
+ prevEdge->fOffset.fP0);
+ if (side < 0 &&
+ side == winding*compute_side(currEdge->fOffset.fP0,
+ currEdge->fOffset.fV,
+ prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
+ // no point in considering this one again
+ remove_node(prevEdge, &head);
+ --insetVertexCount;
+ // go back one segment
+ prevEdge = prevEdge->fPrev;
+ } else {
+ // move to next segment
+ remove_node(currEdge, &head);
+ --insetVertexCount;
+ currEdge = currEdge->fNext;
+ }
+ }
+ }
+
+ // store all the valid intersections that aren't nearly coincident
+ // TODO: look at the main algorithm and see if we can detect these better
+ insetPolygon->reset();
+ if (!head) {
+ return false;
+ }
+
+ static constexpr SkScalar kCleanupTolerance = 0.01f;
+ if (insetVertexCount >= 0) {
+ insetPolygon->reserve(insetVertexCount);
+ }
+ int currIndex = 0;
+ *insetPolygon->append() = head->fIntersection;
+ currEdge = head->fNext;
+ while (currEdge != head) {
+ if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
+ (*insetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ *insetPolygon->append() = currEdge->fIntersection;
+ currIndex++;
+ }
+ currEdge = currEdge->fNext;
+ }
+ // make sure the first and last points aren't coincident
+ if (currIndex >= 1 &&
+ SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ insetPolygon->pop_back();
+ }
+
+ return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->size());
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+// compute the number of points needed for a circular join when offsetting a reflex vertex
+bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
+ SkScalar* rotSin, SkScalar* rotCos, int* n) {
+ const SkScalar kRecipPixelsPerArcSegment = 0.25f;
+
+ SkScalar rCos = v1.dot(v2);
+ if (!SkScalarIsFinite(rCos)) {
+ return false;
+ }
+ SkScalar rSin = v1.cross(v2);
+ if (!SkScalarIsFinite(rSin)) {
+ return false;
+ }
+ SkScalar theta = SkScalarATan2(rSin, rCos);
+
+ SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
+ // limit the number of steps to at most max uint16_t (that's all we can index)
+ // knock one value off the top to account for rounding
+ if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
+ return false;
+ }
+ int steps = SkScalarRoundToInt(floatSteps);
+
+ SkScalar dTheta = steps > 0 ? theta / steps : 0;
+ *rotSin = SkScalarSin(dTheta);
+ *rotCos = SkScalarCos(dTheta);
+ // Our offset may be so large that we end up with a tiny dTheta, in which case we
+ // lose precision when computing rotSin and rotCos.
+ if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) {
+ return false;
+ }
+ *n = steps;
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+// a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
+static bool left(const SkPoint& p0, const SkPoint& p1) {
+ return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
+}
+
+// a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
+static bool right(const SkPoint& p0, const SkPoint& p1) {
+ return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
+}
+
+struct Vertex {
+ static bool Left(const Vertex& qv0, const Vertex& qv1) {
+ return left(qv0.fPosition, qv1.fPosition);
+ }
+
+ // packed to fit into 16 bytes (one cache line)
+ SkPoint fPosition;
+ uint16_t fIndex; // index in unsorted polygon
+ uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
+ uint16_t fNextIndex;
+ uint16_t fFlags;
+};
+
+enum VertexFlags {
+ kPrevLeft_VertexFlag = 0x1,
+ kNextLeft_VertexFlag = 0x2,
+};
+
+struct ActiveEdge {
+ ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
+ ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
+ : fSegment({ p0, v })
+ , fIndex0(index0)
+ , fIndex1(index1)
+ , fAbove(nullptr)
+ , fBelow(nullptr)
+ , fRed(true) {
+ fChild[0] = nullptr;
+ fChild[1] = nullptr;
+ }
+
+ // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
+ // This is only used to verify the edgelist -- the actual test for insertion/deletion is much
+ // simpler because we can make certain assumptions then.
+ bool aboveIfLeft(const ActiveEdge* that) const {
+ const SkPoint& p0 = this->fSegment.fP0;
+ const SkPoint& q0 = that->fSegment.fP0;
+ SkASSERT(p0.fX <= q0.fX);
+ SkVector d = q0 - p0;
+ const SkVector& v = this->fSegment.fV;
+ const SkVector& w = that->fSegment.fV;
+ // The idea here is that if the vector between the origins of the two segments (d)
+ // rotates counterclockwise up to the vector representing the "this" segment (v),
+ // then we know that "this" is above "that". If the result is clockwise we say it's below.
+ if (this->fIndex0 != that->fIndex0) {
+ SkScalar cross = d.cross(v);
+ if (cross > kCrossTolerance) {
+ return true;
+ } else if (cross < -kCrossTolerance) {
+ return false;
+ }
+ } else if (this->fIndex1 == that->fIndex1) {
+ return false;
+ }
+ // At this point either the two origins are nearly equal or the origin of "that"
+ // lies on dv. So then we try the same for the vector from the tail of "this"
+ // to the head of "that". Again, ccw means "this" is above "that".
+ // d = that.P1 - this.P0
+ // = that.fP0 + that.fV - this.fP0
+ // = that.fP0 - this.fP0 + that.fV
+ // = old_d + that.fV
+ d += w;
+ SkScalar cross = d.cross(v);
+ if (cross > kCrossTolerance) {
+ return true;
+ } else if (cross < -kCrossTolerance) {
+ return false;
+ }
+ // If the previous check fails, the two segments are nearly collinear
+ // First check y-coord of first endpoints
+ if (p0.fX < q0.fX) {
+ return (p0.fY >= q0.fY);
+ } else if (p0.fY > q0.fY) {
+ return true;
+ } else if (p0.fY < q0.fY) {
+ return false;
+ }
+ // The first endpoints are the same, so check the other endpoint
+ SkPoint p1 = p0 + v;
+ SkPoint q1 = q0 + w;
+ if (p1.fX < q1.fX) {
+ return (p1.fY >= q1.fY);
+ } else {
+ return (p1.fY > q1.fY);
+ }
+ }
+
+ // same as leftAndAbove(), but generalized
+ bool above(const ActiveEdge* that) const {
+ const SkPoint& p0 = this->fSegment.fP0;
+ const SkPoint& q0 = that->fSegment.fP0;
+ if (right(p0, q0)) {
+ return !that->aboveIfLeft(this);
+ } else {
+ return this->aboveIfLeft(that);
+ }
+ }
+
+ bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
+ // check first to see if these edges are neighbors in the polygon
+ if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
+ this->fIndex0 == index1 || this->fIndex1 == index1) {
+ return false;
+ }
+
+ // We don't need the exact intersection point so we can do a simpler test here.
+ const SkPoint& p0 = this->fSegment.fP0;
+ const SkVector& v = this->fSegment.fV;
+ SkPoint p1 = p0 + v;
+ SkPoint q1 = q0 + w;
+
+ // We assume some x-overlap due to how the edgelist works
+ // This allows us to simplify our test
+ // We need some slop here because storing the vector and recomputing the second endpoint
+ // doesn't necessary give us the original result in floating point.
+ // TODO: Store vector as double? Store endpoint as well?
+ SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
+
+ // if each segment straddles the other (i.e., the endpoints have different sides)
+ // then they intersect
+ bool result;
+ if (p0.fX < q0.fX) {
+ if (q1.fX < p1.fX) {
+ result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
+ } else {
+ result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
+ }
+ } else {
+ if (p1.fX < q1.fX) {
+ result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
+ } else {
+ result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
+ }
+ }
+ return result;
+ }
+
+ bool intersect(const ActiveEdge* edge) {
+ return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
+ }
+
+ bool lessThan(const ActiveEdge* that) const {
+ SkASSERT(!this->above(this));
+ SkASSERT(!that->above(that));
+ SkASSERT(!(this->above(that) && that->above(this)));
+ return this->above(that);
+ }
+
+ bool equals(uint16_t index0, uint16_t index1) const {
+ return (this->fIndex0 == index0 && this->fIndex1 == index1);
+ }
+
+ OffsetSegment fSegment;
+ uint16_t fIndex0; // indices for previous and next vertex in polygon
+ uint16_t fIndex1;
+ ActiveEdge* fChild[2];
+ ActiveEdge* fAbove;
+ ActiveEdge* fBelow;
+ int32_t fRed;
+};
+
+class ActiveEdgeList {
+public:
+ ActiveEdgeList(int maxEdges) {
+ fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
+ fCurrFree = 0;
+ fMaxFree = maxEdges;
+ }
+ ~ActiveEdgeList() {
+ fTreeHead.fChild[1] = nullptr;
+ sk_free(fAllocation);
+ }
+
+ bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
+ SkVector v = p1 - p0;
+ if (!v.isFinite()) {
+ return false;
+ }
+ // empty tree case -- easy
+ if (!fTreeHead.fChild[1]) {
+ ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
+ SkASSERT(root);
+ if (!root) {
+ return false;
+ }
+ root->fRed = false;
+ return true;
+ }
+
+ // set up helpers
+ ActiveEdge* top = &fTreeHead;
+ ActiveEdge *grandparent = nullptr;
+ ActiveEdge *parent = nullptr;
+ ActiveEdge *curr = top->fChild[1];
+ int dir = 0;
+ int last = 0; // ?
+ // predecessor and successor, for intersection check
+ ActiveEdge* pred = nullptr;
+ ActiveEdge* succ = nullptr;
+
+ // search down the tree
+ while (true) {
+ if (!curr) {
+ // check for intersection with predecessor and successor
+ if ((pred && pred->intersect(p0, v, index0, index1)) ||
+ (succ && succ->intersect(p0, v, index0, index1))) {
+ return false;
+ }
+ // insert new node at bottom
+ parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
+ SkASSERT(curr);
+ if (!curr) {
+ return false;
+ }
+ curr->fAbove = pred;
+ curr->fBelow = succ;
+ if (pred) {
+ if (pred->fSegment.fP0 == curr->fSegment.fP0 &&
+ pred->fSegment.fV == curr->fSegment.fV) {
+ return false;
+ }
+ pred->fBelow = curr;
+ }
+ if (succ) {
+ if (succ->fSegment.fP0 == curr->fSegment.fP0 &&
+ succ->fSegment.fV == curr->fSegment.fV) {
+ return false;
+ }
+ succ->fAbove = curr;
+ }
+ if (IsRed(parent)) {
+ int dir2 = (top->fChild[1] == grandparent);
+ if (curr == parent->fChild[last]) {
+ top->fChild[dir2] = SingleRotation(grandparent, !last);
+ } else {
+ top->fChild[dir2] = DoubleRotation(grandparent, !last);
+ }
+ }
+ break;
+ } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
+ // color flip
+ curr->fRed = true;
+ curr->fChild[0]->fRed = false;
+ curr->fChild[1]->fRed = false;
+ if (IsRed(parent)) {
+ int dir2 = (top->fChild[1] == grandparent);
+ if (curr == parent->fChild[last]) {
+ top->fChild[dir2] = SingleRotation(grandparent, !last);
+ } else {
+ top->fChild[dir2] = DoubleRotation(grandparent, !last);
+ }
+ }
+ }
+
+ last = dir;
+ int side;
+ // check to see if segment is above or below
+ if (curr->fIndex0 == index0) {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
+ } else {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
+ }
+ if (0 == side) {
+ return false;
+ }
+ dir = (side < 0);
+
+ if (0 == dir) {
+ succ = curr;
+ } else {
+ pred = curr;
+ }
+
+ // update helpers
+ if (grandparent) {
+ top = grandparent;
+ }
+ grandparent = parent;
+ parent = curr;
+ curr = curr->fChild[dir];
+ }
+
+ // update root and make it black
+ fTreeHead.fChild[1]->fRed = false;
+
+ SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
+
+ return true;
+ }
+
+ // replaces edge p0p1 with p1p2
+ bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
+ uint16_t index0, uint16_t index1, uint16_t index2) {
+ if (!fTreeHead.fChild[1]) {
+ return false;
+ }
+
+ SkVector v = p2 - p1;
+ ActiveEdge* curr = &fTreeHead;
+ ActiveEdge* found = nullptr;
+ int dir = 1;
+
+ // search
+ while (curr->fChild[dir] != nullptr) {
+ // update helpers
+ curr = curr->fChild[dir];
+ // save found node
+ if (curr->equals(index0, index1)) {
+ found = curr;
+ break;
+ } else {
+ // check to see if segment is above or below
+ int side;
+ if (curr->fIndex1 == index1) {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
+ } else {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
+ }
+ if (0 == side) {
+ return false;
+ }
+ dir = (side < 0);
+ }
+ }
+
+ if (!found) {
+ return false;
+ }
+
+ // replace if found
+ ActiveEdge* pred = found->fAbove;
+ ActiveEdge* succ = found->fBelow;
+ // check deletion and insert intersection cases
+ if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
+ return false;
+ }
+ if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
+ return false;
+ }
+ found->fSegment.fP0 = p1;
+ found->fSegment.fV = v;
+ found->fIndex0 = index1;
+ found->fIndex1 = index2;
+ // above and below should stay the same
+
+ SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
+
+ return true;
+ }
+
+ bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
+ if (!fTreeHead.fChild[1]) {
+ return false;
+ }
+
+ ActiveEdge* curr = &fTreeHead;
+ ActiveEdge* parent = nullptr;
+ ActiveEdge* grandparent = nullptr;
+ ActiveEdge* found = nullptr;
+ int dir = 1;
+
+ // search and push a red node down
+ while (curr->fChild[dir] != nullptr) {
+ int last = dir;
+
+ // update helpers
+ grandparent = parent;
+ parent = curr;
+ curr = curr->fChild[dir];
+ // save found node
+ if (curr->equals(index0, index1)) {
+ found = curr;
+ dir = 0;
+ } else {
+ // check to see if segment is above or below
+ int side;
+ if (curr->fIndex1 == index1) {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
+ } else {
+ side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
+ }
+ if (0 == side) {
+ return false;
+ }
+ dir = (side < 0);
+ }
+
+ // push the red node down
+ if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
+ if (IsRed(curr->fChild[!dir])) {
+ parent = parent->fChild[last] = SingleRotation(curr, dir);
+ } else {
+ ActiveEdge *s = parent->fChild[!last];
+
+ if (s != nullptr) {
+ if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
+ // color flip
+ parent->fRed = false;
+ s->fRed = true;
+ curr->fRed = true;
+ } else {
+ int dir2 = (grandparent->fChild[1] == parent);
+
+ if (IsRed(s->fChild[last])) {
+ grandparent->fChild[dir2] = DoubleRotation(parent, last);
+ } else if (IsRed(s->fChild[!last])) {
+ grandparent->fChild[dir2] = SingleRotation(parent, last);
+ }
+
+ // ensure correct coloring
+ curr->fRed = grandparent->fChild[dir2]->fRed = true;
+ grandparent->fChild[dir2]->fChild[0]->fRed = false;
+ grandparent->fChild[dir2]->fChild[1]->fRed = false;
+ }
+ }
+ }
+ }
+ }
+
+ // replace and remove if found
+ if (found) {
+ ActiveEdge* pred = found->fAbove;
+ ActiveEdge* succ = found->fBelow;
+ if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
+ return false;
+ }
+ if (found != curr) {
+ found->fSegment = curr->fSegment;
+ found->fIndex0 = curr->fIndex0;
+ found->fIndex1 = curr->fIndex1;
+ found->fAbove = curr->fAbove;
+ pred = found->fAbove;
+ // we don't need to set found->fBelow here
+ } else {
+ if (succ) {
+ succ->fAbove = pred;
+ }
+ }
+ if (pred) {
+ pred->fBelow = curr->fBelow;
+ }
+ parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
+
+ // no need to delete
+ curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
+ curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
+ if (fTreeHead.fChild[1]) {
+ fTreeHead.fChild[1]->fRed = false;
+ }
+ }
+
+ // update root and make it black
+ if (fTreeHead.fChild[1]) {
+ fTreeHead.fChild[1]->fRed = false;
+ }
+
+ SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
+
+ return true;
+ }
+
+private:
+ // allocator
+ ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
+ if (fCurrFree >= fMaxFree) {
+ return nullptr;
+ }
+ char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
+ ++fCurrFree;
+ return new(bytes) ActiveEdge(p0, p1, index0, index1);
+ }
+
+ ///////////////////////////////////////////////////////////////////////////////////
+ // Red-black tree methods
+ ///////////////////////////////////////////////////////////////////////////////////
+ static bool IsRed(const ActiveEdge* node) {
+ return node && node->fRed;
+ }
+
+ static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
+ ActiveEdge* tmp = node->fChild[!dir];
+
+ node->fChild[!dir] = tmp->fChild[dir];
+ tmp->fChild[dir] = node;
+
+ node->fRed = true;
+ tmp->fRed = false;
+
+ return tmp;
+ }
+
+ static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
+ node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
+
+ return SingleRotation(node, dir);
+ }
+
+ // returns black link count
+ static int VerifyTree(const ActiveEdge* tree) {
+ if (!tree) {
+ return 1;
+ }
+
+ const ActiveEdge* left = tree->fChild[0];
+ const ActiveEdge* right = tree->fChild[1];
+
+ // no consecutive red links
+ if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
+ SkASSERT(false);
+ return 0;
+ }
+
+ // check secondary links
+ if (tree->fAbove) {
+ SkASSERT(tree->fAbove->fBelow == tree);
+ SkASSERT(tree->fAbove->lessThan(tree));
+ }
+ if (tree->fBelow) {
+ SkASSERT(tree->fBelow->fAbove == tree);
+ SkASSERT(tree->lessThan(tree->fBelow));
+ }
+
+ // violates binary tree order
+ if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
+ SkASSERT(false);
+ return 0;
+ }
+
+ int leftCount = VerifyTree(left);
+ int rightCount = VerifyTree(right);
+
+ // return black link count
+ if (leftCount != 0 && rightCount != 0) {
+ // black height mismatch
+ if (leftCount != rightCount) {
+ SkASSERT(false);
+ return 0;
+ }
+ return IsRed(tree) ? leftCount : leftCount + 1;
+ } else {
+ return 0;
+ }
+ }
+
+ ActiveEdge fTreeHead;
+ char* fAllocation;
+ int fCurrFree;
+ int fMaxFree;
+};
+
+// Here we implement a sweep line algorithm to determine whether the provided points
+// represent a simple polygon, i.e., the polygon is non-self-intersecting.
+// We first insert the vertices into a priority queue sorting horizontally from left to right.
+// Then as we pop the vertices from the queue we generate events which indicate that an edge
+// should be added or removed from an edge list. If any intersections are detected in the edge
+// list, then we know the polygon is self-intersecting and hence not simple.
+bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
+ if (polygonSize < 3) {
+ return false;
+ }
+
+ // If it's convex, it's simple
+ if (SkIsConvexPolygon(polygon, polygonSize)) {
+ return true;
+ }
+
+ // practically speaking, it takes too long to process large polygons
+ if (polygonSize > 2048) {
+ return false;
+ }
+
+ SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
+ for (int i = 0; i < polygonSize; ++i) {
+ Vertex newVertex;
+ if (!polygon[i].isFinite()) {
+ return false;
+ }
+ newVertex.fPosition = polygon[i];
+ newVertex.fIndex = i;
+ newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
+ newVertex.fNextIndex = (i + 1) % polygonSize;
+ newVertex.fFlags = 0;
+ // The two edges adjacent to this vertex are the same, so polygon is not simple
+ if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) {
+ return false;
+ }
+ if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
+ newVertex.fFlags |= kPrevLeft_VertexFlag;
+ }
+ if (left(polygon[newVertex.fNextIndex], polygon[i])) {
+ newVertex.fFlags |= kNextLeft_VertexFlag;
+ }
+ vertexQueue.insert(newVertex);
+ }
+
+ // pop each vertex from the queue and generate events depending on
+ // where it lies relative to its neighboring edges
+ ActiveEdgeList sweepLine(polygonSize);
+ while (vertexQueue.count() > 0) {
+ const Vertex& v = vertexQueue.peek();
+
+ // both to the right -- insert both
+ if (v.fFlags == 0) {
+ if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
+ break;
+ }
+ if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
+ break;
+ }
+ // both to the left -- remove both
+ } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
+ if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
+ break;
+ }
+ if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
+ break;
+ }
+ // one to left and right -- replace one with another
+ } else {
+ if (v.fFlags & kPrevLeft_VertexFlag) {
+ if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
+ v.fPrevIndex, v.fIndex, v.fNextIndex)) {
+ break;
+ }
+ } else {
+ SkASSERT(v.fFlags & kNextLeft_VertexFlag);
+ if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
+ v.fNextIndex, v.fIndex, v.fPrevIndex)) {
+ break;
+ }
+ }
+ }
+
+ vertexQueue.pop();
+ }
+
+ return (vertexQueue.count() == 0);
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+// helper function for SkOffsetSimplePolygon
+static void setup_offset_edge(OffsetEdge* currEdge,
+ const SkPoint& endpoint0, const SkPoint& endpoint1,
+ uint16_t startIndex, uint16_t endIndex) {
+ currEdge->fOffset.fP0 = endpoint0;
+ currEdge->fOffset.fV = endpoint1 - endpoint0;
+ currEdge->init(startIndex, endIndex);
+}
+
+static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
+ uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
+ int side = compute_side(inputPolygonVerts[prevIndex],
+ inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
+ inputPolygonVerts[nextIndex]);
+ // if reflex point, we need to add extra edges
+ return (side*winding*offset < 0);
+}
+
+bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
+ const SkRect& bounds, SkScalar offset,
+ SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
+ if (inputPolygonSize < 3) {
+ return false;
+ }
+
+ // need to be able to represent all the vertices in the 16-bit indices
+ if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
+ return false;
+ }
+
+ if (!SkScalarIsFinite(offset)) {
+ return false;
+ }
+
+ // can't inset more than the half bounds of the polygon
+ if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)),
+ SkTAbs(SkRectPriv::HalfHeight(bounds)))) {
+ return false;
+ }
+
+ // offsetting close to zero just returns the original poly
+ if (SkScalarNearlyZero(offset)) {
+ for (int i = 0; i < inputPolygonSize; ++i) {
+ *offsetPolygon->append() = inputPolygonVerts[i];
+ if (polygonIndices) {
+ *polygonIndices->append() = i;
+ }
+ }
+ return true;
+ }
+
+ // get winding direction
+ int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
+ if (0 == winding) {
+ return false;
+ }
+
+ // build normals
+ AutoSTMalloc<64, SkVector> normals(inputPolygonSize);
+ unsigned int numEdges = 0;
+ for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
+ currIndex < inputPolygonSize;
+ prevIndex = currIndex, ++currIndex) {
+ if (!inputPolygonVerts[currIndex].isFinite()) {
+ return false;
+ }
+ int nextIndex = (currIndex + 1) % inputPolygonSize;
+ if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
+ offset, winding, &normals[currIndex])) {
+ return false;
+ }
+ if (currIndex > 0) {
+ // if reflex point, we need to add extra edges
+ if (is_reflex_vertex(inputPolygonVerts, winding, offset,
+ prevIndex, currIndex, nextIndex)) {
+ SkScalar rotSin, rotCos;
+ int numSteps;
+ if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
+ &rotSin, &rotCos, &numSteps)) {
+ return false;
+ }
+ numEdges += std::max(numSteps, 1);
+ }
+ }
+ numEdges++;
+ }
+ // finish up the edge counting
+ if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
+ SkScalar rotSin, rotCos;
+ int numSteps;
+ if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
+ &rotSin, &rotCos, &numSteps)) {
+ return false;
+ }
+ numEdges += std::max(numSteps, 1);
+ }
+
+ // Make sure we don't overflow the max array count.
+ // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
+ // and we have a max of 2^16-1 original vertices.
+ if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
+ return false;
+ }
+
+ // build initial offset edge list
+ SkSTArray<64, OffsetEdge> edgeData(numEdges);
+ OffsetEdge* prevEdge = nullptr;
+ for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
+ currIndex < inputPolygonSize;
+ prevIndex = currIndex, ++currIndex) {
+ int nextIndex = (currIndex + 1) % inputPolygonSize;
+ // if reflex point, fill in curve
+ if (is_reflex_vertex(inputPolygonVerts, winding, offset,
+ prevIndex, currIndex, nextIndex)) {
+ SkScalar rotSin, rotCos;
+ int numSteps;
+ SkVector prevNormal = normals[prevIndex];
+ if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
+ &rotSin, &rotCos, &numSteps)) {
+ return false;
+ }
+ auto currEdge = edgeData.push_back_n(std::max(numSteps, 1));
+ for (int i = 0; i < numSteps - 1; ++i) {
+ SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
+ prevNormal.fY*rotCos + prevNormal.fX*rotSin);
+ setup_offset_edge(currEdge,
+ inputPolygonVerts[currIndex] + prevNormal,
+ inputPolygonVerts[currIndex] + currNormal,
+ currIndex, currIndex);
+ prevNormal = currNormal;
+ currEdge->fPrev = prevEdge;
+ if (prevEdge) {
+ prevEdge->fNext = currEdge;
+ }
+ prevEdge = currEdge;
+ ++currEdge;
+ }
+ setup_offset_edge(currEdge,
+ inputPolygonVerts[currIndex] + prevNormal,
+ inputPolygonVerts[currIndex] + normals[currIndex],
+ currIndex, currIndex);
+ currEdge->fPrev = prevEdge;
+ if (prevEdge) {
+ prevEdge->fNext = currEdge;
+ }
+ prevEdge = currEdge;
+ }
+
+ // Add the edge
+ auto currEdge = edgeData.push_back_n(1);
+ setup_offset_edge(currEdge,
+ inputPolygonVerts[currIndex] + normals[currIndex],
+ inputPolygonVerts[nextIndex] + normals[currIndex],
+ currIndex, nextIndex);
+ currEdge->fPrev = prevEdge;
+ if (prevEdge) {
+ prevEdge->fNext = currEdge;
+ }
+ prevEdge = currEdge;
+ }
+ // close up the linked list
+ SkASSERT(prevEdge);
+ prevEdge->fNext = &edgeData[0];
+ edgeData[0].fPrev = prevEdge;
+
+ // now clip edges
+ SkASSERT(edgeData.size() == (int)numEdges);
+ auto head = &edgeData[0];
+ auto currEdge = head;
+ unsigned int offsetVertexCount = numEdges;
+ unsigned long long iterations = 0;
+ unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
+ while (head && prevEdge != currEdge && offsetVertexCount > 0) {
+ ++iterations;
+ // we should check each edge against each other edge at most once
+ if (iterations > maxIterations) {
+ return false;
+ }
+
+ SkScalar s, t;
+ SkPoint intersection;
+ if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
+ // if new intersection is further back on previous inset from the prior intersection
+ if (s < prevEdge->fTValue) {
+ // no point in considering this one again
+ remove_node(prevEdge, &head);
+ --offsetVertexCount;
+ // go back one segment
+ prevEdge = prevEdge->fPrev;
+ // we've already considered this intersection, we're done
+ } else if (currEdge->fTValue > SK_ScalarMin &&
+ SkPointPriv::EqualsWithinTolerance(intersection,
+ currEdge->fIntersection,
+ 1.0e-6f)) {
+ break;
+ } else {
+ // add intersection
+ currEdge->fIntersection = intersection;
+ currEdge->fTValue = t;
+ currEdge->fIndex = prevEdge->fEnd;
+
+ // go to next segment
+ prevEdge = currEdge;
+ currEdge = currEdge->fNext;
+ }
+ } else {
+ // If there is no intersection, we want to minimize the distance between
+ // the point where the segment lines cross and the segments themselves.
+ OffsetEdge* prevPrevEdge = prevEdge->fPrev;
+ OffsetEdge* currNextEdge = currEdge->fNext;
+ SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
+ SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
+ // if both lead to direct collision
+ if (dist0 < 0 && dist1 < 0) {
+ // check first to see if either represent parts of one contour
+ SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
+ bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
+ prevEdge->fOffset.fP0);
+ p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
+ bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
+ currNextEdge->fOffset.fP0);
+
+ // want to step along contour to find intersections rather than jump to new one
+ if (currSameContour && !prevSameContour) {
+ remove_node(currEdge, &head);
+ currEdge = currNextEdge;
+ --offsetVertexCount;
+ continue;
+ } else if (prevSameContour && !currSameContour) {
+ remove_node(prevEdge, &head);
+ prevEdge = prevPrevEdge;
+ --offsetVertexCount;
+ continue;
+ }
+ }
+
+ // otherwise minimize collision distance along segment
+ if (dist0 < dist1) {
+ remove_node(prevEdge, &head);
+ prevEdge = prevPrevEdge;
+ } else {
+ remove_node(currEdge, &head);
+ currEdge = currNextEdge;
+ }
+ --offsetVertexCount;
+ }
+ }
+
+ // store all the valid intersections that aren't nearly coincident
+ // TODO: look at the main algorithm and see if we can detect these better
+ offsetPolygon->reset();
+ if (!head || offsetVertexCount == 0 ||
+ offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
+ return false;
+ }
+
+ static constexpr SkScalar kCleanupTolerance = 0.01f;
+ offsetPolygon->reserve(offsetVertexCount);
+ int currIndex = 0;
+ *offsetPolygon->append() = head->fIntersection;
+ if (polygonIndices) {
+ *polygonIndices->append() = head->fIndex;
+ }
+ currEdge = head->fNext;
+ while (currEdge != head) {
+ if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
+ (*offsetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ *offsetPolygon->append() = currEdge->fIntersection;
+ if (polygonIndices) {
+ *polygonIndices->append() = currEdge->fIndex;
+ }
+ currIndex++;
+ }
+ currEdge = currEdge->fNext;
+ }
+ // make sure the first and last points aren't coincident
+ if (currIndex >= 1 &&
+ SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
+ kCleanupTolerance)) {
+ offsetPolygon->pop_back();
+ if (polygonIndices) {
+ polygonIndices->pop_back();
+ }
+ }
+
+ // check winding of offset polygon (it should be same as the original polygon)
+ SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->size());
+
+ return (winding*offsetWinding > 0 &&
+ SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->size()));
+}
+
+//////////////////////////////////////////////////////////////////////////////////////////
+
+struct TriangulationVertex {
+ SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
+
+ enum class VertexType { kConvex, kReflex };
+
+ SkPoint fPosition;
+ VertexType fVertexType;
+ uint16_t fIndex;
+ uint16_t fPrevIndex;
+ uint16_t fNextIndex;
+};
+
+static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
+ SkRect* bounds) {
+ skvx::float4 min, max;
+ min = max = skvx::float4(p0.fX, p0.fY, p0.fX, p0.fY);
+ skvx::float4 xy(p1.fX, p1.fY, p2.fX, p2.fY);
+ min = skvx::min(min, xy);
+ max = skvx::max(max, xy);
+ bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
+ std::max(max[0], max[2]), std::max(max[1], max[3]));
+}
+
+// test to see if point p is in triangle p0p1p2.
+// for now assuming strictly inside -- if on the edge it's outside
+static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
+ const SkPoint& p) {
+ SkVector v0 = p1 - p0;
+ SkVector v1 = p2 - p1;
+ SkScalar n = v0.cross(v1);
+
+ SkVector w0 = p - p0;
+ if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
+ return false;
+ }
+
+ SkVector w1 = p - p1;
+ if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
+ return false;
+ }
+
+ SkVector v2 = p0 - p2;
+ SkVector w2 = p - p2;
+ if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
+ return false;
+ }
+
+ return true;
+}
+
+// Data structure to track reflex vertices and check whether any are inside a given triangle
+class ReflexHash {
+public:
+ bool init(const SkRect& bounds, int vertexCount) {
+ fBounds = bounds;
+ fNumVerts = 0;
+ SkScalar width = bounds.width();
+ SkScalar height = bounds.height();
+ if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) {
+ return false;
+ }
+
+ // We want vertexCount grid cells, roughly distributed to match the bounds ratio
+ SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
+ if (!SkScalarIsFinite(hCount)) {
+ return false;
+ }
+ fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1);
+ fVCount = vertexCount/fHCount;
+ fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
+ sk_ieee_float_divide(fVCount - 0.001f, height));
+ if (!fGridConversion.isFinite()) {
+ return false;
+ }
+
+ fGrid.resize(fHCount*fVCount);
+ for (int i = 0; i < fGrid.size(); ++i) {
+ fGrid[i].reset();
+ }
+
+ return true;
+ }
+
+ void add(TriangulationVertex* v) {
+ int index = hash(v);
+ fGrid[index].addToTail(v);
+ ++fNumVerts;
+ }
+
+ void remove(TriangulationVertex* v) {
+ int index = hash(v);
+ fGrid[index].remove(v);
+ --fNumVerts;
+ }
+
+ bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
+ uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
+ if (!fNumVerts) {
+ return false;
+ }
+
+ SkRect triBounds;
+ compute_triangle_bounds(p0, p1, p2, &triBounds);
+ int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
+ int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
+ int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
+ int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
+
+ for (int v = v0; v <= v1; ++v) {
+ for (int h = h0; h <= h1; ++h) {
+ int i = v * fHCount + h;
+ for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
+ reflexIter != fGrid[i].end(); ++reflexIter) {
+ TriangulationVertex* reflexVertex = *reflexIter;
+ if (reflexVertex->fIndex != ignoreIndex0 &&
+ reflexVertex->fIndex != ignoreIndex1 &&
+ point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
+ return true;
+ }
+ }
+
+ }
+ }
+
+ return false;
+ }
+
+private:
+ int hash(TriangulationVertex* vert) const {
+ int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
+ int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
+ SkASSERT(v*fHCount + h >= 0);
+ return v*fHCount + h;
+ }
+
+ SkRect fBounds;
+ int fHCount;
+ int fVCount;
+ int fNumVerts;
+ // converts distance from the origin to a grid location (when cast to int)
+ SkVector fGridConversion;
+ SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
+};
+
+// Check to see if a reflex vertex has become a convex vertex after clipping an ear
+static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
+ int winding, ReflexHash* reflexHash,
+ SkTInternalLList<TriangulationVertex>* convexList) {
+ if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
+ SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
+ SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
+ if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
+ p->fVertexType = TriangulationVertex::VertexType::kConvex;
+ reflexHash->remove(p);
+ p->fPrev = p->fNext = nullptr;
+ convexList->addToTail(p);
+ }
+ }
+}
+
+bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
+ SkTDArray<uint16_t>* triangleIndices) {
+ if (polygonSize < 3) {
+ return false;
+ }
+ // need to be able to represent all the vertices in the 16-bit indices
+ if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
+ return false;
+ }
+
+ // get bounds
+ SkRect bounds;
+ if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
+ return false;
+ }
+ // get winding direction
+ // TODO: we do this for all the polygon routines -- might be better to have the client
+ // compute it and pass it in
+ int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
+ if (0 == winding) {
+ return false;
+ }
+
+ // Set up vertices
+ AutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize);
+ int prevIndex = polygonSize - 1;
+ SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
+ for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
+ int nextIndex = (currIndex + 1) % polygonSize;
+
+ triangulationVertices[currIndex] = TriangulationVertex{};
+ triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
+ triangulationVertices[currIndex].fIndex = currIndex;
+ triangulationVertices[currIndex].fPrevIndex = prevIndex;
+ triangulationVertices[currIndex].fNextIndex = nextIndex;
+ SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
+ if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
+ triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
+ } else {
+ triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
+ }
+
+ prevIndex = currIndex;
+ v0 = v1;
+ }
+
+ // Classify initial vertices into a list of convex vertices and a hash of reflex vertices
+ // TODO: possibly sort the convexList in some way to get better triangles
+ SkTInternalLList<TriangulationVertex> convexList;
+ ReflexHash reflexHash;
+ if (!reflexHash.init(bounds, polygonSize)) {
+ return false;
+ }
+ prevIndex = polygonSize - 1;
+ for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
+ TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
+ if (TriangulationVertex::VertexType::kConvex == currType) {
+ int nextIndex = (currIndex + 1) % polygonSize;
+ TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
+ TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
+ // We prioritize clipping vertices with neighboring reflex vertices.
+ // The intent here is that it will cull reflex vertices more quickly.
+ if (TriangulationVertex::VertexType::kReflex == prevType ||
+ TriangulationVertex::VertexType::kReflex == nextType) {
+ convexList.addToHead(&triangulationVertices[currIndex]);
+ } else {
+ convexList.addToTail(&triangulationVertices[currIndex]);
+ }
+ } else {
+ // We treat near collinear vertices as reflex
+ reflexHash.add(&triangulationVertices[currIndex]);
+ }
+ }
+
+ // The general concept: We are trying to find three neighboring vertices where
+ // no other vertex lies inside the triangle (an "ear"). If we find one, we clip
+ // that ear off, and then repeat on the new polygon. Once we get down to three vertices
+ // we have triangulated the entire polygon.
+ // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
+ // noting that only convex vertices can be potential ears, and we only need to check whether
+ // any reflex vertices lie inside the ear.
+ triangleIndices->reserve(triangleIndices->size() + 3 * (polygonSize - 2));
+ int vertexCount = polygonSize;
+ while (vertexCount > 3) {
+ bool success = false;
+ TriangulationVertex* earVertex = nullptr;
+ TriangulationVertex* p0 = nullptr;
+ TriangulationVertex* p2 = nullptr;
+ // find a convex vertex to clip
+ for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
+ convexIter != convexList.end(); ++convexIter) {
+ earVertex = *convexIter;
+ SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
+
+ p0 = &triangulationVertices[earVertex->fPrevIndex];
+ p2 = &triangulationVertices[earVertex->fNextIndex];
+
+ // see if any reflex vertices are inside the ear
+ bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
+ p2->fPosition, p0->fIndex, p2->fIndex);
+ if (failed) {
+ continue;
+ }
+
+ // found one we can clip
+ success = true;
+ break;
+ }
+ // If we can't find any ears to clip, this probably isn't a simple polygon
+ if (!success) {
+ return false;
+ }
+
+ // add indices
+ auto indices = triangleIndices->append(3);
+ indices[0] = indexMap[p0->fIndex];
+ indices[1] = indexMap[earVertex->fIndex];
+ indices[2] = indexMap[p2->fIndex];
+
+ // clip the ear
+ convexList.remove(earVertex);
+ --vertexCount;
+
+ // reclassify reflex verts
+ p0->fNextIndex = earVertex->fNextIndex;
+ reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
+
+ p2->fPrevIndex = earVertex->fPrevIndex;
+ reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
+ }
+
+ // output indices
+ for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
+ vertexIter != convexList.end(); ++vertexIter) {
+ TriangulationVertex* vertex = *vertexIter;
+ *triangleIndices->append() = indexMap[vertex->fIndex];
+ }
+
+ return true;
+}
+
+#endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
+