diff options
Diffstat (limited to '')
-rw-r--r-- | intl/icu/source/tools/toolutil/denseranges.cpp | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/intl/icu/source/tools/toolutil/denseranges.cpp b/intl/icu/source/tools/toolutil/denseranges.cpp new file mode 100644 index 0000000000..f5e52b1bbb --- /dev/null +++ b/intl/icu/source/tools/toolutil/denseranges.cpp @@ -0,0 +1,160 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* Copyright (C) 2010, International Business Machines +* Corporation and others. All Rights Reserved. +******************************************************************************* +* file name: denseranges.cpp +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2010sep25 +* created by: Markus W. Scherer +* +* Helper code for finding a small number of dense ranges. +*/ + +#include "unicode/utypes.h" +#include "denseranges.h" + +// Definitions in the anonymous namespace are invisible outside this file. +namespace { + +/** + * Collect up to 15 range gaps and sort them by ascending gap size. + */ +class LargestGaps { +public: + LargestGaps(int32_t max) : maxLength(max<=kCapacity ? max : kCapacity), length(0) {} + + void add(int32_t gapStart, int64_t gapLength) { + int32_t i=length; + while(i>0 && gapLength>gapLengths[i-1]) { + --i; + } + if(i<maxLength) { + // The new gap is now one of the maxLength largest. + // Insert the new gap, moving up smaller ones of the previous + // length largest. + int32_t j= length<maxLength ? length++ : maxLength-1; + while(j>i) { + gapStarts[j]=gapStarts[j-1]; + gapLengths[j]=gapLengths[j-1]; + --j; + } + gapStarts[i]=gapStart; + gapLengths[i]=gapLength; + } + } + + void truncate(int32_t newLength) { + if(newLength<length) { + length=newLength; + } + } + + int32_t count() const { return length; } + int32_t gapStart(int32_t i) const { return gapStarts[i]; } + int64_t gapLength(int32_t i) const { return gapLengths[i]; } + + int32_t firstAfter(int32_t value) const { + if(length==0) { + return -1; + } + int32_t minValue=0; + int32_t minIndex=-1; + for(int32_t i=0; i<length; ++i) { + if(value<gapStarts[i] && (minIndex<0 || gapStarts[i]<minValue)) { + minValue=gapStarts[i]; + minIndex=i; + } + } + return minIndex; + } + +private: + static const int32_t kCapacity=15; + + int32_t maxLength; + int32_t length; + int32_t gapStarts[kCapacity]; + int64_t gapLengths[kCapacity]; +}; + +} // namespace + +/** + * Does it make sense to write 1..capacity ranges? + * Returns 0 if not, otherwise the number of ranges. + * @param values Sorted array of signed-integer values. + * @param length Number of values. + * @param density Minimum average range density, in 256th. (0x100=100%=perfectly dense.) + * Should be 0x80..0x100, must be 1..0x100. + * @param ranges Output ranges array. + * @param capacity Maximum number of ranges. + * @return Minimum number of ranges (at most capacity) that have the desired density, + * or 0 if that density cannot be achieved. + */ +U_CAPI int32_t U_EXPORT2 +uprv_makeDenseRanges(const int32_t values[], int32_t length, + int32_t density, + int32_t ranges[][2], int32_t capacity) { + if(length<=2) { + return 0; + } + int32_t minValue=values[0]; + int32_t maxValue=values[length-1]; // Assume minValue<=maxValue. + // Use int64_t variables for intermediate-value precision and to avoid + // signed-int32_t overflow of maxValue-minValue. + int64_t maxLength=(int64_t)maxValue-(int64_t)minValue+1; + if(length>=(density*maxLength)/0x100) { + // Use one range. + ranges[0][0]=minValue; + ranges[0][1]=maxValue; + return 1; + } + if(length<=4) { + return 0; + } + // See if we can split [minValue, maxValue] into 2..capacity ranges, + // divided by the 1..(capacity-1) largest gaps. + LargestGaps gaps(capacity-1); + int32_t i; + int32_t expectedValue=minValue; + for(i=1; i<length; ++i) { + ++expectedValue; + int32_t actualValue=values[i]; + if(expectedValue!=actualValue) { + gaps.add(expectedValue, (int64_t)actualValue-(int64_t)expectedValue); + expectedValue=actualValue; + } + } + // We know gaps.count()>=1 because we have fewer values (length) than + // the length of the [minValue..maxValue] range (maxLength). + // (Otherwise we would have returned with the one range above.) + int32_t num; + for(i=0, num=2;; ++i, ++num) { + if(i>=gaps.count()) { + // The values are too sparse for capacity or fewer ranges + // of the requested density. + return 0; + } + maxLength-=gaps.gapLength(i); + if(length>num*2 && length>=(density*maxLength)/0x100) { + break; + } + } + // Use the num ranges with the num-1 largest gaps. + gaps.truncate(num-1); + ranges[0][0]=minValue; + for(i=0; i<=num-2; ++i) { + int32_t gapIndex=gaps.firstAfter(minValue); + int32_t gapStart=gaps.gapStart(gapIndex); + ranges[i][1]=gapStart-1; + ranges[i+1][0]=minValue=(int32_t)(gapStart+gaps.gapLength(gapIndex)); + } + ranges[num-1][1]=maxValue; + return num; +} |