summaryrefslogtreecommitdiffstats
path: root/ipc/chromium/src/base/basictypes.h
diff options
context:
space:
mode:
Diffstat (limited to 'ipc/chromium/src/base/basictypes.h')
-rw-r--r--ipc/chromium/src/base/basictypes.h262
1 files changed, 262 insertions, 0 deletions
diff --git a/ipc/chromium/src/base/basictypes.h b/ipc/chromium/src/base/basictypes.h
new file mode 100644
index 0000000000..8cd84bee59
--- /dev/null
+++ b/ipc/chromium/src/base/basictypes.h
@@ -0,0 +1,262 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_BASICTYPES_H_
+#define BASE_BASICTYPES_H_
+
+#include <limits.h> // So we can set the bounds of our types
+#include <stddef.h> // For size_t
+#include <string.h> // for memcpy
+
+#include "base/port.h" // Types that only need exist on certain systems
+
+#include "mozilla/Assertions.h"
+#include "mozilla/IntegerPrintfMacros.h"
+
+// A type to represent a Unicode code-point value. As of Unicode 4.0,
+// such values require up to 21 bits.
+// (For type-checking on pointers, make this explicitly signed,
+// and it should always be the signed version of whatever int32_t is.)
+typedef signed int char32;
+
+const uint8_t kuint8max = ((uint8_t)0xFF);
+const uint16_t kuint16max = ((uint16_t)0xFFFF);
+const uint32_t kuint32max = ((uint32_t)0xFFFFFFFF);
+const uint64_t kuint64max = ((uint64_t)GG_LONGLONG(0xFFFFFFFFFFFFFFFF));
+const int8_t kint8min = ((int8_t)0x80);
+const int8_t kint8max = ((int8_t)0x7F);
+const int16_t kint16min = ((int16_t)0x8000);
+const int16_t kint16max = ((int16_t)0x7FFF);
+const int32_t kint32min = ((int32_t)0x80000000);
+const int32_t kint32max = ((int32_t)0x7FFFFFFF);
+const int64_t kint64min = ((int64_t)GG_LONGLONG(0x8000000000000000));
+const int64_t kint64max = ((int64_t)GG_LONGLONG(0x7FFFFFFFFFFFFFFF));
+
+// Platform- and hardware-dependent printf specifiers
+#if defined(OS_POSIX)
+# define PRId64L "I64d"
+# define PRIu64L "I64u"
+# define PRIx64L "I64x"
+#elif defined(OS_WIN)
+# define PRId64L L"I64d"
+# define PRIu64L L"I64u"
+# define PRIx64L L"I64x"
+#endif
+
+// A macro to disallow the copy constructor and operator= functions
+// This should be used in the private: declarations for a class
+#undef DISALLOW_COPY_AND_ASSIGN
+#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
+ TypeName(const TypeName&); \
+ void operator=(const TypeName&)
+
+// An older, deprecated, politically incorrect name for the above.
+#undef DISALLOW_EVIL_CONSTRUCTORS
+#define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
+
+// A macro to disallow all the implicit constructors, namely the
+// default constructor, copy constructor and operator= functions.
+//
+// This should be used in the private: declarations for a class
+// that wants to prevent anyone from instantiating it. This is
+// especially useful for classes containing only static methods.
+#undef DISALLOW_IMPLICIT_CONSTRUCTORS
+#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+ TypeName(); \
+ DISALLOW_COPY_AND_ASSIGN(TypeName)
+
+// The arraysize(arr) macro returns the # of elements in an array arr.
+// The expression is a compile-time constant, and therefore can be
+// used in defining new arrays, for example. If you use arraysize on
+// a pointer by mistake, you will get a compile-time error.
+//
+// One caveat is that arraysize() doesn't accept any array of an
+// anonymous type or a type defined inside a function. In these rare
+// cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
+// due to a limitation in C++'s template system. The limitation might
+// eventually be removed, but it hasn't happened yet.
+
+// This template function declaration is used in defining arraysize.
+// Note that the function doesn't need an implementation, as we only
+// use its type.
+template <typename T, size_t N>
+char (&ArraySizeHelper(T (&array)[N]))[N];
+
+// That gcc wants both of these prototypes seems mysterious. VC, for
+// its part, can't decide which to use (another mystery). Matching of
+// template overloads: the final frontier.
+#ifndef _MSC_VER
+template <typename T, size_t N>
+char (&ArraySizeHelper(const T (&array)[N]))[N];
+#endif
+
+#define arraysize(array) (sizeof(ArraySizeHelper(array)))
+
+// ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
+// but can be used on anonymous types or types defined inside
+// functions. It's less safe than arraysize as it accepts some
+// (although not all) pointers. Therefore, you should use arraysize
+// whenever possible.
+//
+// The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
+// size_t.
+//
+// ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error
+//
+// "warning: division by zero in ..."
+//
+// when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
+// You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
+//
+// The following comments are on the implementation details, and can
+// be ignored by the users.
+//
+// ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
+// the array) and sizeof(*(arr)) (the # of bytes in one array
+// element). If the former is divisible by the latter, perhaps arr is
+// indeed an array, in which case the division result is the # of
+// elements in the array. Otherwise, arr cannot possibly be an array,
+// and we generate a compiler error to prevent the code from
+// compiling.
+//
+// Since the size of bool is implementation-defined, we need to cast
+// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
+// result has type size_t.
+//
+// This macro is not perfect as it wrongfully accepts certain
+// pointers, namely where the pointer size is divisible by the pointee
+// size. Since all our code has to go through a 32-bit compiler,
+// where a pointer is 4 bytes, this means all pointers to a type whose
+// size is 3 or greater than 4 will be (righteously) rejected.
+
+#define ARRAYSIZE_UNSAFE(a) \
+ ((sizeof(a) / sizeof(*(a))) / \
+ static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
+
+// Use implicit_cast as a safe version of static_cast or const_cast
+// for upcasting in the type hierarchy (i.e. casting a pointer to Foo
+// to a pointer to SuperclassOfFoo or casting a pointer to Foo to
+// a const pointer to Foo).
+// When you use implicit_cast, the compiler checks that the cast is safe.
+// Such explicit implicit_casts are necessary in surprisingly many
+// situations where C++ demands an exact type match instead of an
+// argument type convertable to a target type.
+//
+// The From type can be inferred, so the preferred syntax for using
+// implicit_cast is the same as for static_cast etc.:
+//
+// implicit_cast<ToType>(expr)
+//
+// implicit_cast would have been part of the C++ standard library,
+// but the proposal was submitted too late. It will probably make
+// its way into the language in the future.
+template <typename To, typename From>
+inline To implicit_cast(From const& f) {
+ return f;
+}
+
+// The COMPILE_ASSERT macro (below) creates an otherwise-unused typedef. This
+// triggers compiler warnings with gcc 4.8 and higher, so mark the typedef
+// as permissibly-unused to disable the warnings.
+#if defined(__GNUC__)
+# define COMPILE_ASSERT_UNUSED_ATTRIBUTE __attribute__((unused))
+#else
+# define COMPILE_ASSERT_UNUSED_ATTRIBUTE /* nothing */
+#endif
+
+// The COMPILE_ASSERT macro can be used to verify that a compile time
+// expression is true. For example, you could use it to verify the
+// size of a static array:
+//
+// COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
+// content_type_names_incorrect_size);
+//
+// or to make sure a struct is smaller than a certain size:
+//
+// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
+//
+// The second argument to the macro is the name of the variable. If
+// the expression is false, most compilers will issue a warning/error
+// containing the name of the variable.
+
+// Avoid multiple definitions for webrtc
+#if !defined(COMPILE_ASSERT)
+template <bool>
+struct CompileAssert {};
+
+# define COMPILE_ASSERT(expr, msg) \
+ typedef CompileAssert<(bool(expr))> \
+ msg[bool(expr) ? 1 : -1] COMPILE_ASSERT_UNUSED_ATTRIBUTE
+#endif
+
+// Implementation details of COMPILE_ASSERT:
+//
+// - COMPILE_ASSERT works by defining an array type that has -1
+// elements (and thus is invalid) when the expression is false.
+//
+// - The simpler definition
+//
+// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
+//
+// does not work, as gcc supports variable-length arrays whose sizes
+// are determined at run-time (this is gcc's extension and not part
+// of the C++ standard). As a result, gcc fails to reject the
+// following code with the simple definition:
+//
+// int foo;
+// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
+// // not a compile-time constant.
+//
+// - By using the type CompileAssert<(bool(expr))>, we ensures that
+// expr is a compile-time constant. (Template arguments must be
+// determined at compile-time.)
+//
+// - The outter parentheses in CompileAssert<(bool(expr))> are necessary
+// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
+//
+// CompileAssert<bool(expr)>
+//
+// instead, these compilers will refuse to compile
+//
+// COMPILE_ASSERT(5 > 0, some_message);
+//
+// (They seem to think the ">" in "5 > 0" marks the end of the
+// template argument list.)
+//
+// - The array size is (bool(expr) ? 1 : -1), instead of simply
+//
+// ((expr) ? 1 : -1).
+//
+// This is to avoid running into a bug in MS VC 7.1, which
+// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
+
+// MetatagId refers to metatag-id that we assign to
+// each metatag <name, value> pair..
+typedef uint32_t MetatagId;
+
+// Argument type used in interfaces that can optionally take ownership
+// of a passed in argument. If TAKE_OWNERSHIP is passed, the called
+// object takes ownership of the argument. Otherwise it does not.
+enum Ownership { DO_NOT_TAKE_OWNERSHIP, TAKE_OWNERSHIP };
+
+// The following enum should be used only as a constructor argument to indicate
+// that the variable has static storage class, and that the constructor should
+// do nothing to its state. It indicates to the reader that it is legal to
+// declare a static instance of the class, provided the constructor is given
+// the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a
+// static variable that has a constructor or a destructor because invocation
+// order is undefined. However, IF the type can be initialized by filling with
+// zeroes (which the loader does for static variables), AND the destructor also
+// does nothing to the storage, AND there are no virtual methods, then a
+// constructor declared as
+// explicit MyClass(base::LinkerInitialized x) {}
+// and invoked as
+// static MyClass my_variable_name(base::LINKER_INITIALIZED);
+namespace base {
+enum LinkerInitialized { LINKER_INITIALIZED };
+} // namespace base
+
+#endif // BASE_BASICTYPES_H_