summaryrefslogtreecommitdiffstats
path: root/js/src/jit/riscv64/Lowering-riscv64.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/riscv64/Lowering-riscv64.cpp')
-rw-r--r--js/src/jit/riscv64/Lowering-riscv64.cpp1087
1 files changed, 1087 insertions, 0 deletions
diff --git a/js/src/jit/riscv64/Lowering-riscv64.cpp b/js/src/jit/riscv64/Lowering-riscv64.cpp
new file mode 100644
index 0000000000..b32896694a
--- /dev/null
+++ b/js/src/jit/riscv64/Lowering-riscv64.cpp
@@ -0,0 +1,1087 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/riscv64/Lowering-riscv64.h"
+
+#include "mozilla/MathAlgorithms.h"
+
+#include "jit/Lowering.h"
+#include "jit/MIR.h"
+#include "jit/riscv64/Assembler-riscv64.h"
+
+#include "jit/shared/Lowering-shared-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+using mozilla::FloorLog2;
+
+LTableSwitch* LIRGeneratorRiscv64::newLTableSwitch(const LAllocation& in,
+ const LDefinition& inputCopy,
+ MTableSwitch* tableswitch) {
+ return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch);
+}
+
+LTableSwitchV* LIRGeneratorRiscv64::newLTableSwitchV(
+ MTableSwitch* tableswitch) {
+ return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(),
+ tempDouble(), temp(), tableswitch);
+}
+
+void LIRGeneratorRiscv64::lowerForShift(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ ins->setOperand(0, useRegister(lhs));
+ ins->setOperand(1, useRegisterOrConstant(rhs));
+ define(ins, mir);
+}
+
+template <size_t Temps>
+void LIRGeneratorRiscv64::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+
+ static_assert(LShiftI64::Rhs == INT64_PIECES,
+ "Assume Rhs is located at INT64_PIECES.");
+ static_assert(LRotateI64::Count == INT64_PIECES,
+ "Assume Count is located at INT64_PIECES.");
+
+ ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs));
+
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+template void LIRGeneratorRiscv64::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
+template void LIRGeneratorRiscv64::lowerForShiftInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs);
+
+// x = !y
+void LIRGeneratorRiscv64::lowerForALU(LInstructionHelper<1, 1, 0>* ins,
+ MDefinition* mir, MDefinition* input) {
+ ins->setOperand(0, useRegister(input));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+// z = x + y
+void LIRGeneratorRiscv64::lowerForALU(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ ins->setOperand(0, useRegister(lhs));
+ ins->setOperand(1, useRegisterOrConstant(rhs));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+void LIRGeneratorRiscv64::lowerForALUInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
+ MDefinition* input) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(input));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorRiscv64::lowerForALUInt64(
+ LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, willHaveDifferentLIRNodes(lhs, rhs)
+ ? useInt64OrConstant(rhs)
+ : useInt64OrConstantAtStart(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorRiscv64::lowerForMulInt64(LMulI64* ins, MMul* mir,
+ MDefinition* lhs, MDefinition* rhs) {
+ bool needsTemp = false;
+ bool cannotAliasRhs = false;
+ bool reuseInput = true;
+
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES,
+ (willHaveDifferentLIRNodes(lhs, rhs) || cannotAliasRhs)
+ ? useInt64OrConstant(rhs)
+ : useInt64OrConstantAtStart(rhs));
+
+ if (needsTemp) {
+ ins->setTemp(0, temp());
+ }
+ if (reuseInput) {
+ defineInt64ReuseInput(ins, mir, 0);
+ } else {
+ defineInt64(ins, mir);
+ }
+}
+
+void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 1, 0>* ins,
+ MDefinition* mir, MDefinition* input) {
+ ins->setOperand(0, useRegister(input));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template <size_t Temps>
+void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins,
+ MDefinition* mir, MDefinition* lhs,
+ MDefinition* rhs) {
+ ins->setOperand(0, useRegister(lhs));
+ ins->setOperand(1, useRegister(rhs));
+ define(
+ ins, mir,
+ LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
+}
+
+template void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, 0>* ins,
+ MDefinition* mir,
+ MDefinition* lhs,
+ MDefinition* rhs);
+template void LIRGeneratorRiscv64::lowerForFPU(LInstructionHelper<1, 2, 1>* ins,
+ MDefinition* mir,
+ MDefinition* lhs,
+ MDefinition* rhs);
+
+void LIRGeneratorRiscv64::lowerForCompareI64AndBranch(
+ MTest* mir, MCompare* comp, JSOp op, MDefinition* left, MDefinition* right,
+ MBasicBlock* ifTrue, MBasicBlock* ifFalse) {
+ LCompareI64AndBranch* lir = new (alloc())
+ LCompareI64AndBranch(comp, op, useInt64Register(left),
+ useInt64OrConstant(right), ifTrue, ifFalse);
+ add(lir, mir);
+}
+
+void LIRGeneratorRiscv64::lowerForBitAndAndBranch(LBitAndAndBranch* baab,
+ MInstruction* mir,
+ MDefinition* lhs,
+ MDefinition* rhs) {
+ baab->setOperand(0, useRegisterAtStart(lhs));
+ baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
+ add(baab, mir);
+}
+
+LBoxAllocation LIRGeneratorRiscv64::useBoxFixed(MDefinition* mir, Register reg1,
+ Register reg2,
+ bool useAtStart) {
+ MOZ_ASSERT(mir->type() == MIRType::Value);
+
+ ensureDefined(mir);
+ return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart));
+}
+
+LAllocation LIRGeneratorRiscv64::useByteOpRegister(MDefinition* mir) {
+ return useRegister(mir);
+}
+
+LAllocation LIRGeneratorRiscv64::useByteOpRegisterAtStart(MDefinition* mir) {
+ return useRegisterAtStart(mir);
+}
+
+LAllocation LIRGeneratorRiscv64::useByteOpRegisterOrNonDoubleConstant(
+ MDefinition* mir) {
+ return useRegisterOrNonDoubleConstant(mir);
+}
+
+LDefinition LIRGeneratorRiscv64::tempByteOpRegister() { return temp(); }
+LDefinition LIRGeneratorRiscv64::tempToUnbox() { return temp(); }
+
+void LIRGeneratorRiscv64::lowerUntypedPhiInput(MPhi* phi,
+ uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ lowerTypedPhiInput(phi, inputPosition, block, lirIndex);
+}
+void LIRGeneratorRiscv64::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ lowerTypedPhiInput(phi, inputPosition, block, lirIndex);
+}
+void LIRGeneratorRiscv64::defineInt64Phi(MPhi* phi, size_t lirIndex) {
+ defineTypedPhi(phi, lirIndex);
+}
+
+void LIRGeneratorRiscv64::lowerNegI(MInstruction* ins, MDefinition* input) {
+ define(new (alloc()) LNegI(useRegisterAtStart(input)), ins);
+}
+void LIRGeneratorRiscv64::lowerNegI64(MInstruction* ins, MDefinition* input) {
+ defineInt64ReuseInput(new (alloc()) LNegI64(useInt64RegisterAtStart(input)),
+ ins, 0);
+}
+
+void LIRGeneratorRiscv64::lowerMulI(MMul* mul, MDefinition* lhs,
+ MDefinition* rhs) {
+ LMulI* lir = new (alloc()) LMulI;
+ if (mul->fallible()) {
+ assignSnapshot(lir, mul->bailoutKind());
+ }
+
+ lowerForALU(lir, mul, lhs, rhs);
+}
+
+void LIRGeneratorRiscv64::lowerDivI(MDiv* div) {
+ if (div->isUnsigned()) {
+ lowerUDiv(div);
+ return;
+ }
+
+ // Division instructions are slow. Division by constant denominators can be
+ // rewritten to use other instructions.
+ if (div->rhs()->isConstant()) {
+ int32_t rhs = div->rhs()->toConstant()->toInt32();
+ // Check for division by a positive power of two, which is an easy and
+ // important case to optimize. Note that other optimizations are also
+ // possible; division by negative powers of two can be optimized in a
+ // similar manner as positive powers of two, and division by other
+ // constants can be optimized by a reciprocal multiplication technique.
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LDivPowTwoI* lir =
+ new (alloc()) LDivPowTwoI(useRegister(div->lhs()), shift, temp());
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+ define(lir, div);
+ return;
+ }
+ }
+
+ LDivI* lir = new (alloc())
+ LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+ define(lir, div);
+}
+
+void LIRGeneratorRiscv64::lowerDivI64(MDiv* div) {
+ if (div->isUnsigned()) {
+ lowerUDivI64(div);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc())
+ LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp());
+ defineInt64(lir, div);
+}
+
+void LIRGeneratorRiscv64::lowerModI(MMod* mod) {
+ if (mod->isUnsigned()) {
+ lowerUMod(mod);
+ return;
+ }
+
+ if (mod->rhs()->isConstant()) {
+ int32_t rhs = mod->rhs()->toConstant()->toInt32();
+ int32_t shift = FloorLog2(rhs);
+ if (rhs > 0 && 1 << shift == rhs) {
+ LModPowTwoI* lir =
+ new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) {
+ LModMaskI* lir = new (alloc())
+ LModMaskI(useRegister(mod->lhs()), temp(LDefinition::GENERAL),
+ temp(LDefinition::GENERAL), shift + 1);
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+ return;
+ }
+ }
+ LModI* lir =
+ new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()),
+ temp(LDefinition::GENERAL));
+
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+ define(lir, mod);
+}
+
+void LIRGeneratorRiscv64::lowerModI64(MMod* mod) {
+ if (mod->isUnsigned()) {
+ lowerUModI64(mod);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc())
+ LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
+ defineInt64(lir, mod);
+}
+
+void LIRGeneratorRiscv64::lowerUDiv(MDiv* div) {
+ MDefinition* lhs = div->getOperand(0);
+ MDefinition* rhs = div->getOperand(1);
+
+ LUDivOrMod* lir = new (alloc()) LUDivOrMod;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (div->fallible()) {
+ assignSnapshot(lir, div->bailoutKind());
+ }
+
+ define(lir, div);
+}
+
+void LIRGeneratorRiscv64::lowerUDivI64(MDiv* div) {
+ LUDivOrModI64* lir = new (alloc())
+ LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs()), temp());
+ defineInt64(lir, div);
+}
+
+void LIRGeneratorRiscv64::lowerUMod(MMod* mod) {
+ MDefinition* lhs = mod->getOperand(0);
+ MDefinition* rhs = mod->getOperand(1);
+
+ LUDivOrMod* lir = new (alloc()) LUDivOrMod;
+ lir->setOperand(0, useRegister(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ if (mod->fallible()) {
+ assignSnapshot(lir, mod->bailoutKind());
+ }
+
+ define(lir, mod);
+}
+
+void LIRGeneratorRiscv64::lowerUModI64(MMod* mod) {
+ LUDivOrModI64* lir = new (alloc())
+ LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
+ defineInt64(lir, mod);
+}
+
+void LIRGeneratorRiscv64::lowerUrshD(MUrsh* mir) {
+ MDefinition* lhs = mir->lhs();
+ MDefinition* rhs = mir->rhs();
+
+ MOZ_ASSERT(lhs->type() == MIRType::Int32);
+ MOZ_ASSERT(rhs->type() == MIRType::Int32);
+
+ LUrshD* lir = new (alloc())
+ LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
+ define(lir, mir);
+}
+
+void LIRGeneratorRiscv64::lowerPowOfTwoI(MPow* mir) {
+ int32_t base = mir->input()->toConstant()->toInt32();
+ MDefinition* power = mir->power();
+
+ auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base);
+ assignSnapshot(lir, mir->bailoutKind());
+ define(lir, mir);
+}
+
+void LIRGeneratorRiscv64::lowerBigIntDiv(MBigIntDiv* ins) {
+ auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()),
+ useRegister(ins->rhs()), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorRiscv64::lowerBigIntMod(MBigIntMod* ins) {
+ auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()),
+ useRegister(ins->rhs()), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorRiscv64::lowerBigIntLsh(MBigIntLsh* ins) {
+ auto* lir = new (alloc()) LBigIntLsh(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorRiscv64::lowerBigIntRsh(MBigIntRsh* ins) {
+ auto* lir = new (alloc()) LBigIntRsh(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorRiscv64::lowerTruncateDToInt32(MTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double);
+
+ define(new (alloc()) LTruncateDToInt32(useRegister(opd), tempDouble()), ins);
+}
+
+void LIRGeneratorRiscv64::lowerTruncateFToInt32(MTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Float32);
+
+ define(new (alloc()) LTruncateFToInt32(useRegister(opd), tempFloat32()), ins);
+}
+
+void LIRGeneratorRiscv64::lowerBuiltinInt64ToFloatingPoint(
+ MBuiltinInt64ToFloatingPoint* ins) {
+ MOZ_CRASH("We don't use it for this architecture");
+}
+
+void LIRGeneratorRiscv64::lowerWasmSelectI(MWasmSelect* select) {
+ auto* lir = new (alloc())
+ LWasmSelect(useRegisterAtStart(select->trueExpr()),
+ useAny(select->falseExpr()), useRegister(select->condExpr()));
+ defineReuseInput(lir, select, LWasmSelect::TrueExprIndex);
+}
+
+void LIRGeneratorRiscv64::lowerWasmSelectI64(MWasmSelect* select) {
+ auto* lir = new (alloc()) LWasmSelectI64(
+ useInt64RegisterAtStart(select->trueExpr()),
+ useInt64(select->falseExpr()), useRegister(select->condExpr()));
+ defineInt64ReuseInput(lir, select, LWasmSelectI64::TrueExprIndex);
+}
+
+// On loong64 we specialize the only cases where compare is {U,}Int32 and select
+// is {U,}Int32.
+bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect(
+ MCompare::CompareType compTy, MIRType insTy) {
+ return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 ||
+ compTy == MCompare::Compare_UInt32);
+}
+
+void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins,
+ MDefinition* lhs,
+ MDefinition* rhs,
+ MCompare::CompareType compTy,
+ JSOp jsop) {
+ MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
+ auto* lir = new (alloc()) LWasmCompareAndSelect(
+ useRegister(lhs), useRegister(rhs), compTy, jsop,
+ useRegisterAtStart(ins->trueExpr()), useRegister(ins->falseExpr()));
+ defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex);
+}
+
+void LIRGeneratorRiscv64::lowerWasmBuiltinTruncateToInt32(
+ MWasmBuiltinTruncateToInt32* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ if (opd->type() == MIRType::Double) {
+ define(new (alloc()) LWasmBuiltinTruncateDToInt32(
+ useRegister(opd), useFixed(ins->instance(), InstanceReg),
+ LDefinition::BogusTemp()),
+ ins);
+ return;
+ }
+
+ define(new (alloc()) LWasmBuiltinTruncateFToInt32(
+ useRegister(opd), useFixed(ins->instance(), InstanceReg),
+ LDefinition::BogusTemp()),
+ ins);
+}
+
+void LIRGeneratorRiscv64::lowerWasmBuiltinTruncateToInt64(
+ MWasmBuiltinTruncateToInt64* ins) {
+ MOZ_CRASH("We don't use it for this architecture");
+}
+
+void LIRGeneratorRiscv64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
+ MOZ_CRASH("We don't use runtime div for this architecture");
+}
+
+void LIRGeneratorRiscv64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
+ MOZ_CRASH("We don't use runtime mod for this architecture");
+}
+
+void LIRGeneratorRiscv64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->storageType());
+
+ auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorRiscv64::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
+ LUse elements = useRegister(ins->elements());
+ LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->writeType());
+ LAllocation value = useRegister(ins->value());
+
+ add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins);
+}
+
+void LIRGenerator::visitBox(MBox* box) {
+ MDefinition* opd = box->getOperand(0);
+
+ // If the operand is a constant, emit near its uses.
+ if (opd->isConstant() && box->canEmitAtUses()) {
+ emitAtUses(box);
+ return;
+ }
+
+ if (opd->isConstant()) {
+ define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box,
+ LDefinition(LDefinition::BOX));
+ } else {
+ LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type());
+ define(ins, box, LDefinition(LDefinition::BOX));
+ }
+}
+
+void LIRGenerator::visitUnbox(MUnbox* unbox) {
+ MDefinition* box = unbox->getOperand(0);
+ MOZ_ASSERT(box->type() == MIRType::Value);
+
+ LUnbox* lir;
+ if (IsFloatingPointType(unbox->type())) {
+ lir = new (alloc())
+ LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type());
+ } else if (unbox->fallible()) {
+ // If the unbox is fallible, load the Value in a register first to
+ // avoid multiple loads.
+ lir = new (alloc()) LUnbox(useRegisterAtStart(box));
+ } else {
+ lir = new (alloc()) LUnbox(useAtStart(box));
+ }
+
+ if (unbox->fallible()) {
+ assignSnapshot(lir, unbox->bailoutKind());
+ }
+
+ define(lir, unbox);
+}
+
+void LIRGenerator::visitAbs(MAbs* ins) {
+ define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins);
+}
+
+void LIRGenerator::visitCopySign(MCopySign* ins) {
+ MDefinition* lhs = ins->lhs();
+ MDefinition* rhs = ins->rhs();
+
+ MOZ_ASSERT(IsFloatingPointType(lhs->type()));
+ MOZ_ASSERT(lhs->type() == rhs->type());
+ MOZ_ASSERT(lhs->type() == ins->type());
+
+ LInstructionHelper<1, 2, 2>* lir;
+ if (lhs->type() == MIRType::Double) {
+ lir = new (alloc()) LCopySignD();
+ } else {
+ lir = new (alloc()) LCopySignF();
+ }
+
+ lir->setTemp(0, temp());
+ lir->setTemp(1, temp());
+
+ lir->setOperand(0, useRegisterAtStart(lhs));
+ lir->setOperand(1, useRegister(rhs));
+ defineReuseInput(lir, ins, 0);
+}
+
+void LIRGenerator::visitPowHalf(MPowHalf* ins) {
+ MDefinition* input = ins->input();
+ MOZ_ASSERT(input->type() == MIRType::Double);
+ LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input));
+ defineReuseInput(lir, ins, 0);
+}
+
+void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
+ defineInt64(
+ new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins);
+}
+
+void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
+ defineInt64(new (alloc())
+ LSignExtendInt64(useInt64RegisterAtStart(ins->input())),
+ ins);
+}
+
+void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Int64);
+ MOZ_ASSERT(IsFloatingPointType(ins->type()));
+
+ define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins);
+}
+
+void LIRGenerator::visitSubstr(MSubstr* ins) {
+ LSubstr* lir = new (alloc())
+ LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
+ useRegister(ins->length()), temp(), temp(), temp());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGenerator::visitCompareExchangeTypedArrayElement(
+ MCompareExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+
+ const LAllocation newval = useRegister(ins->newval());
+ const LAllocation oldval = useRegister(ins->oldval());
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LInt64Definition temp1 = tempInt64();
+ LInt64Definition temp2 = tempInt64();
+
+ auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
+ elements, index, oldval, newval, temp1, temp2);
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+
+ LDefinition outTemp = LDefinition::BogusTemp();
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
+ outTemp = temp();
+ }
+
+ if (Scalar::byteSize(ins->arrayType()) < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ LCompareExchangeTypedArrayElement* lir = new (alloc())
+ LCompareExchangeTypedArrayElement(elements, index, oldval, newval,
+ outTemp, valueTemp, offsetTemp,
+ maskTemp);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitAtomicExchangeTypedArrayElement(
+ MAtomicExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+
+ const LAllocation value = useRegister(ins->value());
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LInt64Definition temp1 = tempInt64();
+ LDefinition temp2 = temp();
+
+ auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64(
+ elements, index, value, temp1, temp2);
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ // If the target is a floating register then we need a temp at the
+ // CodeGenerator level for creating the result.
+
+ MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
+
+ LDefinition outTemp = LDefinition::BogusTemp();
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (ins->arrayType() == Scalar::Uint32) {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ outTemp = temp();
+ }
+
+ if (Scalar::byteSize(ins->arrayType()) < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ LAtomicExchangeTypedArrayElement* lir =
+ new (alloc()) LAtomicExchangeTypedArrayElement(
+ elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitAtomicTypedArrayElementBinop(
+ MAtomicTypedArrayElementBinop* ins) {
+ MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
+ MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
+
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+ const LAllocation value = useRegister(ins->value());
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LInt64Definition temp1 = tempInt64();
+ LInt64Definition temp2 = tempInt64();
+
+ // Case 1: the result of the operation is not used.
+ //
+ // We can omit allocating the result BigInt.
+
+ if (ins->isForEffect()) {
+ auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
+ elements, index, value, temp1, temp2);
+ add(lir, ins);
+ return;
+ }
+
+ // Case 2: the result of the operation is used.
+
+ auto* lir = new (alloc())
+ LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2);
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (Scalar::byteSize(ins->arrayType()) < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ if (ins->isForEffect()) {
+ LAtomicTypedArrayElementBinopForEffect* lir =
+ new (alloc()) LAtomicTypedArrayElementBinopForEffect(
+ elements, index, value, valueTemp, offsetTemp, maskTemp);
+ add(lir, ins);
+ return;
+ }
+
+ // For a Uint32Array with a known double result we need a temp for
+ // the intermediate output.
+
+ LDefinition outTemp = LDefinition::BogusTemp();
+
+ if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) {
+ outTemp = temp();
+ }
+
+ LAtomicTypedArrayElementBinop* lir =
+ new (alloc()) LAtomicTypedArrayElementBinop(
+ elements, index, value, outTemp, valueTemp, offsetTemp, maskTemp);
+ define(lir, ins);
+}
+
+void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
+ MOZ_ASSERT(opd->type() == MIRType::Value);
+
+ LReturn* ins = new (alloc()) LReturn(isGenerator);
+ ins->setOperand(0, useFixed(opd, JSReturnReg));
+ add(ins);
+}
+
+void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
+ MOZ_ASSERT_IF(ins->needsBoundsCheck(),
+ boundsCheckLimit->type() == MIRType::Int32);
+
+ LAllocation baseAlloc = useRegisterAtStart(base);
+
+ LAllocation limitAlloc = ins->needsBoundsCheck()
+ ? useRegisterAtStart(boundsCheckLimit)
+ : LAllocation();
+
+ // We have no memory-base value, meaning that HeapReg is to be used as the
+ // memory base. This follows from the definition of
+ // FunctionCompiler::maybeLoadMemoryBase() in WasmIonCompile.cpp.
+ MOZ_ASSERT(!ins->hasMemoryBase());
+ auto* lir =
+ new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation());
+ define(lir, ins);
+}
+
+void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* boundsCheckLimit = ins->boundsCheckLimit();
+ MOZ_ASSERT_IF(ins->needsBoundsCheck(),
+ boundsCheckLimit->type() == MIRType::Int32);
+
+ LAllocation baseAlloc = useRegisterAtStart(base);
+
+ LAllocation limitAlloc = ins->needsBoundsCheck()
+ ? useRegisterAtStart(boundsCheckLimit)
+ : LAllocation();
+
+ // See comment in LIRGenerator::visitAsmJSStoreHeap just above.
+ MOZ_ASSERT(!ins->hasMemoryBase());
+ add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()),
+ limitAlloc, LAllocation()),
+ ins);
+}
+
+void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
+ auto* lir = new (alloc()) LWasmHeapBase(LAllocation());
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
+ MDefinition* base = ins->base();
+ // 'base' is a GPR but may be of either type. If it is 32-bit, it is
+ // sign-extended on loongarch64 platform and we should explicitly promote it
+ // to 64-bit when use it as an index register in memory accesses.
+ MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
+
+ LAllocation ptr;
+ ptr = useRegisterAtStart(base);
+
+ if (ins->type() == MIRType::Int64) {
+ auto* lir = new (alloc()) LWasmLoadI64(ptr);
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ defineInt64(lir, ins);
+ return;
+ }
+
+ auto* lir = new (alloc()) LWasmLoad(ptr);
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmStore(MWasmStore* ins) {
+ MDefinition* base = ins->base();
+ // See comment in visitWasmLoad re the type of 'base'.
+ MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
+
+ MDefinition* value = ins->value();
+
+ if (ins->access().type() == Scalar::Int64) {
+ LAllocation baseAlloc = useRegisterAtStart(base);
+ LInt64Allocation valueAlloc = useInt64RegisterAtStart(value);
+ auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc);
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation baseAlloc = useRegisterAtStart(base);
+ LAllocation valueAlloc = useRegisterAtStart(value);
+ auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc);
+ if (ins->access().offset()) {
+ lir->setTemp(0, tempCopy(base, 0));
+ }
+
+ add(lir, ins);
+}
+
+void LIRGenerator::visitWasmNeg(MWasmNeg* ins) {
+ if (ins->type() == MIRType::Int32) {
+ define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
+ } else if (ins->type() == MIRType::Float32) {
+ define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
+ } else {
+ MOZ_ASSERT(ins->type() == MIRType::Double);
+ define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
+ }
+}
+
+void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins);
+}
+
+void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToDouble* lir =
+ new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToFloat32* lir =
+ new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input()));
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
+ MDefinition* base = ins->base();
+ // See comment in visitWasmLoad re the type of 'base'.
+ MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc()) LWasmCompareExchangeI64(
+ useRegister(base), useInt64Register(ins->oldValue()),
+ useInt64Register(ins->newValue()));
+ defineInt64(lir, ins);
+ return;
+ }
+
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (ins->access().byteSize() < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(
+ useRegister(base), useRegister(ins->oldValue()),
+ useRegister(ins->newValue()), valueTemp, offsetTemp, maskTemp);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
+ MDefinition* base = ins->base();
+ // See comment in visitWasmLoad re the type of 'base'.
+ MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc()) LWasmAtomicExchangeI64(
+ useRegister(base), useInt64Register(ins->value()));
+ defineInt64(lir, ins);
+ return;
+ }
+
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (ins->access().byteSize() < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ LWasmAtomicExchangeHeap* lir = new (alloc())
+ LWasmAtomicExchangeHeap(useRegister(base), useRegister(ins->value()),
+ valueTemp, offsetTemp, maskTemp);
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
+ MDefinition* base = ins->base();
+ // See comment in visitWasmLoad re the type of 'base'.
+ MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc())
+ LWasmAtomicBinopI64(useRegister(base), useInt64Register(ins->value()));
+ lir->setTemp(0, temp());
+ defineInt64(lir, ins);
+ return;
+ }
+
+ LDefinition valueTemp = LDefinition::BogusTemp();
+ LDefinition offsetTemp = LDefinition::BogusTemp();
+ LDefinition maskTemp = LDefinition::BogusTemp();
+
+ if (ins->access().byteSize() < 4) {
+ valueTemp = temp();
+ offsetTemp = temp();
+ maskTemp = temp();
+ }
+
+ if (!ins->hasUses()) {
+ LWasmAtomicBinopHeapForEffect* lir = new (alloc())
+ LWasmAtomicBinopHeapForEffect(useRegister(base),
+ useRegister(ins->value()), valueTemp,
+ offsetTemp, maskTemp);
+ add(lir, ins);
+ return;
+ }
+
+ LWasmAtomicBinopHeap* lir = new (alloc())
+ LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()),
+ valueTemp, offsetTemp, maskTemp);
+
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) {
+ MOZ_CRASH("ternary SIMD NYI");
+}
+
+void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) {
+ MOZ_CRASH("binary SIMD NYI");
+}
+
+#ifdef ENABLE_WASM_SIMD
+bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle(
+ int8_t shuffle[16]) {
+ return false;
+}
+#endif
+
+bool MWasmBinarySimd128::specializeForConstantRhs() {
+ // Probably many we want to do here
+ return false;
+}
+
+void LIRGenerator::visitWasmBinarySimd128WithConstant(
+ MWasmBinarySimd128WithConstant* ins) {
+ MOZ_CRASH("binary SIMD with constant NYI");
+}
+
+void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) {
+ MOZ_CRASH("shift SIMD NYI");
+}
+
+void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) {
+ MOZ_CRASH("shuffle SIMD NYI");
+}
+
+void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) {
+ MOZ_CRASH("replace-lane SIMD NYI");
+}
+
+void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) {
+ MOZ_CRASH("scalar-to-SIMD NYI");
+}
+
+void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) {
+ MOZ_CRASH("unary SIMD NYI");
+}
+
+void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) {
+ MOZ_CRASH("reduce-SIMD NYI");
+}
+
+void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) {
+ MOZ_CRASH("load-lane SIMD NYI");
+}
+
+void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) {
+ MOZ_CRASH("store-lane SIMD NYI");
+}