summaryrefslogtreecommitdiffstats
path: root/js/src/jit/x86/Lowering-x86.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/x86/Lowering-x86.cpp')
-rw-r--r--js/src/jit/x86/Lowering-x86.cpp840
1 files changed, 840 insertions, 0 deletions
diff --git a/js/src/jit/x86/Lowering-x86.cpp b/js/src/jit/x86/Lowering-x86.cpp
new file mode 100644
index 0000000000..968b5baf14
--- /dev/null
+++ b/js/src/jit/x86/Lowering-x86.cpp
@@ -0,0 +1,840 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/x86/Lowering-x86.h"
+
+#include "jit/Lowering.h"
+#include "jit/MIR.h"
+#include "jit/x86/Assembler-x86.h"
+
+#include "jit/shared/Lowering-shared-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1,
+ Register reg2, bool useAtStart) {
+ MOZ_ASSERT(mir->type() == MIRType::Value);
+ MOZ_ASSERT(reg1 != reg2);
+
+ ensureDefined(mir);
+ return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
+ LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
+}
+
+LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) {
+ return useFixed(mir, eax);
+}
+
+LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) {
+ return useFixedAtStart(mir, eax);
+}
+
+LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(
+ MDefinition* mir) {
+ return useFixed(mir, eax);
+}
+
+LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); }
+
+void LIRGenerator::visitBox(MBox* box) {
+ MDefinition* inner = box->getOperand(0);
+
+ // If the box wrapped a double, it needs a new register.
+ if (IsFloatingPointType(inner->type())) {
+ LDefinition spectreTemp =
+ JitOptions.spectreValueMasking ? temp() : LDefinition::BogusTemp();
+ defineBox(new (alloc()) LBoxFloatingPoint(useRegisterAtStart(inner),
+ tempCopy(inner, 0), spectreTemp,
+ inner->type()),
+ box);
+ return;
+ }
+
+ if (box->canEmitAtUses()) {
+ emitAtUses(box);
+ return;
+ }
+
+ if (inner->isConstant()) {
+ defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
+ return;
+ }
+
+ LBox* lir = new (alloc()) LBox(use(inner), inner->type());
+
+ // Otherwise, we should not define a new register for the payload portion
+ // of the output, so bypass defineBox().
+ uint32_t vreg = getVirtualRegister();
+
+ // Note that because we're using BogusTemp(), we do not change the type of
+ // the definition. We also do not define the first output as "TYPE",
+ // because it has no corresponding payload at (vreg + 1). Also note that
+ // although we copy the input's original type for the payload half of the
+ // definition, this is only for clarity. BogusTemp() definitions are
+ // ignored.
+ lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
+ lir->setDef(1, LDefinition::BogusTemp());
+ box->setVirtualRegister(vreg);
+ add(lir);
+}
+
+void LIRGenerator::visitUnbox(MUnbox* unbox) {
+ MDefinition* inner = unbox->getOperand(0);
+
+ // An unbox on x86 reads in a type tag (either in memory or a register) and
+ // a payload. Unlike most instructions consuming a box, we ask for the type
+ // second, so that the result can re-use the first input.
+ MOZ_ASSERT(inner->type() == MIRType::Value);
+
+ ensureDefined(inner);
+
+ if (IsFloatingPointType(unbox->type())) {
+ LUnboxFloatingPoint* lir =
+ new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
+ if (unbox->fallible()) {
+ assignSnapshot(lir, unbox->bailoutKind());
+ }
+ define(lir, unbox);
+ return;
+ }
+
+ // Swap the order we use the box pieces so we can re-use the payload register.
+ LUnbox* lir = new (alloc()) LUnbox;
+ bool reusePayloadReg = !JitOptions.spectreValueMasking ||
+ unbox->type() == MIRType::Int32 ||
+ unbox->type() == MIRType::Boolean;
+ if (reusePayloadReg) {
+ lir->setOperand(0, usePayloadInRegisterAtStart(inner));
+ lir->setOperand(1, useType(inner, LUse::ANY));
+ } else {
+ lir->setOperand(0, usePayload(inner, LUse::REGISTER));
+ lir->setOperand(1, useType(inner, LUse::ANY));
+ }
+
+ if (unbox->fallible()) {
+ assignSnapshot(lir, unbox->bailoutKind());
+ }
+
+ // Types and payloads form two separate intervals. If the type becomes dead
+ // before the payload, it could be used as a Value without the type being
+ // recoverable. Unbox's purpose is to eagerly kill the definition of a type
+ // tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
+ // Instead, we create a new virtual register.
+ if (reusePayloadReg) {
+ defineReuseInput(lir, unbox, 0);
+ } else {
+ define(lir, unbox);
+ }
+}
+
+void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
+ MOZ_ASSERT(opd->type() == MIRType::Value);
+
+ LReturn* ins = new (alloc()) LReturn(isGenerator);
+ ins->setOperand(0, LUse(JSReturnReg_Type));
+ ins->setOperand(1, LUse(JSReturnReg_Data));
+ fillBoxUses(ins, 0, opd);
+ add(ins);
+}
+
+void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
+ LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
+ type->setOperand(
+ inputPosition,
+ LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
+ payload->setOperand(inputPosition,
+ LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
+}
+
+void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) {
+ LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
+
+ uint32_t lowVreg = getVirtualRegister();
+
+ phi->setVirtualRegister(lowVreg);
+
+ uint32_t highVreg = getVirtualRegister();
+ MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
+
+ low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
+ high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
+ annotate(high);
+ annotate(low);
+}
+
+void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
+ LBlock* block, size_t lirIndex) {
+ MDefinition* operand = phi->getOperand(inputPosition);
+ LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
+ LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
+ low->setOperand(inputPosition,
+ LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
+ high->setOperand(
+ inputPosition,
+ LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
+}
+
+void LIRGeneratorX86::lowerForALUInt64(
+ LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
+ MDefinition* input) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(input));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorX86::lowerForALUInt64(
+ LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
+ MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
+ ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ defineInt64ReuseInput(ins, mir, 0);
+}
+
+void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir,
+ MDefinition* lhs, MDefinition* rhs) {
+ bool needsTemp = true;
+
+ if (rhs->isConstant()) {
+ int64_t constant = rhs->toConstant()->toInt64();
+ int32_t shift = mozilla::FloorLog2(constant);
+ // See special cases in CodeGeneratorX86Shared::visitMulI64.
+ if (constant >= -1 && constant <= 2) {
+ needsTemp = false;
+ }
+ if (constant > 0 && int64_t(1) << shift == constant) {
+ needsTemp = false;
+ }
+ }
+
+ // MulI64 on x86 needs output to be in edx, eax;
+ ins->setInt64Operand(
+ 0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true));
+ ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
+ if (needsTemp) {
+ ins->setTemp(0, temp());
+ }
+
+ defineInt64Fixed(ins, mir,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+}
+
+void LIRGenerator::visitCompareExchangeTypedArrayElement(
+ MCompareExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LUse elements = useFixed(ins->elements(), esi);
+ LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+ LUse oldval = useFixed(ins->oldval(), eax);
+ LUse newval = useFixed(ins->newval(), edx);
+ LDefinition temp = tempFixed(ebx);
+
+ auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
+ elements, index, oldval, newval, temp);
+ defineFixed(lir, ins, LAllocation(AnyRegister(ecx)));
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true);
+}
+
+void LIRGenerator::visitAtomicExchangeTypedArrayElement(
+ MAtomicExchangeTypedArrayElement* ins) {
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LUse elements = useRegister(ins->elements());
+ LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+ LAllocation value = useFixed(ins->value(), edx);
+ LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx));
+
+ auto* lir = new (alloc())
+ LAtomicExchangeTypedArrayElement64(elements, index, value, temp);
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/true);
+}
+
+void LIRGenerator::visitAtomicTypedArrayElementBinop(
+ MAtomicTypedArrayElementBinop* ins) {
+ MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
+ MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
+
+ if (Scalar::isBigIntType(ins->arrayType())) {
+ LUse elements = useRegister(ins->elements());
+ LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->arrayType());
+ LAllocation value = useFixed(ins->value(), edx);
+ LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx));
+
+ // Case 1: the result of the operation is not used.
+ //
+ // We can omit allocating the result BigInt.
+
+ if (ins->isForEffect()) {
+ LDefinition tempLow = tempFixed(eax);
+
+ auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
+ elements, index, value, temp, tempLow);
+ add(lir, ins);
+ return;
+ }
+
+ // Case 2: the result of the operation is used.
+
+ auto* lir = new (alloc())
+ LAtomicTypedArrayElementBinop64(elements, index, value, temp);
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ assignSafepoint(lir, ins);
+ return;
+ }
+
+ lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true);
+}
+
+void LIRGeneratorX86::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
+ const LUse elements = useRegister(ins->elements());
+ const LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->storageType());
+
+ auto* lir = new (alloc()) LAtomicLoad64(elements, index, tempFixed(ebx),
+ tempInt64Fixed(Register64(edx, eax)));
+ defineFixed(lir, ins, LAllocation(AnyRegister(ecx)));
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorX86::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
+ LUse elements = useRegister(ins->elements());
+ LAllocation index =
+ useRegisterOrIndexConstant(ins->index(), ins->writeType());
+ LAllocation value = useFixed(ins->value(), edx);
+ LInt64Definition temp1 = tempInt64Fixed(Register64(ecx, ebx));
+ LDefinition temp2 = tempFixed(eax);
+
+ add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins);
+}
+
+void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToDouble* lir = new (alloc())
+ LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp());
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
+ MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
+ LWasmUint32ToFloat32* lir = new (alloc())
+ LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp());
+ define(lir, ins);
+}
+
+// If the base is a constant, and it is zero or its offset is zero, then
+// code generation will fold the values into the access. Allocate the
+// pointer to a register only if that can't happen.
+
+static bool OptimizableConstantAccess(MDefinition* base,
+ const wasm::MemoryAccessDesc& access) {
+ MOZ_ASSERT(base->isConstant());
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ if (!(base->toConstant()->isInt32(0) || access.offset() == 0)) {
+ return false;
+ }
+ if (access.type() == Scalar::Int64) {
+ // For int64 accesses on 32-bit systems we will need to add another offset
+ // of 4 to access the high part of the value; make sure this does not
+ // overflow the value.
+ int32_t v;
+ if (base->toConstant()->isInt32(0)) {
+ v = access.offset();
+ } else {
+ v = base->toConstant()->toInt32();
+ }
+ return v <= int32_t(INT32_MAX - INT64HIGH_OFFSET);
+ }
+ return true;
+}
+
+void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
+ auto* lir = new (alloc()) LWasmHeapBase(useRegisterAtStart(ins->instance()));
+ define(lir, ins);
+}
+
+void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* memoryBase = ins->memoryBase();
+ MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
+
+ if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
+ auto* lir = new (alloc())
+ LWasmAtomicLoadI64(useRegister(memoryBase), useRegister(base),
+ tempFixed(ecx), tempFixed(ebx));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ LAllocation baseAlloc;
+ if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
+ baseAlloc = ins->type() == MIRType::Int64 ? useRegister(base)
+ : useRegisterAtStart(base);
+ }
+
+ if (ins->type() != MIRType::Int64) {
+ auto* lir =
+ new (alloc()) LWasmLoad(baseAlloc, useRegisterAtStart(memoryBase));
+ define(lir, ins);
+ return;
+ }
+
+ // "AtStart" register usage does not work for the 64-bit case because we
+ // clobber two registers for the result and may need two registers for a
+ // scaled address; we can't guarantee non-interference.
+
+ auto* lir = new (alloc()) LWasmLoadI64(baseAlloc, useRegister(memoryBase));
+
+ Scalar::Type accessType = ins->access().type();
+ if (accessType == Scalar::Int8 || accessType == Scalar::Int16 ||
+ accessType == Scalar::Int32) {
+ // We use cdq to sign-extend the result and cdq demands these registers.
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ defineInt64(lir, ins);
+}
+
+void LIRGenerator::visitWasmStore(MWasmStore* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* memoryBase = ins->memoryBase();
+ MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
+
+ if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
+ auto* lir = new (alloc())
+ LWasmAtomicStoreI64(useRegister(memoryBase), useRegister(base),
+ useInt64Fixed(ins->value(), Register64(ecx, ebx)),
+ tempFixed(edx), tempFixed(eax));
+ add(lir, ins);
+ return;
+ }
+
+ LAllocation baseAlloc;
+ if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
+ baseAlloc = useRegisterAtStart(base);
+ }
+
+ LAllocation valueAlloc;
+ switch (ins->access().type()) {
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ // See comment for LIRGeneratorX86::useByteOpRegister.
+ valueAlloc = useFixed(ins->value(), eax);
+ break;
+ case Scalar::Int16:
+ case Scalar::Uint16:
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ case Scalar::Float32:
+ case Scalar::Float64:
+ // For now, don't allow constant values. The immediate operand affects
+ // instruction layout which affects patching.
+ valueAlloc = useRegisterAtStart(ins->value());
+ break;
+ case Scalar::Simd128:
+#ifdef ENABLE_WASM_SIMD
+ valueAlloc = useRegisterAtStart(ins->value());
+ break;
+#else
+ MOZ_CRASH("unexpected array type");
+#endif
+ case Scalar::Int64: {
+ LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value());
+ auto* lir = new (alloc())
+ LWasmStoreI64(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
+ add(lir, ins);
+ return;
+ }
+ case Scalar::Uint8Clamped:
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ case Scalar::MaxTypedArrayViewType:
+ MOZ_CRASH("unexpected array type");
+ }
+
+ auto* lir = new (alloc())
+ LWasmStore(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
+ add(lir, ins);
+}
+
+void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* memoryBase = ins->memoryBase();
+ MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc()) LWasmCompareExchangeI64(
+ useRegisterAtStart(memoryBase), useRegisterAtStart(base),
+ useInt64FixedAtStart(ins->oldValue(), Register64(edx, eax)),
+ useInt64FixedAtStart(ins->newValue(), Register64(ecx, ebx)));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+
+ bool byteArray = byteSize(ins->access().type()) == 1;
+
+ // Register allocation:
+ //
+ // The output may not be used, but eax will be clobbered regardless
+ // so pin the output to eax.
+ //
+ // oldval must be in a register.
+ //
+ // newval must be in a register. If the source is a byte array
+ // then newval must be a register that has a byte size: this must
+ // be ebx, ecx, or edx (eax is taken).
+ //
+ // Bug #1077036 describes some optimization opportunities.
+
+ const LAllocation oldval = useRegister(ins->oldValue());
+ const LAllocation newval =
+ byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue());
+
+ LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(
+ useRegister(base), oldval, newval, useRegister(memoryBase));
+
+ lir->setAddrTemp(temp());
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+}
+
+void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
+ MDefinition* memoryBase = ins->memoryBase();
+ MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
+
+ if (ins->access().type() == Scalar::Int64) {
+ MDefinition* base = ins->base();
+ auto* lir = new (alloc()) LWasmAtomicExchangeI64(
+ useRegister(memoryBase), useRegister(base),
+ useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access());
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ const LAllocation base = useRegister(ins->base());
+ const LAllocation value = useRegister(ins->value());
+
+ LWasmAtomicExchangeHeap* lir = new (alloc())
+ LWasmAtomicExchangeHeap(base, value, useRegister(memoryBase));
+
+ lir->setAddrTemp(temp());
+ if (byteSize(ins->access().type()) == 1) {
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ } else {
+ define(lir, ins);
+ }
+}
+
+void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
+ MDefinition* base = ins->base();
+ MOZ_ASSERT(base->type() == MIRType::Int32);
+
+ MDefinition* memoryBase = ins->memoryBase();
+ MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
+
+ if (ins->access().type() == Scalar::Int64) {
+ auto* lir = new (alloc())
+ LWasmAtomicBinopI64(useRegister(memoryBase), useRegister(base),
+ useInt64Fixed(ins->value(), Register64(ecx, ebx)),
+ ins->access(), ins->operation());
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ return;
+ }
+
+ MOZ_ASSERT(ins->access().type() < Scalar::Float32);
+
+ bool byteArray = byteSize(ins->access().type()) == 1;
+
+ // Case 1: the result of the operation is not used.
+ //
+ // We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
+ // LOCK OR, or LOCK XOR. These can all take an immediate.
+
+ if (!ins->hasUses()) {
+ LAllocation value;
+ if (byteArray && !ins->value()->isConstant()) {
+ value = useFixed(ins->value(), ebx);
+ } else {
+ value = useRegisterOrConstant(ins->value());
+ }
+ LWasmAtomicBinopHeapForEffect* lir =
+ new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), value,
+ LDefinition::BogusTemp(),
+ useRegister(memoryBase));
+ lir->setAddrTemp(temp());
+ add(lir, ins);
+ return;
+ }
+
+ // Case 2: the result of the operation is used.
+ //
+ // For ADD and SUB we'll use XADD:
+ //
+ // movl value, output
+ // lock xaddl output, mem
+ //
+ // For the 8-bit variants XADD needs a byte register for the
+ // output only, we can still set up with movl; just pin the output
+ // to eax (or ebx / ecx / edx).
+ //
+ // For AND/OR/XOR we need to use a CMPXCHG loop:
+ //
+ // movl *mem, eax
+ // L: mov eax, temp
+ // andl value, temp
+ // lock cmpxchg temp, mem ; reads eax also
+ // jnz L
+ // ; result in eax
+ //
+ // Note the placement of L, cmpxchg will update eax with *mem if
+ // *mem does not have the expected value, so reloading it at the
+ // top of the loop would be redundant.
+ //
+ // We want to fix eax as the output. We also need a temp for
+ // the intermediate value.
+ //
+ // For the 8-bit variants the temp must have a byte register.
+ //
+ // There are optimization opportunities:
+ // - better 8-bit register allocation and instruction selection, Bug
+ // #1077036.
+
+ bool bitOp = !(ins->operation() == AtomicFetchAddOp ||
+ ins->operation() == AtomicFetchSubOp);
+ LDefinition tempDef = LDefinition::BogusTemp();
+ LAllocation value;
+
+ if (byteArray) {
+ value = useFixed(ins->value(), ebx);
+ if (bitOp) {
+ tempDef = tempFixed(ecx);
+ }
+ } else if (bitOp || ins->value()->isConstant()) {
+ value = useRegisterOrConstant(ins->value());
+ if (bitOp) {
+ tempDef = temp();
+ }
+ } else {
+ value = useRegisterAtStart(ins->value());
+ }
+
+ LWasmAtomicBinopHeap* lir = new (alloc())
+ LWasmAtomicBinopHeap(useRegister(base), value, tempDef,
+ LDefinition::BogusTemp(), useRegister(memoryBase));
+
+ lir->setAddrTemp(temp());
+ if (byteArray || bitOp) {
+ defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
+ } else if (ins->value()->isConstant()) {
+ define(lir, ins);
+ } else {
+ defineReuseInput(lir, ins, LWasmAtomicBinopHeap::valueOp);
+ }
+}
+
+void LIRGeneratorX86::lowerDivI64(MDiv* div) {
+ MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
+}
+
+void LIRGeneratorX86::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
+ MOZ_ASSERT(div->lhs()->type() == div->rhs()->type());
+ MOZ_ASSERT(IsNumberType(div->type()));
+
+ MOZ_ASSERT(div->type() == MIRType::Int64);
+
+ if (div->isUnsigned()) {
+ LUDivOrModI64* lir = new (alloc())
+ LUDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
+ useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
+ useFixedAtStart(div->instance(), InstanceReg));
+ defineReturn(lir, div);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc())
+ LDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
+ useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
+ useFixedAtStart(div->instance(), InstanceReg));
+ defineReturn(lir, div);
+}
+
+void LIRGeneratorX86::lowerModI64(MMod* mod) {
+ MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
+}
+
+void LIRGeneratorX86::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
+ MDefinition* lhs = mod->lhs();
+ MDefinition* rhs = mod->rhs();
+ MOZ_ASSERT(lhs->type() == rhs->type());
+ MOZ_ASSERT(IsNumberType(mod->type()));
+
+ MOZ_ASSERT(mod->type() == MIRType::Int64);
+ MOZ_ASSERT(mod->type() == MIRType::Int64);
+
+ if (mod->isUnsigned()) {
+ LUDivOrModI64* lir = new (alloc())
+ LUDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
+ useInt64FixedAtStart(rhs, Register64(ecx, edx)),
+ useFixedAtStart(mod->instance(), InstanceReg));
+ defineReturn(lir, mod);
+ return;
+ }
+
+ LDivOrModI64* lir = new (alloc())
+ LDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
+ useInt64FixedAtStart(rhs, Register64(ecx, edx)),
+ useFixedAtStart(mod->instance(), InstanceReg));
+ defineReturn(lir, mod);
+}
+
+void LIRGeneratorX86::lowerUDivI64(MDiv* div) {
+ MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
+}
+
+void LIRGeneratorX86::lowerUModI64(MMod* mod) {
+ MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
+}
+
+void LIRGeneratorX86::lowerBigIntDiv(MBigIntDiv* ins) {
+ auto* lir = new (alloc()) LBigIntDiv(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp());
+ defineFixed(lir, ins, LAllocation(AnyRegister(edx)));
+ assignSafepoint(lir, ins);
+}
+
+void LIRGeneratorX86::lowerBigIntMod(MBigIntMod* ins) {
+ auto* lir = new (alloc()) LBigIntMod(
+ useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp());
+ defineFixed(lir, ins, LAllocation(AnyRegister(edx)));
+ assignSafepoint(lir, ins);
+}
+
+void LIRGenerator::visitSubstr(MSubstr* ins) {
+ // Due to lack of registers on x86, we reuse the string register as
+ // temporary. As a result we only need two temporary registers and take a
+ // bogus temporary as fifth argument.
+ LSubstr* lir = new (alloc())
+ LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
+ useRegister(ins->length()), temp(), LDefinition::BogusTemp(),
+ tempByteOpRegister());
+ define(lir, ins);
+ assignSafepoint(lir, ins);
+}
+
+void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
+
+ LDefinition temp = tempDouble();
+ defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins);
+}
+
+void LIRGeneratorX86::lowerWasmBuiltinTruncateToInt64(
+ MWasmBuiltinTruncateToInt64* ins) {
+ MOZ_CRASH("We don't use it for this architecture");
+}
+
+void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
+ MDefinition* opd = ins->input();
+ MOZ_ASSERT(opd->type() == MIRType::Int64);
+ MOZ_ASSERT(IsFloatingPointType(ins->type()));
+
+ LDefinition maybeTemp =
+ (ins->isUnsigned() &&
+ ((ins->type() == MIRType::Double && AssemblerX86Shared::HasSSE3()) ||
+ ins->type() == MIRType::Float32))
+ ? temp()
+ : LDefinition::BogusTemp();
+
+ define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp),
+ ins);
+}
+
+void LIRGeneratorX86::lowerBuiltinInt64ToFloatingPoint(
+ MBuiltinInt64ToFloatingPoint* ins) {
+ MOZ_CRASH("We don't use it for this architecture");
+}
+
+void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
+ if (ins->isUnsigned()) {
+ defineInt64(new (alloc())
+ LExtendInt32ToInt64(useRegisterAtStart(ins->input())),
+ ins);
+ } else {
+ LExtendInt32ToInt64* lir =
+ new (alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+ }
+}
+
+void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
+ // Here we'll end up using cdq which requires input and output in (edx,eax).
+ LSignExtendInt64* lir = new (alloc()) LSignExtendInt64(
+ useInt64FixedAtStart(ins->input(), Register64(edx, eax)));
+ defineInt64Fixed(lir, ins,
+ LInt64Allocation(LAllocation(AnyRegister(edx)),
+ LAllocation(AnyRegister(eax))));
+}
+
+// On x86 we specialize the only cases where compare is {U,}Int32 and select
+// is {U,}Int32.
+bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect(
+ MCompare::CompareType compTy, MIRType insTy) {
+ return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 ||
+ compTy == MCompare::Compare_UInt32);
+}
+
+void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins,
+ MDefinition* lhs,
+ MDefinition* rhs,
+ MCompare::CompareType compTy,
+ JSOp jsop) {
+ MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
+ auto* lir = new (alloc()) LWasmCompareAndSelect(
+ useRegister(lhs), useAny(rhs), compTy, jsop,
+ useRegisterAtStart(ins->trueExpr()), useAny(ins->falseExpr()));
+ defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex);
+}