summaryrefslogtreecommitdiffstats
path: root/media/libwebp/src/dsp/lossless_sse2.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--media/libwebp/src/dsp/lossless_sse2.c712
1 files changed, 712 insertions, 0 deletions
diff --git a/media/libwebp/src/dsp/lossless_sse2.c b/media/libwebp/src/dsp/lossless_sse2.c
new file mode 100644
index 0000000000..4b6a532c23
--- /dev/null
+++ b/media/libwebp/src/dsp/lossless_sse2.c
@@ -0,0 +1,712 @@
+// Copyright 2014 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// SSE2 variant of methods for lossless decoder
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "src/dsp/dsp.h"
+
+#if defined(WEBP_USE_SSE2)
+
+#include "src/dsp/common_sse2.h"
+#include "src/dsp/lossless.h"
+#include "src/dsp/lossless_common.h"
+#include <emmintrin.h>
+
+//------------------------------------------------------------------------------
+// Predictor Transform
+
+static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
+ uint32_t c1,
+ uint32_t c2) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
+ const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
+ const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
+ const __m128i V1 = _mm_add_epi16(C0, C1);
+ const __m128i V2 = _mm_sub_epi16(V1, C2);
+ const __m128i b = _mm_packus_epi16(V2, V2);
+ return (uint32_t)_mm_cvtsi128_si32(b);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
+ uint32_t c1,
+ uint32_t c2) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
+ const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
+ const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
+ const __m128i avg = _mm_add_epi16(C1, C0);
+ const __m128i A0 = _mm_srli_epi16(avg, 1);
+ const __m128i A1 = _mm_sub_epi16(A0, B0);
+ const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
+ const __m128i A2 = _mm_sub_epi16(A1, BgtA);
+ const __m128i A3 = _mm_srai_epi16(A2, 1);
+ const __m128i A4 = _mm_add_epi16(A0, A3);
+ const __m128i A5 = _mm_packus_epi16(A4, A4);
+ return (uint32_t)_mm_cvtsi128_si32(A5);
+}
+
+static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
+ int pa_minus_pb;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i A0 = _mm_cvtsi32_si128((int)a);
+ const __m128i B0 = _mm_cvtsi32_si128((int)b);
+ const __m128i C0 = _mm_cvtsi32_si128((int)c);
+ const __m128i AC0 = _mm_subs_epu8(A0, C0);
+ const __m128i CA0 = _mm_subs_epu8(C0, A0);
+ const __m128i BC0 = _mm_subs_epu8(B0, C0);
+ const __m128i CB0 = _mm_subs_epu8(C0, B0);
+ const __m128i AC = _mm_or_si128(AC0, CA0);
+ const __m128i BC = _mm_or_si128(BC0, CB0);
+ const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
+ const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
+ const __m128i diff = _mm_sub_epi16(pb, pa);
+ {
+ int16_t out[8];
+ _mm_storeu_si128((__m128i*)out, diff);
+ pa_minus_pb = out[0] + out[1] + out[2] + out[3];
+ }
+ return (pa_minus_pb <= 0) ? a : b;
+}
+
+static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
+ const __m128i* const a1,
+ __m128i* const avg) {
+ // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
+ const __m128i ones = _mm_set1_epi8(1);
+ const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
+ const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
+ *avg = _mm_sub_epi8(avg1, one);
+}
+
+static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
+ const uint32_t a1,
+ __m128i* const avg) {
+ // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
+ const __m128i ones = _mm_set1_epi8(1);
+ const __m128i A0 = _mm_cvtsi32_si128((int)a0);
+ const __m128i A1 = _mm_cvtsi32_si128((int)a1);
+ const __m128i avg1 = _mm_avg_epu8(A0, A1);
+ const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
+ *avg = _mm_sub_epi8(avg1, one);
+}
+
+static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
+ const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
+ const __m128i sum = _mm_add_epi16(A1, A0);
+ return _mm_srli_epi16(sum, 1);
+}
+
+static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
+ __m128i output;
+ Average2_uint32_SSE2(a0, a1, &output);
+ return (uint32_t)_mm_cvtsi128_si32(output);
+}
+
+static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
+ uint32_t a2) {
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
+ const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
+ const __m128i sum = _mm_add_epi16(avg1, A1);
+ const __m128i avg2 = _mm_srli_epi16(sum, 1);
+ const __m128i A2 = _mm_packus_epi16(avg2, avg2);
+ return (uint32_t)_mm_cvtsi128_si32(A2);
+}
+
+static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
+ uint32_t a2, uint32_t a3) {
+ const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
+ const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
+ const __m128i sum = _mm_add_epi16(avg2, avg1);
+ const __m128i avg3 = _mm_srli_epi16(sum, 1);
+ const __m128i A0 = _mm_packus_epi16(avg3, avg3);
+ return (uint32_t)_mm_cvtsi128_si32(A0);
+}
+
+static uint32_t Predictor5_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor6_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average2_SSE2(*left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor7_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average2_SSE2(*left, top[0]);
+ return pred;
+}
+static uint32_t Predictor8_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average2_SSE2(top[-1], top[0]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor9_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average2_SSE2(top[0], top[1]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor10_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor11_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor12_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
+ return pred;
+}
+static uint32_t Predictor13_SSE2(const uint32_t* const left,
+ const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
+ return pred;
+}
+
+// Batch versions of those functions.
+
+// Predictor0: ARGB_BLACK.
+static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i res = _mm_add_epi8(src, black);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
+ }
+ (void)upper;
+}
+
+// Predictor1: left.
+static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ __m128i prev = _mm_set1_epi32((int)out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // a | b | c | d
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ // 0 | a | b | c
+ const __m128i shift0 = _mm_slli_si128(src, 4);
+ // a | a + b | b + c | c + d
+ const __m128i sum0 = _mm_add_epi8(src, shift0);
+ // 0 | 0 | a | a + b
+ const __m128i shift1 = _mm_slli_si128(sum0, 8);
+ // a | a + b | a + b + c | a + b + c + d
+ const __m128i sum1 = _mm_add_epi8(sum0, shift1);
+ const __m128i res = _mm_add_epi8(sum1, prev);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ // replicate prev output on the four lanes
+ prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Macro that adds 32-bit integers from IN using mod 256 arithmetic
+// per 8 bit channel.
+#define GENERATE_PREDICTOR_1(X, IN) \
+static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
+ const __m128i res = _mm_add_epi8(src, other); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+
+// Predictor2: Top.
+GENERATE_PREDICTOR_1(2, upper[i])
+// Predictor3: Top-right.
+GENERATE_PREDICTOR_1(3, upper[i + 1])
+// Predictor4: Top-left.
+GENERATE_PREDICTOR_1(4, upper[i - 1])
+#undef GENERATE_PREDICTOR_1
+
+// Due to averages with integers, values cannot be accumulated in parallel for
+// predictors 5 to 7.
+GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
+GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
+GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
+
+#define GENERATE_PREDICTOR_2(X, IN) \
+static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ __m128i avg, res; \
+ Average2_m128i(&T, &Tother, &avg); \
+ res = _mm_add_epi8(avg, src); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+// Predictor8: average TL T.
+GENERATE_PREDICTOR_2(8, upper[i - 1])
+// Predictor9: average T TR.
+GENERATE_PREDICTOR_2(9, upper[i + 1])
+#undef GENERATE_PREDICTOR_2
+
+// Predictor10: average of (average of (L,TL), average of (T, TR)).
+#define DO_PRED10(OUT) do { \
+ __m128i avgLTL, avg; \
+ Average2_m128i(&L, &TL, &avgLTL); \
+ Average2_m128i(&avgTTR, &avgLTL, &avg); \
+ L = _mm_add_epi8(avg, src); \
+ out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
+} while (0)
+
+#define DO_PRED10_SHIFT do { \
+ /* Rotate the pre-computed values for the next iteration.*/ \
+ avgTTR = _mm_srli_si128(avgTTR, 4); \
+ TL = _mm_srli_si128(TL, 4); \
+ src = _mm_srli_si128(src, 4); \
+} while (0)
+
+static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ __m128i L = _mm_cvtsi32_si128((int)out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
+ __m128i avgTTR;
+ Average2_m128i(&T, &TR, &avgTTR);
+ DO_PRED10(0);
+ DO_PRED10_SHIFT;
+ DO_PRED10(1);
+ DO_PRED10_SHIFT;
+ DO_PRED10(2);
+ DO_PRED10_SHIFT;
+ DO_PRED10(3);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+#undef DO_PRED10
+#undef DO_PRED10_SHIFT
+
+// Predictor11: select.
+#define DO_PRED11(OUT) do { \
+ const __m128i L_lo = _mm_unpacklo_epi32(L, T); \
+ const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \
+ const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \
+ const __m128i mask = _mm_cmpgt_epi32(pb, pa); \
+ const __m128i A = _mm_and_si128(mask, L); \
+ const __m128i B = _mm_andnot_si128(mask, T); \
+ const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
+ L = _mm_add_epi8(src, pred); \
+ out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
+} while (0)
+
+#define DO_PRED11_SHIFT do { \
+ /* Shift the pre-computed value for the next iteration.*/ \
+ T = _mm_srli_si128(T, 4); \
+ TL = _mm_srli_si128(TL, 4); \
+ src = _mm_srli_si128(src, 4); \
+ pa = _mm_srli_si128(pa, 4); \
+} while (0)
+
+static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ __m128i pa;
+ __m128i L = _mm_cvtsi32_si128((int)out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ {
+ // We can unpack with any value on the upper 32 bits, provided it's the
+ // same on both operands (so that their sum of abs diff is zero). Here we
+ // use T.
+ const __m128i T_lo = _mm_unpacklo_epi32(T, T);
+ const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
+ const __m128i T_hi = _mm_unpackhi_epi32(T, T);
+ const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
+ const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
+ const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
+ pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL|
+ }
+ DO_PRED11(0);
+ DO_PRED11_SHIFT;
+ DO_PRED11(1);
+ DO_PRED11_SHIFT;
+ DO_PRED11(2);
+ DO_PRED11_SHIFT;
+ DO_PRED11(3);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+#undef DO_PRED11
+#undef DO_PRED11_SHIFT
+
+// Predictor12: ClampedAddSubtractFull.
+#define DO_PRED12(DIFF, LANE, OUT) do { \
+ const __m128i all = _mm_add_epi16(L, (DIFF)); \
+ const __m128i alls = _mm_packus_epi16(all, all); \
+ const __m128i res = _mm_add_epi8(src, alls); \
+ out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
+ L = _mm_unpacklo_epi8(res, zero); \
+} while (0)
+
+#define DO_PRED12_SHIFT(DIFF, LANE) do { \
+ /* Shift the pre-computed value for the next iteration.*/ \
+ if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
+ src = _mm_srli_si128(src, 4); \
+} while (0)
+
+static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
+ __m128i L = _mm_unpacklo_epi8(L8, zero);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // Load 4 pixels at a time.
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
+ const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
+ const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
+ const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
+ __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
+ __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
+ DO_PRED12(diff_lo, 0, 0);
+ DO_PRED12_SHIFT(diff_lo, 0);
+ DO_PRED12(diff_lo, 1, 1);
+ DO_PRED12_SHIFT(diff_lo, 1);
+ DO_PRED12(diff_hi, 0, 2);
+ DO_PRED12_SHIFT(diff_hi, 0);
+ DO_PRED12(diff_hi, 1, 3);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+#undef DO_PRED12
+#undef DO_PRED12_SHIFT
+
+// Due to averages with integers, values cannot be accumulated in parallel for
+// predictors 13.
+GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
+
+//------------------------------------------------------------------------------
+// Subtract-Green Transform
+
+static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
+ uint32_t* dst) {
+ int i;
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
+ const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
+ const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
+ const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
+ const __m128i out = _mm_add_epi8(in, C);
+ _mm_storeu_si128((__m128i*)&dst[i], out);
+ }
+ // fallthrough and finish off with plain-C
+ if (i != num_pixels) {
+ VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Color Transform
+
+static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
+ const uint32_t* const src,
+ int num_pixels, uint32_t* dst) {
+// sign-extended multiplying constants, pre-shifted by 5.
+#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
+#define MK_CST_16(HI, LO) \
+ _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
+ const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
+ const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
+#undef MK_CST_16
+#undef CST
+ const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks
+ int i;
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
+ const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
+ const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
+ const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
+ const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
+ const __m128i E = _mm_add_epi8(in, D); // x r' x b'
+ const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0
+ const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0
+ const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0
+ const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
+ const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
+ const __m128i out = _mm_or_si128(J, A);
+ _mm_storeu_si128((__m128i*)&dst[i], out);
+ }
+ // Fall-back to C-version for left-overs.
+ if (i != num_pixels) {
+ VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Color-space conversion functions
+
+static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
+ uint8_t* dst) {
+ const __m128i* in = (const __m128i*)src;
+ __m128i* out = (__m128i*)dst;
+
+ while (num_pixels >= 32) {
+ // Load the BGRA buffers.
+ __m128i in0 = _mm_loadu_si128(in + 0);
+ __m128i in1 = _mm_loadu_si128(in + 1);
+ __m128i in2 = _mm_loadu_si128(in + 2);
+ __m128i in3 = _mm_loadu_si128(in + 3);
+ __m128i in4 = _mm_loadu_si128(in + 4);
+ __m128i in5 = _mm_loadu_si128(in + 5);
+ __m128i in6 = _mm_loadu_si128(in + 6);
+ __m128i in7 = _mm_loadu_si128(in + 7);
+ VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
+ VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
+ // At this points, in1/in5 contains red only, in2/in6 green only ...
+ // Pack the colors in 24b RGB.
+ VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
+ _mm_storeu_si128(out + 0, in1);
+ _mm_storeu_si128(out + 1, in5);
+ _mm_storeu_si128(out + 2, in2);
+ _mm_storeu_si128(out + 3, in6);
+ _mm_storeu_si128(out + 4, in3);
+ _mm_storeu_si128(out + 5, in7);
+ in += 8;
+ out += 6;
+ num_pixels -= 32;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
+}
+
+static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
+ const __m128i* in = (const __m128i*)src;
+ __m128i* out = (__m128i*)dst;
+ while (num_pixels >= 8) {
+ const __m128i A1 = _mm_loadu_si128(in++);
+ const __m128i A2 = _mm_loadu_si128(in++);
+ const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0
+ const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0
+ const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A
+ const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A
+ const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
+ const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
+ const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
+ const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
+ const __m128i F1 = _mm_or_si128(E1, C1);
+ const __m128i F2 = _mm_or_si128(E2, C2);
+ _mm_storeu_si128(out++, F1);
+ _mm_storeu_si128(out++, F2);
+ num_pixels -= 8;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
+}
+
+static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
+ const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
+ const __m128i* in = (const __m128i*)src;
+ __m128i* out = (__m128i*)dst;
+ while (num_pixels >= 8) {
+ const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
+ const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
+ const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
+ const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
+ const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
+ const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
+ const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
+ const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
+ const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
+ const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
+ const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7-
+ const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7
+ const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7-
+ const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7
+ const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0
+#if (WEBP_SWAP_16BIT_CSP == 1)
+ const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7
+#else
+ const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7
+#endif
+ _mm_storeu_si128(out++, rgba);
+ num_pixels -= 8;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
+}
+
+static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
+ const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
+ const __m128i mask_0x07 = _mm_set1_epi8(0x07);
+ const __m128i* in = (const __m128i*)src;
+ __m128i* out = (__m128i*)dst;
+ while (num_pixels >= 8) {
+ const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
+ const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
+ const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
+ const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
+ const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
+ const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
+ const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
+ const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
+ const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
+ const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
+ const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7
+ const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
+ const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b)
+ const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
+ const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b)
+ const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0
+ const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx
+ const __m128i b1 = _mm_srli_epi16(b0, 3);
+ const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx
+#if (WEBP_SWAP_16BIT_CSP == 1)
+ const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7
+#else
+ const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7
+#endif
+ _mm_storeu_si128(out++, rgba);
+ num_pixels -= 8;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
+}
+
+static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
+ const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
+ const __m128i* in = (const __m128i*)src;
+ const uint8_t* const end = dst + num_pixels * 3;
+ // the last storel_epi64 below writes 8 bytes starting at offset 18
+ while (dst + 26 <= end) {
+ const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
+ const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
+ const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0
+ const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0
+ const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0
+ const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0
+ const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00
+ const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00
+ const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00
+ const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00
+ const __m128i c2 = _mm_srli_si128(c0, 8);
+ const __m128i c6 = _mm_srli_si128(c4, 8);
+ _mm_storel_epi64((__m128i*)(dst + 0), c0);
+ _mm_storel_epi64((__m128i*)(dst + 6), c2);
+ _mm_storel_epi64((__m128i*)(dst + 12), c4);
+ _mm_storel_epi64((__m128i*)(dst + 18), c6);
+ dst += 24;
+ num_pixels -= 8;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8LDspInitSSE2(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
+ VP8LPredictors[5] = Predictor5_SSE2;
+ VP8LPredictors[6] = Predictor6_SSE2;
+ VP8LPredictors[7] = Predictor7_SSE2;
+ VP8LPredictors[8] = Predictor8_SSE2;
+ VP8LPredictors[9] = Predictor9_SSE2;
+ VP8LPredictors[10] = Predictor10_SSE2;
+ VP8LPredictors[11] = Predictor11_SSE2;
+ VP8LPredictors[12] = Predictor12_SSE2;
+ VP8LPredictors[13] = Predictor13_SSE2;
+
+ VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
+ VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
+ VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
+ VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
+ VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
+ VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
+ VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
+ VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
+ VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
+ VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
+ VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
+ VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
+ VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
+ VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
+
+ VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
+ VP8LTransformColorInverse = TransformColorInverse_SSE2;
+
+ VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
+ VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
+ VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
+ VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
+ VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
+}
+
+#else // !WEBP_USE_SSE2
+
+WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
+
+#endif // WEBP_USE_SSE2