summaryrefslogtreecommitdiffstats
path: root/modules/freetype2/src/smooth/ftgrays.c
diff options
context:
space:
mode:
Diffstat (limited to 'modules/freetype2/src/smooth/ftgrays.c')
-rw-r--r--modules/freetype2/src/smooth/ftgrays.c2230
1 files changed, 2230 insertions, 0 deletions
diff --git a/modules/freetype2/src/smooth/ftgrays.c b/modules/freetype2/src/smooth/ftgrays.c
new file mode 100644
index 0000000000..d9f20eef13
--- /dev/null
+++ b/modules/freetype2/src/smooth/ftgrays.c
@@ -0,0 +1,2230 @@
+/****************************************************************************
+ *
+ * ftgrays.c
+ *
+ * A new `perfect' anti-aliasing renderer (body).
+ *
+ * Copyright (C) 2000-2023 by
+ * David Turner, Robert Wilhelm, and Werner Lemberg.
+ *
+ * This file is part of the FreeType project, and may only be used,
+ * modified, and distributed under the terms of the FreeType project
+ * license, LICENSE.TXT. By continuing to use, modify, or distribute
+ * this file you indicate that you have read the license and
+ * understand and accept it fully.
+ *
+ */
+
+ /**************************************************************************
+ *
+ * This file can be compiled without the rest of the FreeType engine, by
+ * defining the STANDALONE_ macro when compiling it. You also need to
+ * put the files `ftgrays.h' and `ftimage.h' into the current
+ * compilation directory. Typically, you could do something like
+ *
+ * - copy `src/smooth/ftgrays.c' (this file) to your current directory
+ *
+ * - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the
+ * same directory
+ *
+ * - compile `ftgrays' with the STANDALONE_ macro defined, as in
+ *
+ * cc -c -DSTANDALONE_ ftgrays.c
+ *
+ * The renderer can be initialized with a call to
+ * `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated
+ * with a call to `ft_gray_raster.raster_render'.
+ *
+ * See the comments and documentation in the file `ftimage.h' for more
+ * details on how the raster works.
+ *
+ */
+
+ /**************************************************************************
+ *
+ * This is a new anti-aliasing scan-converter for FreeType 2. The
+ * algorithm used here is _very_ different from the one in the standard
+ * `ftraster' module. Actually, `ftgrays' computes the _exact_
+ * coverage of the outline on each pixel cell by straight segments.
+ *
+ * It is based on ideas that I initially found in Raph Levien's
+ * excellent LibArt graphics library (see https://www.levien.com/libart
+ * for more information, though the web pages do not tell anything
+ * about the renderer; you'll have to dive into the source code to
+ * understand how it works).
+ *
+ * Note, however, that this is a _very_ different implementation
+ * compared to Raph's. Coverage information is stored in a very
+ * different way, and I don't use sorted vector paths. Also, it doesn't
+ * use floating point values.
+ *
+ * Bézier segments are flattened by splitting them until their deviation
+ * from straight line becomes much smaller than a pixel. Therefore, the
+ * pixel coverage by a Bézier curve is calculated approximately. To
+ * estimate the deviation, we use the distance from the control point
+ * to the conic chord centre or the cubic chord trisection. These
+ * distances vanish fast after each split. In the conic case, they vanish
+ * predictably and the number of necessary splits can be calculated.
+ *
+ * This renderer has the following advantages:
+ *
+ * - It doesn't need an intermediate bitmap. Instead, one can supply a
+ * callback function that will be called by the renderer to draw gray
+ * spans on any target surface. You can thus do direct composition on
+ * any kind of bitmap, provided that you give the renderer the right
+ * callback.
+ *
+ * - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on
+ * each pixel cell by straight segments.
+ *
+ * - It performs a single pass on the outline (the `standard' FT2
+ * renderer makes two passes).
+ *
+ * - It can easily be modified to render to _any_ number of gray levels
+ * cheaply.
+ *
+ * - For small (< 80) pixel sizes, it is faster than the standard
+ * renderer.
+ *
+ */
+
+
+ /**************************************************************************
+ *
+ * The macro FT_COMPONENT is used in trace mode. It is an implicit
+ * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
+ * messages during execution.
+ */
+#undef FT_COMPONENT
+#define FT_COMPONENT smooth
+
+
+#ifdef STANDALONE_
+
+
+ /* The size in bytes of the render pool used by the scan-line converter */
+ /* to do all of its work. */
+#define FT_RENDER_POOL_SIZE 16384L
+
+
+ /* Auxiliary macros for token concatenation. */
+#define FT_ERR_XCAT( x, y ) x ## y
+#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
+
+#define FT_BEGIN_STMNT do {
+#define FT_END_STMNT } while ( 0 )
+
+#define FT_MIN( a, b ) ( (a) < (b) ? (a) : (b) )
+#define FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) )
+#define FT_ABS( a ) ( (a) < 0 ? -(a) : (a) )
+
+
+ /*
+ * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
+ * algorithm. We use alpha = 1, beta = 3/8, giving us results with a
+ * largest error less than 7% compared to the exact value.
+ */
+#define FT_HYPOT( x, y ) \
+ ( x = FT_ABS( x ), \
+ y = FT_ABS( y ), \
+ x > y ? x + ( 3 * y >> 3 ) \
+ : y + ( 3 * x >> 3 ) )
+
+
+ /* define this to dump debugging information */
+/* #define FT_DEBUG_LEVEL_TRACE */
+
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+#include <stdio.h>
+#include <stdarg.h>
+#endif
+
+#include <stddef.h>
+#include <string.h>
+#include <setjmp.h>
+#include <limits.h>
+#define FT_CHAR_BIT CHAR_BIT
+#define FT_UINT_MAX UINT_MAX
+#define FT_INT_MAX INT_MAX
+#define FT_ULONG_MAX ULONG_MAX
+
+#define ADD_INT( a, b ) \
+ (int)( (unsigned int)(a) + (unsigned int)(b) )
+
+#define FT_STATIC_BYTE_CAST( type, var ) (type)(unsigned char)(var)
+
+
+#define ft_memset memset
+
+#define ft_setjmp setjmp
+#define ft_longjmp longjmp
+#define ft_jmp_buf jmp_buf
+
+typedef ptrdiff_t FT_PtrDist;
+
+
+#define Smooth_Err_Ok 0
+#define Smooth_Err_Invalid_Outline -1
+#define Smooth_Err_Cannot_Render_Glyph -2
+#define Smooth_Err_Invalid_Argument -3
+#define Smooth_Err_Raster_Overflow -4
+
+#define FT_BEGIN_HEADER
+#define FT_END_HEADER
+
+#include "ftimage.h"
+#include "ftgrays.h"
+
+
+ /* This macro is used to indicate that a function parameter is unused. */
+ /* Its purpose is simply to reduce compiler warnings. Note also that */
+ /* simply defining it as `(void)x' doesn't avoid warnings with certain */
+ /* ANSI compilers (e.g. LCC). */
+#define FT_UNUSED( x ) (x) = (x)
+
+
+ /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ void
+ FT_Message( const char* fmt,
+ ... )
+ {
+ va_list ap;
+
+
+ va_start( ap, fmt );
+ vfprintf( stderr, fmt, ap );
+ va_end( ap );
+ }
+
+
+ /* empty function useful for setting a breakpoint to catch errors */
+ int
+ FT_Throw( int error,
+ int line,
+ const char* file )
+ {
+ FT_UNUSED( error );
+ FT_UNUSED( line );
+ FT_UNUSED( file );
+
+ return 0;
+ }
+
+
+ /* we don't handle tracing levels in stand-alone mode; */
+#ifndef FT_TRACE5
+#define FT_TRACE5( varformat ) FT_Message varformat
+#endif
+#ifndef FT_TRACE7
+#define FT_TRACE7( varformat ) FT_Message varformat
+#endif
+#ifndef FT_ERROR
+#define FT_ERROR( varformat ) FT_Message varformat
+#endif
+
+#define FT_THROW( e ) \
+ ( FT_Throw( FT_ERR_CAT( Smooth_Err_, e ), \
+ __LINE__, \
+ __FILE__ ) | \
+ FT_ERR_CAT( Smooth_Err_, e ) )
+
+#else /* !FT_DEBUG_LEVEL_TRACE */
+
+#define FT_TRACE5( x ) do { } while ( 0 ) /* nothing */
+#define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
+#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
+#define FT_THROW( e ) FT_ERR_CAT( Smooth_Err_, e )
+
+#endif /* !FT_DEBUG_LEVEL_TRACE */
+
+
+#define FT_Trace_Enable() do { } while ( 0 ) /* nothing */
+#define FT_Trace_Disable() do { } while ( 0 ) /* nothing */
+
+
+#define FT_DEFINE_OUTLINE_FUNCS( class_, \
+ move_to_, line_to_, \
+ conic_to_, cubic_to_, \
+ shift_, delta_ ) \
+ static const FT_Outline_Funcs class_ = \
+ { \
+ move_to_, \
+ line_to_, \
+ conic_to_, \
+ cubic_to_, \
+ shift_, \
+ delta_ \
+ };
+
+#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, \
+ raster_new_, raster_reset_, \
+ raster_set_mode_, raster_render_, \
+ raster_done_ ) \
+ const FT_Raster_Funcs class_ = \
+ { \
+ glyph_format_, \
+ raster_new_, \
+ raster_reset_, \
+ raster_set_mode_, \
+ raster_render_, \
+ raster_done_ \
+ };
+
+
+#else /* !STANDALONE_ */
+
+
+#include <ft2build.h>
+#include FT_CONFIG_CONFIG_H
+#include "ftgrays.h"
+#include <freetype/internal/ftobjs.h>
+#include <freetype/internal/ftdebug.h>
+#include <freetype/internal/ftcalc.h>
+#include <freetype/ftoutln.h>
+
+#include "ftsmerrs.h"
+
+
+#endif /* !STANDALONE_ */
+
+
+#ifndef FT_MEM_SET
+#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
+#endif
+
+#ifndef FT_MEM_ZERO
+#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
+#endif
+
+#ifndef FT_ZERO
+#define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) )
+#endif
+
+ /* as usual, for the speed hungry :-) */
+
+#undef RAS_ARG
+#undef RAS_ARG_
+#undef RAS_VAR
+#undef RAS_VAR_
+
+#ifndef FT_STATIC_RASTER
+
+#define RAS_ARG gray_PWorker worker
+#define RAS_ARG_ gray_PWorker worker,
+
+#define RAS_VAR worker
+#define RAS_VAR_ worker,
+
+#else /* FT_STATIC_RASTER */
+
+#define RAS_ARG void
+#define RAS_ARG_ /* empty */
+#define RAS_VAR /* empty */
+#define RAS_VAR_ /* empty */
+
+#endif /* FT_STATIC_RASTER */
+
+
+ /* must be at least 6 bits! */
+#define PIXEL_BITS 8
+
+#define ONE_PIXEL ( 1 << PIXEL_BITS )
+#undef TRUNC
+#define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS )
+#undef FRACT
+#define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) )
+
+#if PIXEL_BITS >= 6
+#define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) )
+#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
+#else
+#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
+#define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) )
+#endif
+
+
+ /* Compute `dividend / divisor' and return both its quotient and */
+ /* remainder, cast to a specific type. This macro also ensures that */
+ /* the remainder is always positive. We use the remainder to keep */
+ /* track of accumulating errors and compensate for them. */
+#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
+ FT_BEGIN_STMNT \
+ (quotient) = (type)( (dividend) / (divisor) ); \
+ (remainder) = (type)( (dividend) % (divisor) ); \
+ if ( (remainder) < 0 ) \
+ { \
+ (quotient)--; \
+ (remainder) += (type)(divisor); \
+ } \
+ FT_END_STMNT
+
+#if defined( __GNUC__ ) && __GNUC__ < 7 && defined( __arm__ )
+ /* Work around a bug specific to GCC which make the compiler fail to */
+ /* optimize a division and modulo operation on the same parameters */
+ /* into a single call to `__aeabi_idivmod'. See */
+ /* */
+ /* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 */
+#undef FT_DIV_MOD
+#define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
+ FT_BEGIN_STMNT \
+ (quotient) = (type)( (dividend) / (divisor) ); \
+ (remainder) = (type)( (dividend) - (quotient) * (divisor) ); \
+ if ( (remainder) < 0 ) \
+ { \
+ (quotient)--; \
+ (remainder) += (type)(divisor); \
+ } \
+ FT_END_STMNT
+#endif /* __arm__ */
+
+
+ /* Calculating coverages for a slanted line requires a division each */
+ /* time the line crosses from cell to cell. These macros speed up */
+ /* the repetitive divisions by replacing them with multiplications */
+ /* and right shifts so that at most two divisions are performed for */
+ /* each slanted line. Nevertheless, these divisions are noticeable */
+ /* in the overall performance because flattened curves produce a */
+ /* very large number of slanted lines. */
+ /* */
+ /* The division results here are always within ONE_PIXEL. Therefore */
+ /* the shift magnitude should be at least PIXEL_BITS wider than the */
+ /* divisors to provide sufficient accuracy of the multiply-shift. */
+ /* It should not exceed (64 - PIXEL_BITS) to prevent overflowing and */
+ /* leave enough room for 64-bit unsigned multiplication however. */
+#define FT_UDIVPREP( c, b ) \
+ FT_Int64 b ## _r = c ? (FT_Int64)0xFFFFFFFF / ( b ) : 0
+#define FT_UDIV( a, b ) \
+ (TCoord)( ( (FT_UInt64)( a ) * (FT_UInt64)( b ## _r ) ) >> 32 )
+
+
+ /* Scale area and apply fill rule to calculate the coverage byte. */
+ /* The top fill bit is used for the non-zero rule. The eighth */
+ /* fill bit is used for the even-odd rule. The higher coverage */
+ /* bytes are either clamped for the non-zero-rule or discarded */
+ /* later for the even-odd rule. */
+#define FT_FILL_RULE( coverage, area, fill ) \
+ FT_BEGIN_STMNT \
+ coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); \
+ if ( coverage & fill ) \
+ coverage = ~coverage; \
+ if ( coverage > 255 && fill & INT_MIN ) \
+ coverage = 255; \
+ FT_END_STMNT
+
+
+ /* It is faster to write small spans byte-by-byte than calling */
+ /* `memset'. This is mainly due to the cost of the function call. */
+#define FT_GRAY_SET( d, s, count ) \
+ FT_BEGIN_STMNT \
+ unsigned char* q = d; \
+ switch ( count ) \
+ { \
+ case 7: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 6: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 5: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 4: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 3: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 2: *q++ = (unsigned char)s; FALL_THROUGH; \
+ case 1: *q = (unsigned char)s; FALL_THROUGH; \
+ case 0: break; \
+ default: FT_MEM_SET( d, s, count ); \
+ } \
+ FT_END_STMNT
+
+
+ /**************************************************************************
+ *
+ * TYPE DEFINITIONS
+ */
+
+ /* don't change the following types to FT_Int or FT_Pos, since we might */
+ /* need to define them to "float" or "double" when experimenting with */
+ /* new algorithms */
+
+ typedef long TPos; /* subpixel coordinate */
+ typedef int TCoord; /* integer scanline/pixel coordinate */
+ typedef int TArea; /* cell areas, coordinate products */
+
+
+ typedef struct TCell_* PCell;
+
+ typedef struct TCell_
+ {
+ TCoord x; /* same with gray_TWorker.ex */
+ TCoord cover; /* same with gray_TWorker.cover */
+ TArea area;
+ PCell next;
+
+ } TCell;
+
+ typedef struct TPixmap_
+ {
+ unsigned char* origin; /* pixmap origin at the bottom-left */
+ int pitch; /* pitch to go down one row */
+
+ } TPixmap;
+
+ /* maximum number of gray cells in the buffer */
+#if FT_RENDER_POOL_SIZE > 2048
+#define FT_MAX_GRAY_POOL ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
+#else
+#define FT_MAX_GRAY_POOL ( 2048 / sizeof ( TCell ) )
+#endif
+
+ /* FT_Span buffer size for direct rendering only */
+#define FT_MAX_GRAY_SPANS 16
+
+
+#if defined( _MSC_VER ) /* Visual C++ (and Intel C++) */
+ /* We disable the warning `structure was padded due to */
+ /* __declspec(align())' in order to compile cleanly with */
+ /* the maximum level of warnings. */
+#pragma warning( push )
+#pragma warning( disable : 4324 )
+#endif /* _MSC_VER */
+
+ typedef struct gray_TWorker_
+ {
+ ft_jmp_buf jump_buffer;
+
+ TCoord min_ex, max_ex; /* min and max integer pixel coordinates */
+ TCoord min_ey, max_ey;
+ TCoord count_ey; /* same as (max_ey - min_ey) */
+
+ PCell cell; /* current cell */
+ PCell cell_free; /* call allocation next free slot */
+ PCell cell_null; /* last cell, used as dumpster and limit */
+
+ PCell* ycells; /* array of cell linked-lists; one per */
+ /* vertical coordinate in the current band */
+
+ TPos x, y; /* last point position */
+
+ FT_Outline outline; /* input outline */
+ TPixmap target; /* target pixmap */
+
+ FT_Raster_Span_Func render_span;
+ void* render_span_data;
+
+ } gray_TWorker, *gray_PWorker;
+
+#if defined( _MSC_VER )
+#pragma warning( pop )
+#endif
+
+#ifndef FT_STATIC_RASTER
+#define ras (*worker)
+#else
+ static gray_TWorker ras;
+#endif
+
+ /* The |x| value of the null cell. Must be the largest possible */
+ /* integer value stored in a `TCell.x` field. */
+#define CELL_MAX_X_VALUE INT_MAX
+
+
+#define FT_INTEGRATE( ras, a, b ) \
+ ras.cell->cover = ADD_INT( ras.cell->cover, a ), \
+ ras.cell->area = ADD_INT( ras.cell->area, (a) * (TArea)(b) )
+
+
+ typedef struct gray_TRaster_
+ {
+ void* memory;
+
+ } gray_TRaster, *gray_PRaster;
+
+
+#ifdef FT_DEBUG_LEVEL_TRACE
+
+ /* to be called while in the debugger -- */
+ /* this function causes a compiler warning since it is unused otherwise */
+ static void
+ gray_dump_cells( RAS_ARG )
+ {
+ int y;
+
+
+ for ( y = ras.min_ey; y < ras.max_ey; y++ )
+ {
+ PCell cell = ras.ycells[y - ras.min_ey];
+
+
+ printf( "%3d:", y );
+
+ for ( ; cell != ras.cell_null; cell = cell->next )
+ printf( " (%3d, c:%4d, a:%6d)",
+ cell->x, cell->cover, cell->area );
+ printf( "\n" );
+ }
+ }
+
+#endif /* FT_DEBUG_LEVEL_TRACE */
+
+
+ /**************************************************************************
+ *
+ * Set the current cell to a new position.
+ */
+ static void
+ gray_set_cell( RAS_ARG_ TCoord ex,
+ TCoord ey )
+ {
+ /* Move the cell pointer to a new position in the linked list. We use */
+ /* a dumpster null cell for everything outside of the clipping region */
+ /* during the render phase. This means that: */
+ /* */
+ /* . the new vertical position must be within min_ey..max_ey-1. */
+ /* . the new horizontal position must be strictly less than max_ex */
+ /* */
+ /* Note that if a cell is to the left of the clipping region, it is */
+ /* actually set to the (min_ex-1) horizontal position. */
+
+ TCoord ey_index = ey - ras.min_ey;
+
+
+ if ( ey_index < 0 || ey_index >= ras.count_ey || ex >= ras.max_ex )
+ ras.cell = ras.cell_null;
+ else
+ {
+ PCell* pcell = ras.ycells + ey_index;
+ PCell cell;
+
+
+ ex = FT_MAX( ex, ras.min_ex - 1 );
+
+ while ( 1 )
+ {
+ cell = *pcell;
+
+ if ( cell->x > ex )
+ break;
+
+ if ( cell->x == ex )
+ goto Found;
+
+ pcell = &cell->next;
+ }
+
+ /* insert new cell */
+ cell = ras.cell_free++;
+ if ( cell >= ras.cell_null )
+ ft_longjmp( ras.jump_buffer, 1 );
+
+ cell->x = ex;
+ cell->area = 0;
+ cell->cover = 0;
+
+ cell->next = *pcell;
+ *pcell = cell;
+
+ Found:
+ ras.cell = cell;
+ }
+ }
+
+
+#ifndef FT_INT64
+
+ /**************************************************************************
+ *
+ * Render a scanline as one or more cells.
+ */
+ static void
+ gray_render_scanline( RAS_ARG_ TCoord ey,
+ TPos x1,
+ TCoord y1,
+ TPos x2,
+ TCoord y2 )
+ {
+ TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod;
+ TPos p, dx;
+ int incr;
+
+
+ ex1 = TRUNC( x1 );
+ ex2 = TRUNC( x2 );
+
+ /* trivial case. Happens often */
+ if ( y1 == y2 )
+ {
+ gray_set_cell( RAS_VAR_ ex2, ey );
+ return;
+ }
+
+ fx1 = FRACT( x1 );
+ fx2 = FRACT( x2 );
+
+ /* everything is located in a single cell. That is easy! */
+ /* */
+ if ( ex1 == ex2 )
+ goto End;
+
+ /* ok, we'll have to render a run of adjacent cells on the same */
+ /* scanline... */
+ /* */
+ dx = x2 - x1;
+ dy = y2 - y1;
+
+ if ( dx > 0 )
+ {
+ p = ( ONE_PIXEL - fx1 ) * dy;
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ p = fx1 * dy;
+ first = 0;
+ incr = -1;
+ dx = -dx;
+ }
+
+ /* the fractional part of y-delta is mod/dx. It is essential to */
+ /* keep track of its accumulation for accurate rendering. */
+ /* XXX: y-delta and x-delta below should be related. */
+ FT_DIV_MOD( TCoord, p, dx, delta, mod );
+
+ FT_INTEGRATE( ras, delta, fx1 + first );
+ y1 += delta;
+ ex1 += incr;
+ gray_set_cell( RAS_VAR_ ex1, ey );
+
+ if ( ex1 != ex2 )
+ {
+ TCoord lift, rem;
+
+
+ p = ONE_PIXEL * dy;
+ FT_DIV_MOD( TCoord, p, dx, lift, rem );
+
+ do
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= (TCoord)dx )
+ {
+ mod -= (TCoord)dx;
+ delta++;
+ }
+
+ FT_INTEGRATE( ras, delta, ONE_PIXEL );
+ y1 += delta;
+ ex1 += incr;
+ gray_set_cell( RAS_VAR_ ex1, ey );
+ } while ( ex1 != ex2 );
+ }
+
+ fx1 = ONE_PIXEL - first;
+
+ End:
+ FT_INTEGRATE( ras, y2 - y1, fx1 + fx2 );
+ }
+
+
+ /**************************************************************************
+ *
+ * Render a given line as a series of scanlines.
+ */
+ static void
+ gray_render_line( RAS_ARG_ TPos to_x,
+ TPos to_y )
+ {
+ TCoord ey1, ey2, fy1, fy2, first, delta, mod;
+ TPos p, dx, dy, x, x2;
+ int incr;
+
+
+ ey1 = TRUNC( ras.y );
+ ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
+
+ /* perform vertical clipping */
+ if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
+ ( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
+ goto End;
+
+ fy1 = FRACT( ras.y );
+ fy2 = FRACT( to_y );
+
+ /* everything is on a single scanline */
+ if ( ey1 == ey2 )
+ {
+ gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
+ goto End;
+ }
+
+ dx = to_x - ras.x;
+ dy = to_y - ras.y;
+
+ /* vertical line - avoid calling gray_render_scanline */
+ if ( dx == 0 )
+ {
+ TCoord ex = TRUNC( ras.x );
+ TCoord two_fx = FRACT( ras.x ) << 1;
+
+
+ if ( dy > 0)
+ {
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ first = 0;
+ incr = -1;
+ }
+
+ delta = first - fy1;
+ FT_INTEGRATE( ras, delta, two_fx);
+ ey1 += incr;
+
+ gray_set_cell( RAS_VAR_ ex, ey1 );
+
+ delta = first + first - ONE_PIXEL;
+ while ( ey1 != ey2 )
+ {
+ FT_INTEGRATE( ras, delta, two_fx);
+ ey1 += incr;
+
+ gray_set_cell( RAS_VAR_ ex, ey1 );
+ }
+
+ delta = fy2 - ONE_PIXEL + first;
+ FT_INTEGRATE( ras, delta, two_fx);
+
+ goto End;
+ }
+
+ /* ok, we have to render several scanlines */
+ if ( dy > 0)
+ {
+ p = ( ONE_PIXEL - fy1 ) * dx;
+ first = ONE_PIXEL;
+ incr = 1;
+ }
+ else
+ {
+ p = fy1 * dx;
+ first = 0;
+ incr = -1;
+ dy = -dy;
+ }
+
+ /* the fractional part of x-delta is mod/dy. It is essential to */
+ /* keep track of its accumulation for accurate rendering. */
+ FT_DIV_MOD( TCoord, p, dy, delta, mod );
+
+ x = ras.x + delta;
+ gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
+
+ ey1 += incr;
+ gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
+
+ if ( ey1 != ey2 )
+ {
+ TCoord lift, rem;
+
+
+ p = ONE_PIXEL * dx;
+ FT_DIV_MOD( TCoord, p, dy, lift, rem );
+
+ do
+ {
+ delta = lift;
+ mod += rem;
+ if ( mod >= (TCoord)dy )
+ {
+ mod -= (TCoord)dy;
+ delta++;
+ }
+
+ x2 = x + delta;
+ gray_render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first,
+ x2, first );
+ x = x2;
+
+ ey1 += incr;
+ gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
+ } while ( ey1 != ey2 );
+ }
+
+ gray_render_scanline( RAS_VAR_ ey1,
+ x, ONE_PIXEL - first,
+ to_x, fy2 );
+
+ End:
+ ras.x = to_x;
+ ras.y = to_y;
+ }
+
+#else
+
+ /**************************************************************************
+ *
+ * Render a straight line across multiple cells in any direction.
+ */
+ static void
+ gray_render_line( RAS_ARG_ TPos to_x,
+ TPos to_y )
+ {
+ TPos dx, dy;
+ TCoord fx1, fy1, fx2, fy2;
+ TCoord ex1, ey1, ex2, ey2;
+
+
+ ey1 = TRUNC( ras.y );
+ ey2 = TRUNC( to_y );
+
+ /* perform vertical clipping */
+ if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
+ ( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
+ goto End;
+
+ ex1 = TRUNC( ras.x );
+ ex2 = TRUNC( to_x );
+
+ fx1 = FRACT( ras.x );
+ fy1 = FRACT( ras.y );
+
+ dx = to_x - ras.x;
+ dy = to_y - ras.y;
+
+ if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */
+ ;
+ else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */
+ {
+ gray_set_cell( RAS_VAR_ ex2, ey2 );
+ goto End;
+ }
+ else if ( dx == 0 )
+ {
+ if ( dy > 0 ) /* vertical line up */
+ do
+ {
+ fy2 = ONE_PIXEL;
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 );
+ fy1 = 0;
+ ey1++;
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ } while ( ey1 != ey2 );
+ else /* vertical line down */
+ do
+ {
+ fy2 = 0;
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 * 2 );
+ fy1 = ONE_PIXEL;
+ ey1--;
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+ } while ( ey1 != ey2 );
+ }
+ else /* any other line */
+ {
+ FT_Int64 prod = dx * (FT_Int64)fy1 - dy * (FT_Int64)fx1;
+ FT_UDIVPREP( ex1 != ex2, dx );
+ FT_UDIVPREP( ey1 != ey2, dy );
+
+
+ /* The fundamental value `prod' determines which side and the */
+ /* exact coordinate where the line exits current cell. It is */
+ /* also easily updated when moving from one cell to the next. */
+ do
+ {
+ if ( prod - dx * ONE_PIXEL > 0 &&
+ prod <= 0 ) /* left */
+ {
+ fx2 = 0;
+ fy2 = FT_UDIV( -prod, -dx );
+ prod -= dy * ONE_PIXEL;
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
+ fx1 = ONE_PIXEL;
+ fy1 = fy2;
+ ex1--;
+ }
+ else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 &&
+ prod - dx * ONE_PIXEL <= 0 ) /* up */
+ {
+ prod -= dx * ONE_PIXEL;
+ fx2 = FT_UDIV( -prod, dy );
+ fy2 = ONE_PIXEL;
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
+ fx1 = fx2;
+ fy1 = 0;
+ ey1++;
+ }
+ else if ( prod + dy * ONE_PIXEL >= 0 &&
+ prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 ) /* right */
+ {
+ prod += dy * ONE_PIXEL;
+ fx2 = ONE_PIXEL;
+ fy2 = FT_UDIV( prod, dx );
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
+ fx1 = 0;
+ fy1 = fy2;
+ ex1++;
+ }
+ else /* ( prod > 0 &&
+ prod + dy * ONE_PIXEL < 0 ) down */
+ {
+ fx2 = FT_UDIV( prod, -dy );
+ fy2 = 0;
+ prod += dx * ONE_PIXEL;
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
+ fx1 = fx2;
+ fy1 = ONE_PIXEL;
+ ey1--;
+ }
+
+ gray_set_cell( RAS_VAR_ ex1, ey1 );
+
+ } while ( ex1 != ex2 || ey1 != ey2 );
+ }
+
+ fx2 = FRACT( to_x );
+ fy2 = FRACT( to_y );
+
+ FT_INTEGRATE( ras, fy2 - fy1, fx1 + fx2 );
+
+ End:
+ ras.x = to_x;
+ ras.y = to_y;
+ }
+
+#endif
+
+ /*
+ * Benchmarking shows that using DDA to flatten the quadratic Bézier arcs
+ * is slightly faster in the following cases:
+ *
+ * - When the host CPU is 64-bit.
+ * - When SSE2 SIMD registers and instructions are available (even on
+ * x86).
+ *
+ * For other cases, using binary splits is actually slightly faster.
+ */
+#if defined( __SSE2__ ) || \
+ defined( __x86_64__ ) || \
+ defined( _M_AMD64 ) || \
+ ( defined( _M_IX86_FP ) && _M_IX86_FP >= 2 )
+# define FT_SSE2 1
+#else
+# define FT_SSE2 0
+#endif
+
+#if FT_SSE2 || \
+ defined( __aarch64__ ) || \
+ defined( _M_ARM64 )
+# define BEZIER_USE_DDA 1
+#else
+# define BEZIER_USE_DDA 0
+#endif
+
+ /*
+ * For now, the code that depends on `BEZIER_USE_DDA` requires `FT_Int64`
+ * to be defined. If `FT_INT64` is not defined, meaning there is no
+ * 64-bit type available, disable it to avoid compilation errors. See for
+ * example https://gitlab.freedesktop.org/freetype/freetype/-/issues/1071.
+ */
+#if !defined( FT_INT64 )
+# undef BEZIER_USE_DDA
+# define BEZIER_USE_DDA 0
+#endif
+
+#if BEZIER_USE_DDA
+
+#if FT_SSE2
+# include <emmintrin.h>
+#endif
+
+#define LEFT_SHIFT( a, b ) (FT_Int64)( (FT_UInt64)(a) << (b) )
+
+
+ static void
+ gray_render_conic( RAS_ARG_ const FT_Vector* control,
+ const FT_Vector* to )
+ {
+ FT_Vector p0, p1, p2;
+ TPos ax, ay, bx, by, dx, dy;
+ int shift;
+
+ FT_Int64 rx, ry;
+ FT_Int64 qx, qy;
+ FT_Int64 px, py;
+
+ FT_UInt count;
+
+
+ p0.x = ras.x;
+ p0.y = ras.y;
+ p1.x = UPSCALE( control->x );
+ p1.y = UPSCALE( control->y );
+ p2.x = UPSCALE( to->x );
+ p2.y = UPSCALE( to->y );
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( p0.y ) >= ras.max_ey &&
+ TRUNC( p1.y ) >= ras.max_ey &&
+ TRUNC( p2.y ) >= ras.max_ey ) ||
+ ( TRUNC( p0.y ) < ras.min_ey &&
+ TRUNC( p1.y ) < ras.min_ey &&
+ TRUNC( p2.y ) < ras.min_ey ) )
+ {
+ ras.x = p2.x;
+ ras.y = p2.y;
+ return;
+ }
+
+ bx = p1.x - p0.x;
+ by = p1.y - p0.y;
+ ax = p2.x - p1.x - bx; /* p0.x + p2.x - 2 * p1.x */
+ ay = p2.y - p1.y - by; /* p0.y + p2.y - 2 * p1.y */
+
+ dx = FT_ABS( ax );
+ dy = FT_ABS( ay );
+ if ( dx < dy )
+ dx = dy;
+
+ if ( dx <= ONE_PIXEL / 4 )
+ {
+ gray_render_line( RAS_VAR_ p2.x, p2.y );
+ return;
+ }
+
+ /* We can calculate the number of necessary bisections because */
+ /* each bisection predictably reduces deviation exactly 4-fold. */
+ /* Even 32-bit deviation would vanish after 16 bisections. */
+ shift = 0;
+ do
+ {
+ dx >>= 2;
+ shift += 1;
+
+ } while ( dx > ONE_PIXEL / 4 );
+
+ /*
+ * The (P0,P1,P2) arc equation, for t in [0,1] range:
+ *
+ * P(t) = P0*(1-t)^2 + P1*2*t*(1-t) + P2*t^2
+ *
+ * P(t) = P0 + 2*(P1-P0)*t + (P0+P2-2*P1)*t^2
+ * = P0 + 2*B*t + A*t^2
+ *
+ * for A = P0 + P2 - 2*P1
+ * and B = P1 - P0
+ *
+ * Let's consider the difference when advancing by a small
+ * parameter h:
+ *
+ * Q(h,t) = P(t+h) - P(t) = 2*B*h + A*h^2 + 2*A*h*t
+ *
+ * And then its own difference:
+ *
+ * R(h,t) = Q(h,t+h) - Q(h,t) = 2*A*h*h = R (constant)
+ *
+ * Since R is always a constant, it is possible to compute
+ * successive positions with:
+ *
+ * P = P0
+ * Q = Q(h,0) = 2*B*h + A*h*h
+ * R = 2*A*h*h
+ *
+ * loop:
+ * P += Q
+ * Q += R
+ * EMIT(P)
+ *
+ * To ensure accurate results, perform computations on 64-bit
+ * values, after scaling them by 2^32.
+ *
+ * h = 1 / 2^N
+ *
+ * R << 32 = 2 * A << (32 - N - N)
+ * = A << (33 - 2*N)
+ *
+ * Q << 32 = (2 * B << (32 - N)) + (A << (32 - N - N))
+ * = (B << (33 - N)) + (A << (32 - 2*N))
+ */
+
+#if FT_SSE2
+ /* Experience shows that for small shift values, */
+ /* SSE2 is actually slower. */
+ if ( shift > 2 )
+ {
+ union
+ {
+ struct { FT_Int64 ax, ay, bx, by; } i;
+ struct { __m128i a, b; } vec;
+
+ } u;
+
+ union
+ {
+ struct { FT_Int32 px_lo, px_hi, py_lo, py_hi; } i;
+ __m128i vec;
+
+ } v;
+
+ __m128i a, b;
+ __m128i r, q, q2;
+ __m128i p;
+
+
+ u.i.ax = ax;
+ u.i.ay = ay;
+ u.i.bx = bx;
+ u.i.by = by;
+
+ a = _mm_load_si128( &u.vec.a );
+ b = _mm_load_si128( &u.vec.b );
+
+ r = _mm_slli_epi64( a, 33 - 2 * shift );
+ q = _mm_slli_epi64( b, 33 - shift );
+ q2 = _mm_slli_epi64( a, 32 - 2 * shift );
+
+ q = _mm_add_epi64( q2, q );
+
+ v.i.px_lo = 0;
+ v.i.px_hi = p0.x;
+ v.i.py_lo = 0;
+ v.i.py_hi = p0.y;
+
+ p = _mm_load_si128( &v.vec );
+
+ for ( count = 1U << shift; count > 0; count-- )
+ {
+ p = _mm_add_epi64( p, q );
+ q = _mm_add_epi64( q, r );
+
+ _mm_store_si128( &v.vec, p );
+
+ gray_render_line( RAS_VAR_ v.i.px_hi, v.i.py_hi );
+ }
+
+ return;
+ }
+#endif /* FT_SSE2 */
+
+ rx = LEFT_SHIFT( ax, 33 - 2 * shift );
+ ry = LEFT_SHIFT( ay, 33 - 2 * shift );
+
+ qx = LEFT_SHIFT( bx, 33 - shift ) + LEFT_SHIFT( ax, 32 - 2 * shift );
+ qy = LEFT_SHIFT( by, 33 - shift ) + LEFT_SHIFT( ay, 32 - 2 * shift );
+
+ px = LEFT_SHIFT( p0.x, 32 );
+ py = LEFT_SHIFT( p0.y, 32 );
+
+ for ( count = 1U << shift; count > 0; count-- )
+ {
+ px += qx;
+ py += qy;
+ qx += rx;
+ qy += ry;
+
+ gray_render_line( RAS_VAR_ (FT_Pos)( px >> 32 ),
+ (FT_Pos)( py >> 32 ) );
+ }
+ }
+
+#else /* !BEZIER_USE_DDA */
+
+ /*
+ * Note that multiple attempts to speed up the function below
+ * with SSE2 intrinsics, using various data layouts, have turned
+ * out to be slower than the non-SIMD code below.
+ */
+ static void
+ gray_split_conic( FT_Vector* base )
+ {
+ TPos a, b;
+
+
+ base[4].x = base[2].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ base[3].x = b >> 1;
+ base[2].x = ( a + b ) >> 2;
+ base[1].x = a >> 1;
+
+ base[4].y = base[2].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ base[3].y = b >> 1;
+ base[2].y = ( a + b ) >> 2;
+ base[1].y = a >> 1;
+ }
+
+
+ static void
+ gray_render_conic( RAS_ARG_ const FT_Vector* control,
+ const FT_Vector* to )
+ {
+ FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */
+ FT_Vector* arc = bez_stack;
+ TPos dx, dy;
+ int draw;
+
+
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control->x );
+ arc[1].y = UPSCALE( control->y );
+ arc[2].x = ras.x;
+ arc[2].y = ras.y;
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
+ TRUNC( arc[1].y ) >= ras.max_ey &&
+ TRUNC( arc[2].y ) >= ras.max_ey ) ||
+ ( TRUNC( arc[0].y ) < ras.min_ey &&
+ TRUNC( arc[1].y ) < ras.min_ey &&
+ TRUNC( arc[2].y ) < ras.min_ey ) )
+ {
+ ras.x = arc[0].x;
+ ras.y = arc[0].y;
+ return;
+ }
+
+ dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
+ dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
+ if ( dx < dy )
+ dx = dy;
+
+ /* We can calculate the number of necessary bisections because */
+ /* each bisection predictably reduces deviation exactly 4-fold. */
+ /* Even 32-bit deviation would vanish after 16 bisections. */
+ draw = 1;
+ while ( dx > ONE_PIXEL / 4 )
+ {
+ dx >>= 2;
+ draw <<= 1;
+ }
+
+ /* We use decrement counter to count the total number of segments */
+ /* to draw starting from 2^level. Before each draw we split as */
+ /* many times as there are trailing zeros in the counter. */
+ do
+ {
+ int split = draw & ( -draw ); /* isolate the rightmost 1-bit */
+
+
+ while ( ( split >>= 1 ) )
+ {
+ gray_split_conic( arc );
+ arc += 2;
+ }
+
+ gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
+ arc -= 2;
+
+ } while ( --draw );
+ }
+
+#endif /* !BEZIER_USE_DDA */
+
+
+ /*
+ * For cubic Bézier, binary splits are still faster than DDA
+ * because the splits are adaptive to how quickly each sub-arc
+ * approaches their chord trisection points.
+ *
+ * It might be useful to experiment with SSE2 to speed up
+ * `gray_split_cubic`, though.
+ */
+ static void
+ gray_split_cubic( FT_Vector* base )
+ {
+ TPos a, b, c;
+
+
+ base[6].x = base[3].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ c = base[2].x + base[3].x;
+ base[5].x = c >> 1;
+ c += b;
+ base[4].x = c >> 2;
+ base[1].x = a >> 1;
+ a += b;
+ base[2].x = a >> 2;
+ base[3].x = ( a + c ) >> 3;
+
+ base[6].y = base[3].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ c = base[2].y + base[3].y;
+ base[5].y = c >> 1;
+ c += b;
+ base[4].y = c >> 2;
+ base[1].y = a >> 1;
+ a += b;
+ base[2].y = a >> 2;
+ base[3].y = ( a + c ) >> 3;
+ }
+
+
+ static void
+ gray_render_cubic( RAS_ARG_ const FT_Vector* control1,
+ const FT_Vector* control2,
+ const FT_Vector* to )
+ {
+ FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */
+ FT_Vector* arc = bez_stack;
+
+
+ arc[0].x = UPSCALE( to->x );
+ arc[0].y = UPSCALE( to->y );
+ arc[1].x = UPSCALE( control2->x );
+ arc[1].y = UPSCALE( control2->y );
+ arc[2].x = UPSCALE( control1->x );
+ arc[2].y = UPSCALE( control1->y );
+ arc[3].x = ras.x;
+ arc[3].y = ras.y;
+
+ /* short-cut the arc that crosses the current band */
+ if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
+ TRUNC( arc[1].y ) >= ras.max_ey &&
+ TRUNC( arc[2].y ) >= ras.max_ey &&
+ TRUNC( arc[3].y ) >= ras.max_ey ) ||
+ ( TRUNC( arc[0].y ) < ras.min_ey &&
+ TRUNC( arc[1].y ) < ras.min_ey &&
+ TRUNC( arc[2].y ) < ras.min_ey &&
+ TRUNC( arc[3].y ) < ras.min_ey ) )
+ {
+ ras.x = arc[0].x;
+ ras.y = arc[0].y;
+ return;
+ }
+
+ for (;;)
+ {
+ /* with each split, control points quickly converge towards */
+ /* chord trisection points and the vanishing distances below */
+ /* indicate when the segment is flat enough to draw */
+ if ( FT_ABS( 2 * arc[0].x - 3 * arc[1].x + arc[3].x ) > ONE_PIXEL / 2 ||
+ FT_ABS( 2 * arc[0].y - 3 * arc[1].y + arc[3].y ) > ONE_PIXEL / 2 ||
+ FT_ABS( arc[0].x - 3 * arc[2].x + 2 * arc[3].x ) > ONE_PIXEL / 2 ||
+ FT_ABS( arc[0].y - 3 * arc[2].y + 2 * arc[3].y ) > ONE_PIXEL / 2 )
+ goto Split;
+
+ gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
+
+ if ( arc == bez_stack )
+ return;
+
+ arc -= 3;
+ continue;
+
+ Split:
+ gray_split_cubic( arc );
+ arc += 3;
+ }
+ }
+
+
+ static int
+ gray_move_to( const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ TPos x, y;
+
+
+ /* start to a new position */
+ x = UPSCALE( to->x );
+ y = UPSCALE( to->y );
+
+ gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
+
+ ras.x = x;
+ ras.y = y;
+ return 0;
+ }
+
+
+ static int
+ gray_line_to( const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
+ return 0;
+ }
+
+
+ static int
+ gray_conic_to( const FT_Vector* control,
+ const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_conic( RAS_VAR_ control, to );
+ return 0;
+ }
+
+
+ static int
+ gray_cubic_to( const FT_Vector* control1,
+ const FT_Vector* control2,
+ const FT_Vector* to,
+ gray_PWorker worker )
+ {
+ gray_render_cubic( RAS_VAR_ control1, control2, to );
+ return 0;
+ }
+
+
+ static void
+ gray_sweep( RAS_ARG )
+ {
+ int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100
+ : INT_MIN;
+ int coverage;
+ int y;
+
+
+ for ( y = ras.min_ey; y < ras.max_ey; y++ )
+ {
+ PCell cell = ras.ycells[y - ras.min_ey];
+ TCoord x = ras.min_ex;
+ TArea cover = 0;
+
+ unsigned char* line = ras.target.origin - ras.target.pitch * y;
+
+
+ for ( ; cell != ras.cell_null; cell = cell->next )
+ {
+ TArea area;
+
+
+ if ( cover != 0 && cell->x > x )
+ {
+ FT_FILL_RULE( coverage, cover, fill );
+ FT_GRAY_SET( line + x, coverage, cell->x - x );
+ }
+
+ cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
+ area = cover - cell->area;
+
+ if ( area != 0 && cell->x >= ras.min_ex )
+ {
+ FT_FILL_RULE( coverage, area, fill );
+ line[cell->x] = (unsigned char)coverage;
+ }
+
+ x = cell->x + 1;
+ }
+
+ if ( cover != 0 ) /* only if cropped */
+ {
+ FT_FILL_RULE( coverage, cover, fill );
+ FT_GRAY_SET( line + x, coverage, ras.max_ex - x );
+ }
+ }
+ }
+
+
+ static void
+ gray_sweep_direct( RAS_ARG )
+ {
+ int fill = ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL ) ? 0x100
+ : INT_MIN;
+ int coverage;
+ int y;
+
+ FT_Span span[FT_MAX_GRAY_SPANS];
+ int n = 0;
+
+
+ for ( y = ras.min_ey; y < ras.max_ey; y++ )
+ {
+ PCell cell = ras.ycells[y - ras.min_ey];
+ TCoord x = ras.min_ex;
+ TArea cover = 0;
+
+
+ for ( ; cell != ras.cell_null; cell = cell->next )
+ {
+ TArea area;
+
+
+ if ( cover != 0 && cell->x > x )
+ {
+ FT_FILL_RULE( coverage, cover, fill );
+
+ span[n].coverage = (unsigned char)coverage;
+ span[n].x = (short)x;
+ span[n].len = (unsigned short)( cell->x - x );
+
+ if ( ++n == FT_MAX_GRAY_SPANS )
+ {
+ /* flush the span buffer and reset the count */
+ ras.render_span( y, n, span, ras.render_span_data );
+ n = 0;
+ }
+ }
+
+ cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
+ area = cover - cell->area;
+
+ if ( area != 0 && cell->x >= ras.min_ex )
+ {
+ FT_FILL_RULE( coverage, area, fill );
+
+ span[n].coverage = (unsigned char)coverage;
+ span[n].x = (short)cell->x;
+ span[n].len = 1;
+
+ if ( ++n == FT_MAX_GRAY_SPANS )
+ {
+ /* flush the span buffer and reset the count */
+ ras.render_span( y, n, span, ras.render_span_data );
+ n = 0;
+ }
+ }
+
+ x = cell->x + 1;
+ }
+
+ if ( cover != 0 ) /* only if cropped */
+ {
+ FT_FILL_RULE( coverage, cover, fill );
+
+ span[n].coverage = (unsigned char)coverage;
+ span[n].x = (short)x;
+ span[n].len = (unsigned short)( ras.max_ex - x );
+
+ ++n;
+ }
+
+ if ( n )
+ {
+ /* flush the span buffer and reset the count */
+ ras.render_span( y, n, span, ras.render_span_data );
+ n = 0;
+ }
+ }
+ }
+
+
+#ifdef STANDALONE_
+
+ /**************************************************************************
+ *
+ * The following functions should only compile in stand-alone mode,
+ * i.e., when building this component without the rest of FreeType.
+ *
+ */
+
+ /**************************************************************************
+ *
+ * @Function:
+ * FT_Outline_Decompose
+ *
+ * @Description:
+ * Walk over an outline's structure to decompose it into individual
+ * segments and Bézier arcs. This function is also able to emit
+ * `move to' and `close to' operations to indicate the start and end
+ * of new contours in the outline.
+ *
+ * @Input:
+ * outline ::
+ * A pointer to the source target.
+ *
+ * func_interface ::
+ * A table of `emitters', i.e., function pointers
+ * called during decomposition to indicate path
+ * operations.
+ *
+ * @InOut:
+ * user ::
+ * A typeless pointer which is passed to each
+ * emitter during the decomposition. It can be
+ * used to store the state during the
+ * decomposition.
+ *
+ * @Return:
+ * Error code. 0 means success.
+ */
+ static int
+ FT_Outline_Decompose( const FT_Outline* outline,
+ const FT_Outline_Funcs* func_interface,
+ void* user )
+ {
+#undef SCALED
+#define SCALED( x ) ( (x) * ( 1L << shift ) - delta )
+
+ FT_Vector v_last;
+ FT_Vector v_control;
+ FT_Vector v_start;
+
+ FT_Vector* point;
+ FT_Vector* limit;
+ char* tags;
+
+ int error;
+
+ int n; /* index of contour in outline */
+ int first; /* index of first point in contour */
+ char tag; /* current point's state */
+
+ int shift;
+ TPos delta;
+
+
+ if ( !outline )
+ return FT_THROW( Invalid_Outline );
+
+ if ( !func_interface )
+ return FT_THROW( Invalid_Argument );
+
+ shift = func_interface->shift;
+ delta = func_interface->delta;
+ first = 0;
+
+ for ( n = 0; n < outline->n_contours; n++ )
+ {
+ int last; /* index of last point in contour */
+
+
+ FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
+
+ last = outline->contours[n];
+ if ( last < 0 )
+ goto Invalid_Outline;
+ limit = outline->points + last;
+
+ v_start = outline->points[first];
+ v_start.x = SCALED( v_start.x );
+ v_start.y = SCALED( v_start.y );
+
+ v_last = outline->points[last];
+ v_last.x = SCALED( v_last.x );
+ v_last.y = SCALED( v_last.y );
+
+ v_control = v_start;
+
+ point = outline->points + first;
+ tags = outline->tags + first;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ /* A contour cannot start with a cubic control point! */
+ if ( tag == FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ /* check first point to determine origin */
+ if ( tag == FT_CURVE_TAG_CONIC )
+ {
+ /* first point is conic control. Yes, this happens. */
+ if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
+ {
+ /* start at last point if it is on the curve */
+ v_start = v_last;
+ limit--;
+ }
+ else
+ {
+ /* if both first and last points are conic, */
+ /* start at their middle and record its position */
+ /* for closure */
+ v_start.x = ( v_start.x + v_last.x ) / 2;
+ v_start.y = ( v_start.y + v_last.y ) / 2;
+
+ v_last = v_start;
+ }
+ point--;
+ tags--;
+ }
+
+ FT_TRACE5(( " move to (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0 ));
+ error = func_interface->move_to( &v_start, user );
+ if ( error )
+ goto Exit;
+
+ while ( point < limit )
+ {
+ point++;
+ tags++;
+
+ tag = FT_CURVE_TAG( tags[0] );
+ switch ( tag )
+ {
+ case FT_CURVE_TAG_ON: /* emit a single line_to */
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ FT_TRACE5(( " line to (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0 ));
+ error = func_interface->line_to( &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ case FT_CURVE_TAG_CONIC: /* consume conic arcs */
+ v_control.x = SCALED( point->x );
+ v_control.y = SCALED( point->y );
+
+ Do_Conic:
+ if ( point < limit )
+ {
+ FT_Vector vec;
+ FT_Vector v_middle;
+
+
+ point++;
+ tags++;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ if ( tag == FT_CURVE_TAG_ON )
+ {
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ if ( tag != FT_CURVE_TAG_CONIC )
+ goto Invalid_Outline;
+
+ v_middle.x = ( v_control.x + vec.x ) / 2;
+ v_middle.y = ( v_control.y + vec.y ) / 2;
+
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ v_middle.x / 64.0, v_middle.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &v_middle, user );
+ if ( error )
+ goto Exit;
+
+ v_control = vec;
+ goto Do_Conic;
+ }
+
+ FT_TRACE5(( " conic to (%.2f, %.2f)"
+ " with control (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0,
+ v_control.x / 64.0, v_control.y / 64.0 ));
+ error = func_interface->conic_to( &v_control, &v_start, user );
+ goto Close;
+
+ default: /* FT_CURVE_TAG_CUBIC */
+ {
+ FT_Vector vec1, vec2;
+
+
+ if ( point + 1 > limit ||
+ FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ point += 2;
+ tags += 2;
+
+ vec1.x = SCALED( point[-2].x );
+ vec1.y = SCALED( point[-2].y );
+
+ vec2.x = SCALED( point[-1].x );
+ vec2.y = SCALED( point[-1].y );
+
+ if ( point <= limit )
+ {
+ FT_Vector vec;
+
+
+ vec.x = SCALED( point->x );
+ vec.y = SCALED( point->y );
+
+ FT_TRACE5(( " cubic to (%.2f, %.2f)"
+ " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
+ vec.x / 64.0, vec.y / 64.0,
+ vec1.x / 64.0, vec1.y / 64.0,
+ vec2.x / 64.0, vec2.y / 64.0 ));
+ error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
+ if ( error )
+ goto Exit;
+ continue;
+ }
+
+ FT_TRACE5(( " cubic to (%.2f, %.2f)"
+ " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0,
+ vec1.x / 64.0, vec1.y / 64.0,
+ vec2.x / 64.0, vec2.y / 64.0 ));
+ error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
+ goto Close;
+ }
+ }
+ }
+
+ /* close the contour with a line segment */
+ FT_TRACE5(( " line to (%.2f, %.2f)\n",
+ v_start.x / 64.0, v_start.y / 64.0 ));
+ error = func_interface->line_to( &v_start, user );
+
+ Close:
+ if ( error )
+ goto Exit;
+
+ first = last + 1;
+ }
+
+ FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
+ return Smooth_Err_Ok;
+
+ Exit:
+ FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
+ return error;
+
+ Invalid_Outline:
+ return FT_THROW( Invalid_Outline );
+ }
+
+#endif /* STANDALONE_ */
+
+
+ FT_DEFINE_OUTLINE_FUNCS(
+ func_interface,
+
+ (FT_Outline_MoveTo_Func) gray_move_to, /* move_to */
+ (FT_Outline_LineTo_Func) gray_line_to, /* line_to */
+ (FT_Outline_ConicTo_Func)gray_conic_to, /* conic_to */
+ (FT_Outline_CubicTo_Func)gray_cubic_to, /* cubic_to */
+
+ 0, /* shift */
+ 0 /* delta */
+ )
+
+
+ static int
+ gray_convert_glyph_inner( RAS_ARG_
+ int continued )
+ {
+ volatile int error;
+
+
+ if ( ft_setjmp( ras.jump_buffer ) == 0 )
+ {
+ if ( continued )
+ FT_Trace_Disable();
+ error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
+ if ( continued )
+ FT_Trace_Enable();
+
+ FT_TRACE7(( "band [%d..%d]: %ld cell%s remaining/\n",
+ ras.min_ey,
+ ras.max_ey,
+ ras.cell_null - ras.cell_free,
+ ras.cell_null - ras.cell_free == 1 ? "" : "s" ));
+ }
+ else
+ {
+ error = FT_THROW( Raster_Overflow );
+
+ FT_TRACE7(( "band [%d..%d]: to be bisected\n",
+ ras.min_ey, ras.max_ey ));
+ }
+
+ return error;
+ }
+
+
+ static int
+ gray_convert_glyph( RAS_ARG )
+ {
+ const TCoord yMin = ras.min_ey;
+ const TCoord yMax = ras.max_ey;
+
+ TCell buffer[FT_MAX_GRAY_POOL];
+ size_t height = (size_t)( yMax - yMin );
+ size_t n = FT_MAX_GRAY_POOL / 8;
+ TCoord y;
+ TCoord bands[32]; /* enough to accommodate bisections */
+ TCoord* band;
+
+ int continued = 0;
+
+
+ /* Initialize the null cell at the end of the poll. */
+ ras.cell_null = buffer + FT_MAX_GRAY_POOL - 1;
+ ras.cell_null->x = CELL_MAX_X_VALUE;
+ ras.cell_null->area = 0;
+ ras.cell_null->cover = 0;
+ ras.cell_null->next = NULL;
+
+ /* set up vertical bands */
+ ras.ycells = (PCell*)buffer;
+
+ if ( height > n )
+ {
+ /* two divisions rounded up */
+ n = ( height + n - 1 ) / n;
+ height = ( height + n - 1 ) / n;
+ }
+
+ for ( y = yMin; y < yMax; )
+ {
+ ras.min_ey = y;
+ y += height;
+ ras.max_ey = FT_MIN( y, yMax );
+
+ band = bands;
+ band[1] = ras.min_ey;
+ band[0] = ras.max_ey;
+
+ do
+ {
+ TCoord width = band[0] - band[1];
+ TCoord w;
+ int error;
+
+
+ for ( w = 0; w < width; ++w )
+ ras.ycells[w] = ras.cell_null;
+
+ /* memory management: skip ycells */
+ n = ( (size_t)width * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) /
+ sizeof ( TCell );
+
+ ras.cell_free = buffer + n;
+ ras.cell = ras.cell_null;
+ ras.min_ey = band[1];
+ ras.max_ey = band[0];
+ ras.count_ey = width;
+
+ error = gray_convert_glyph_inner( RAS_VAR_ continued );
+ continued = 1;
+
+ if ( !error )
+ {
+ if ( ras.render_span ) /* for FT_RASTER_FLAG_DIRECT only */
+ gray_sweep_direct( RAS_VAR );
+ else
+ gray_sweep( RAS_VAR );
+ band--;
+ continue;
+ }
+ else if ( error != Smooth_Err_Raster_Overflow )
+ return error;
+
+ /* render pool overflow; we will reduce the render band by half */
+ width >>= 1;
+
+ /* this should never happen even with tiny rendering pool */
+ if ( width == 0 )
+ {
+ FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
+ return FT_THROW( Raster_Overflow );
+ }
+
+ band++;
+ band[1] = band[0];
+ band[0] += width;
+ } while ( band >= bands );
+ }
+
+ return Smooth_Err_Ok;
+ }
+
+
+ static int
+ gray_raster_render( FT_Raster raster,
+ const FT_Raster_Params* params )
+ {
+ const FT_Outline* outline = (const FT_Outline*)params->source;
+ const FT_Bitmap* target_map = params->target;
+
+#ifndef FT_STATIC_RASTER
+ gray_TWorker worker[1];
+#endif
+
+
+ if ( !raster )
+ return FT_THROW( Invalid_Argument );
+
+ /* this version does not support monochrome rendering */
+ if ( !( params->flags & FT_RASTER_FLAG_AA ) )
+ return FT_THROW( Cannot_Render_Glyph );
+
+ if ( !outline )
+ return FT_THROW( Invalid_Outline );
+
+ /* return immediately if the outline is empty */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ return Smooth_Err_Ok;
+
+ if ( !outline->contours || !outline->points )
+ return FT_THROW( Invalid_Outline );
+
+ if ( outline->n_points !=
+ outline->contours[outline->n_contours - 1] + 1 )
+ return FT_THROW( Invalid_Outline );
+
+ ras.outline = *outline;
+
+ if ( params->flags & FT_RASTER_FLAG_DIRECT )
+ {
+ if ( !params->gray_spans )
+ return Smooth_Err_Ok;
+
+ ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
+ ras.render_span_data = params->user;
+
+ ras.min_ex = params->clip_box.xMin;
+ ras.min_ey = params->clip_box.yMin;
+ ras.max_ex = params->clip_box.xMax;
+ ras.max_ey = params->clip_box.yMax;
+ }
+ else
+ {
+ /* if direct mode is not set, we must have a target bitmap */
+ if ( !target_map )
+ return FT_THROW( Invalid_Argument );
+
+ /* nothing to do */
+ if ( !target_map->width || !target_map->rows )
+ return Smooth_Err_Ok;
+
+ if ( !target_map->buffer )
+ return FT_THROW( Invalid_Argument );
+
+ if ( target_map->pitch < 0 )
+ ras.target.origin = target_map->buffer;
+ else
+ ras.target.origin = target_map->buffer
+ + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
+
+ ras.target.pitch = target_map->pitch;
+
+ ras.render_span = (FT_Raster_Span_Func)NULL;
+ ras.render_span_data = NULL;
+
+ ras.min_ex = 0;
+ ras.min_ey = 0;
+ ras.max_ex = (FT_Pos)target_map->width;
+ ras.max_ey = (FT_Pos)target_map->rows;
+ }
+
+ /* exit if nothing to do */
+ if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
+ return Smooth_Err_Ok;
+
+ return gray_convert_glyph( RAS_VAR );
+ }
+
+
+ /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
+ /**** a static object. *****/
+
+#ifdef STANDALONE_
+
+ static int
+ gray_raster_new( void* memory,
+ FT_Raster* araster )
+ {
+ static gray_TRaster the_raster;
+
+ FT_UNUSED( memory );
+
+
+ *araster = (FT_Raster)&the_raster;
+ FT_ZERO( &the_raster );
+
+ return 0;
+ }
+
+
+ static void
+ gray_raster_done( FT_Raster raster )
+ {
+ /* nothing */
+ FT_UNUSED( raster );
+ }
+
+#else /* !STANDALONE_ */
+
+ static int
+ gray_raster_new( FT_Memory memory,
+ gray_PRaster* araster )
+ {
+ FT_Error error;
+ gray_PRaster raster = NULL;
+
+
+ if ( !FT_NEW( raster ) )
+ raster->memory = memory;
+
+ *araster = raster;
+
+ return error;
+ }
+
+
+ static void
+ gray_raster_done( FT_Raster raster )
+ {
+ FT_Memory memory = (FT_Memory)((gray_PRaster)raster)->memory;
+
+
+ FT_FREE( raster );
+ }
+
+#endif /* !STANDALONE_ */
+
+
+ static void
+ gray_raster_reset( FT_Raster raster,
+ unsigned char* pool_base,
+ unsigned long pool_size )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( pool_base );
+ FT_UNUSED( pool_size );
+ }
+
+
+ static int
+ gray_raster_set_mode( FT_Raster raster,
+ unsigned long mode,
+ void* args )
+ {
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( args );
+
+
+ return 0; /* nothing to do */
+ }
+
+
+ FT_DEFINE_RASTER_FUNCS(
+ ft_grays_raster,
+
+ FT_GLYPH_FORMAT_OUTLINE,
+
+ (FT_Raster_New_Func) gray_raster_new, /* raster_new */
+ (FT_Raster_Reset_Func) gray_raster_reset, /* raster_reset */
+ (FT_Raster_Set_Mode_Func)gray_raster_set_mode, /* raster_set_mode */
+ (FT_Raster_Render_Func) gray_raster_render, /* raster_render */
+ (FT_Raster_Done_Func) gray_raster_done /* raster_done */
+ )
+
+
+/* END */
+
+
+/* Local Variables: */
+/* coding: utf-8 */
+/* End: */