summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc406
1 files changed, 406 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc b/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc
new file mode 100644
index 0000000000..a6782f6a45
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc
@@ -0,0 +1,406 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/enc_icc_codec.h"
+
+#include <stdint.h>
+
+#include <map>
+#include <string>
+#include <vector>
+
+#include "lib/jxl/base/byte_order.h"
+#include "lib/jxl/common.h"
+#include "lib/jxl/enc_ans.h"
+#include "lib/jxl/enc_aux_out.h"
+#include "lib/jxl/fields.h"
+#include "lib/jxl/icc_codec_common.h"
+
+namespace jxl {
+namespace {
+
+// Unshuffles or de-interleaves bytes, for example with width 2, turns
+// "AaBbCcDc" into "ABCDabcd", this for example de-interleaves UTF-16 bytes into
+// first all the high order bytes, then all the low order bytes.
+// Transposes a matrix of width columns and ceil(size / width) rows. There are
+// size elements, size may be < width * height, if so the
+// last elements of the bottom row are missing, the missing spots are
+// transposed along with the filled spots, and the result has the missing
+// elements at the bottom of the rightmost column. The input is the input matrix
+// in scanline order, the output is the result matrix in scanline order, with
+// missing elements skipped over (this may occur at multiple positions).
+void Unshuffle(uint8_t* data, size_t size, size_t width) {
+ size_t height = (size + width - 1) / width; // amount of rows of input
+ PaddedBytes result(size);
+ // i = input index, j output index
+ size_t s = 0, j = 0;
+ for (size_t i = 0; i < size; i++) {
+ result[j] = data[i];
+ j += height;
+ if (j >= size) j = ++s;
+ }
+
+ for (size_t i = 0; i < size; i++) {
+ data[i] = result[i];
+ }
+}
+
+// This is performed by the encoder, the encoder must be able to encode any
+// random byte stream (not just byte streams that are a valid ICC profile), so
+// an error returned by this function is an implementation error.
+Status PredictAndShuffle(size_t stride, size_t width, int order, size_t num,
+ const uint8_t* data, size_t size, size_t* pos,
+ PaddedBytes* result) {
+ JXL_RETURN_IF_ERROR(CheckOutOfBounds(*pos, num, size));
+ // Required by the specification, see decoder. stride * 4 must be < *pos.
+ if (!*pos || ((*pos - 1u) >> 2u) < stride) {
+ return JXL_FAILURE("Invalid stride");
+ }
+ if (*pos < stride * 4) return JXL_FAILURE("Too large stride");
+ size_t start = result->size();
+ for (size_t i = 0; i < num; i++) {
+ uint8_t predicted =
+ LinearPredictICCValue(data, *pos, i, stride, width, order);
+ result->push_back(data[*pos + i] - predicted);
+ }
+ *pos += num;
+ if (width > 1) Unshuffle(result->data() + start, num, width);
+ return true;
+}
+} // namespace
+
+// Outputs a transformed form of the given icc profile. The result itself is
+// not particularly smaller than the input data in bytes, but it will be in a
+// form that is easier to compress (more zeroes, ...) and will compress better
+// with brotli.
+Status PredictICC(const uint8_t* icc, size_t size, PaddedBytes* result) {
+ PaddedBytes commands;
+ PaddedBytes data;
+
+ EncodeVarInt(size, result);
+
+ // Header
+ PaddedBytes header = ICCInitialHeaderPrediction();
+ EncodeUint32(0, size, &header);
+ for (size_t i = 0; i < kICCHeaderSize && i < size; i++) {
+ ICCPredictHeader(icc, size, header.data(), i);
+ data.push_back(icc[i] - header[i]);
+ }
+ if (size <= kICCHeaderSize) {
+ EncodeVarInt(0, result); // 0 commands
+ for (size_t i = 0; i < data.size(); i++) {
+ result->push_back(data[i]);
+ }
+ return true;
+ }
+
+ std::vector<Tag> tags;
+ std::vector<size_t> tagstarts;
+ std::vector<size_t> tagsizes;
+ std::map<size_t, size_t> tagmap;
+
+ // Tag list
+ size_t pos = kICCHeaderSize;
+ if (pos + 4 <= size) {
+ uint64_t numtags = DecodeUint32(icc, size, pos);
+ pos += 4;
+ EncodeVarInt(numtags + 1, &commands);
+ uint64_t prevtagstart = kICCHeaderSize + numtags * 12;
+ uint32_t prevtagsize = 0;
+ for (size_t i = 0; i < numtags; i++) {
+ if (pos + 12 > size) break;
+
+ Tag tag = DecodeKeyword(icc, size, pos + 0);
+ uint32_t tagstart = DecodeUint32(icc, size, pos + 4);
+ uint32_t tagsize = DecodeUint32(icc, size, pos + 8);
+ pos += 12;
+
+ tags.push_back(tag);
+ tagstarts.push_back(tagstart);
+ tagsizes.push_back(tagsize);
+ tagmap[tagstart] = tags.size() - 1;
+
+ uint8_t tagcode = kCommandTagUnknown;
+ for (size_t j = 0; j < kNumTagStrings; j++) {
+ if (tag == *kTagStrings[j]) {
+ tagcode = j + kCommandTagStringFirst;
+ break;
+ }
+ }
+
+ if (tag == kRtrcTag && pos + 24 < size) {
+ bool ok = true;
+ ok &= DecodeKeyword(icc, size, pos + 0) == kGtrcTag;
+ ok &= DecodeKeyword(icc, size, pos + 12) == kBtrcTag;
+ if (ok) {
+ for (size_t kk = 0; kk < 8; kk++) {
+ if (icc[pos - 8 + kk] != icc[pos + 4 + kk]) ok = false;
+ if (icc[pos - 8 + kk] != icc[pos + 16 + kk]) ok = false;
+ }
+ }
+ if (ok) {
+ tagcode = kCommandTagTRC;
+ pos += 24;
+ i += 2;
+ }
+ }
+
+ if (tag == kRxyzTag && pos + 24 < size) {
+ bool ok = true;
+ ok &= DecodeKeyword(icc, size, pos + 0) == kGxyzTag;
+ ok &= DecodeKeyword(icc, size, pos + 12) == kBxyzTag;
+ uint32_t offsetr = tagstart;
+ uint32_t offsetg = DecodeUint32(icc, size, pos + 4);
+ uint32_t offsetb = DecodeUint32(icc, size, pos + 16);
+ uint32_t sizer = tagsize;
+ uint32_t sizeg = DecodeUint32(icc, size, pos + 8);
+ uint32_t sizeb = DecodeUint32(icc, size, pos + 20);
+ ok &= sizer == 20;
+ ok &= sizeg == 20;
+ ok &= sizeb == 20;
+ ok &= (offsetg == offsetr + 20);
+ ok &= (offsetb == offsetr + 40);
+ if (ok) {
+ tagcode = kCommandTagXYZ;
+ pos += 24;
+ i += 2;
+ }
+ }
+
+ uint8_t command = tagcode;
+ uint64_t predicted_tagstart = prevtagstart + prevtagsize;
+ if (predicted_tagstart != tagstart) command |= kFlagBitOffset;
+ size_t predicted_tagsize = prevtagsize;
+ if (tag == kRxyzTag || tag == kGxyzTag || tag == kBxyzTag ||
+ tag == kKxyzTag || tag == kWtptTag || tag == kBkptTag ||
+ tag == kLumiTag) {
+ predicted_tagsize = 20;
+ }
+ if (predicted_tagsize != tagsize) command |= kFlagBitSize;
+ commands.push_back(command);
+ if (tagcode == 1) {
+ AppendKeyword(tag, &data);
+ }
+ if (command & kFlagBitOffset) EncodeVarInt(tagstart, &commands);
+ if (command & kFlagBitSize) EncodeVarInt(tagsize, &commands);
+
+ prevtagstart = tagstart;
+ prevtagsize = tagsize;
+ }
+ }
+ // Indicate end of tag list or varint indicating there's none
+ commands.push_back(0);
+
+ // Main content
+ // The main content in a valid ICC profile contains tagged elements, with the
+ // tag types (4 letter names) given by the tag list above, and the tag list
+ // pointing to the start and indicating the size of each tagged element. It is
+ // allowed for tagged elements to overlap, e.g. the curve for R, G and B could
+ // all point to the same one.
+ Tag tag;
+ size_t tagstart = 0, tagsize = 0, clutstart = 0;
+
+ size_t last0 = pos;
+ // This loop appends commands to the output, processing some sub-section of a
+ // current tagged element each time. We need to keep track of the tagtype of
+ // the current element, and update it when we encounter the boundary of a
+ // next one.
+ // It is not required that the input data is a valid ICC profile, if the
+ // encoder does not recognize the data it will still be able to output bytes
+ // but will not predict as well.
+ while (pos <= size) {
+ size_t last1 = pos;
+ PaddedBytes commands_add;
+ PaddedBytes data_add;
+
+ // This means the loop brought the position beyond the tag end.
+ if (pos > tagstart + tagsize) {
+ tag = {{0, 0, 0, 0}}; // nonsensical value
+ }
+
+ if (commands_add.empty() && data_add.empty() && tagmap.count(pos) &&
+ pos + 4 <= size) {
+ size_t index = tagmap[pos];
+ tag = DecodeKeyword(icc, size, pos);
+ tagstart = tagstarts[index];
+ tagsize = tagsizes[index];
+
+ if (tag == kMlucTag && pos + tagsize <= size && tagsize > 8 &&
+ icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 &&
+ icc[pos + 7] == 0) {
+ size_t num = tagsize - 8;
+ commands_add.push_back(kCommandTypeStartFirst + 3);
+ pos += 8;
+ commands_add.push_back(kCommandShuffle2);
+ EncodeVarInt(num, &commands_add);
+ size_t start = data_add.size();
+ for (size_t i = 0; i < num; i++) {
+ data_add.push_back(icc[pos]);
+ pos++;
+ }
+ Unshuffle(data_add.data() + start, num, 2);
+ }
+
+ if (tag == kCurvTag && pos + tagsize <= size && tagsize > 8 &&
+ icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 &&
+ icc[pos + 7] == 0) {
+ size_t num = tagsize - 8;
+ if (num > 16 && num < (1 << 28) && pos + num <= size && pos > 0) {
+ commands_add.push_back(kCommandTypeStartFirst + 5);
+ pos += 8;
+ commands_add.push_back(kCommandPredict);
+ int order = 1, width = 2, stride = width;
+ commands_add.push_back((order << 2) | (width - 1));
+ EncodeVarInt(num, &commands_add);
+ JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc,
+ size, &pos, &data_add));
+ }
+ }
+ }
+
+ if (tag == kMab_Tag || tag == kMba_Tag) {
+ Tag subTag = DecodeKeyword(icc, size, pos);
+ if (pos + 12 < size && (subTag == kCurvTag || subTag == kVcgtTag) &&
+ DecodeUint32(icc, size, pos + 4) == 0) {
+ uint32_t num = DecodeUint32(icc, size, pos + 8) * 2;
+ if (num > 16 && num < (1 << 28) && pos + 12 + num <= size) {
+ pos += 12;
+ last1 = pos;
+ commands_add.push_back(kCommandPredict);
+ int order = 1, width = 2, stride = width;
+ commands_add.push_back((order << 2) | (width - 1));
+ EncodeVarInt(num, &commands_add);
+ JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc,
+ size, &pos, &data_add));
+ }
+ }
+
+ if (pos == tagstart + 24 && pos + 4 < size) {
+ // Note that this value can be remembered for next iterations of the
+ // loop, so the "pos == clutstart" if below can trigger during a later
+ // iteration.
+ clutstart = tagstart + DecodeUint32(icc, size, pos);
+ }
+
+ if (pos == clutstart && clutstart + 16 < size) {
+ size_t numi = icc[tagstart + 8];
+ size_t numo = icc[tagstart + 9];
+ size_t width = icc[clutstart + 16];
+ size_t stride = width * numo;
+ size_t num = width * numo;
+ for (size_t i = 0; i < numi && clutstart + i < size; i++) {
+ num *= icc[clutstart + i];
+ }
+ if ((width == 1 || width == 2) && num > 64 && num < (1 << 28) &&
+ pos + num <= size && pos > stride * 4) {
+ commands_add.push_back(kCommandPredict);
+ int order = 1;
+ uint8_t flags =
+ (order << 2) | (width - 1) | (stride == width ? 0 : 16);
+ commands_add.push_back(flags);
+ if (flags & 16) EncodeVarInt(stride, &commands_add);
+ EncodeVarInt(num, &commands_add);
+ JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc,
+ size, &pos, &data_add));
+ }
+ }
+ }
+
+ if (commands_add.empty() && data_add.empty() && tag == kGbd_Tag &&
+ pos == tagstart + 8 && pos + tagsize - 8 <= size && pos > 16 &&
+ tagsize > 8) {
+ size_t width = 4, order = 0, stride = width;
+ size_t num = tagsize - 8;
+ uint8_t flags = (order << 2) | (width - 1) | (stride == width ? 0 : 16);
+ commands_add.push_back(kCommandPredict);
+ commands_add.push_back(flags);
+ if (flags & 16) EncodeVarInt(stride, &commands_add);
+ EncodeVarInt(num, &commands_add);
+ JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc,
+ size, &pos, &data_add));
+ }
+
+ if (commands_add.empty() && data_add.empty() && pos + 20 <= size) {
+ Tag subTag = DecodeKeyword(icc, size, pos);
+ if (subTag == kXyz_Tag && DecodeUint32(icc, size, pos + 4) == 0) {
+ commands_add.push_back(kCommandXYZ);
+ pos += 8;
+ for (size_t j = 0; j < 12; j++) data_add.push_back(icc[pos++]);
+ }
+ }
+
+ if (commands_add.empty() && data_add.empty() && pos + 8 <= size) {
+ if (DecodeUint32(icc, size, pos + 4) == 0) {
+ Tag subTag = DecodeKeyword(icc, size, pos);
+ for (size_t i = 0; i < kNumTypeStrings; i++) {
+ if (subTag == *kTypeStrings[i]) {
+ commands_add.push_back(kCommandTypeStartFirst + i);
+ pos += 8;
+ break;
+ }
+ }
+ }
+ }
+
+ if (!(commands_add.empty() && data_add.empty()) || pos == size) {
+ if (last0 < last1) {
+ commands.push_back(kCommandInsert);
+ EncodeVarInt(last1 - last0, &commands);
+ while (last0 < last1) {
+ data.push_back(icc[last0++]);
+ }
+ }
+ for (size_t i = 0; i < commands_add.size(); i++) {
+ commands.push_back(commands_add[i]);
+ }
+ for (size_t i = 0; i < data_add.size(); i++) {
+ data.push_back(data_add[i]);
+ }
+ last0 = pos;
+ }
+ if (commands_add.empty() && data_add.empty()) {
+ pos++;
+ }
+ }
+
+ EncodeVarInt(commands.size(), result);
+ for (size_t i = 0; i < commands.size(); i++) {
+ result->push_back(commands[i]);
+ }
+ for (size_t i = 0; i < data.size(); i++) {
+ result->push_back(data[i]);
+ }
+
+ return true;
+}
+
+Status WriteICC(const PaddedBytes& icc, BitWriter* JXL_RESTRICT writer,
+ size_t layer, AuxOut* JXL_RESTRICT aux_out) {
+ if (icc.empty()) return JXL_FAILURE("ICC must be non-empty");
+ PaddedBytes enc;
+ JXL_RETURN_IF_ERROR(PredictICC(icc.data(), icc.size(), &enc));
+ std::vector<std::vector<Token>> tokens(1);
+ BitWriter::Allotment allotment(writer, 128);
+ JXL_RETURN_IF_ERROR(U64Coder::Write(enc.size(), writer));
+ allotment.ReclaimAndCharge(writer, layer, aux_out);
+
+ for (size_t i = 0; i < enc.size(); i++) {
+ tokens[0].emplace_back(
+ ICCANSContext(i, i > 0 ? enc[i - 1] : 0, i > 1 ? enc[i - 2] : 0),
+ enc[i]);
+ }
+ HistogramParams params;
+ params.lz77_method = enc.size() < 4096 ? HistogramParams::LZ77Method::kOptimal
+ : HistogramParams::LZ77Method::kLZ77;
+ EntropyEncodingData code;
+ std::vector<uint8_t> context_map;
+ params.force_huffman = true;
+ BuildAndEncodeHistograms(params, kNumICCContexts, tokens, &code, &context_map,
+ writer, layer, aux_out);
+ WriteTokens(tokens[0], code, context_map, writer, layer, aux_out);
+ return true;
+}
+
+} // namespace jxl