summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc')
-rw-r--r--third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc393
1 files changed, 393 insertions, 0 deletions
diff --git a/third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc b/third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc
new file mode 100644
index 0000000000..b267c89c8b
--- /dev/null
+++ b/third_party/libwebrtc/common_audio/resampler/sinc_resampler_unittest.cc
@@ -0,0 +1,393 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Modified from the Chromium original:
+// src/media/base/sinc_resampler_unittest.cc
+
+// MSVC++ requires this to be set before any other includes to get M_PI.
+#define _USE_MATH_DEFINES
+
+#include "common_audio/resampler/sinc_resampler.h"
+
+#include <math.h>
+
+#include <algorithm>
+#include <memory>
+#include <tuple>
+
+#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
+#include "rtc_base/system/arch.h"
+#include "rtc_base/time_utils.h"
+#include "system_wrappers/include/cpu_features_wrapper.h"
+#include "test/gmock.h"
+#include "test/gtest.h"
+
+using ::testing::_;
+
+namespace webrtc {
+
+static const double kSampleRateRatio = 192000.0 / 44100.0;
+static const double kKernelInterpolationFactor = 0.5;
+
+// Helper class to ensure ChunkedResample() functions properly.
+class MockSource : public SincResamplerCallback {
+ public:
+ MOCK_METHOD(void, Run, (size_t frames, float* destination), (override));
+};
+
+ACTION(ClearBuffer) {
+ memset(arg1, 0, arg0 * sizeof(float));
+}
+
+ACTION(FillBuffer) {
+ // Value chosen arbitrarily such that SincResampler resamples it to something
+ // easily representable on all platforms; e.g., using kSampleRateRatio this
+ // becomes 1.81219.
+ memset(arg1, 64, arg0 * sizeof(float));
+}
+
+// Test requesting multiples of ChunkSize() frames results in the proper number
+// of callbacks.
+TEST(SincResamplerTest, ChunkedResample) {
+ MockSource mock_source;
+
+ // Choose a high ratio of input to output samples which will result in quick
+ // exhaustion of SincResampler's internal buffers.
+ SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
+ &mock_source);
+
+ static const int kChunks = 2;
+ size_t max_chunk_size = resampler.ChunkSize() * kChunks;
+ std::unique_ptr<float[]> resampled_destination(new float[max_chunk_size]);
+
+ // Verify requesting ChunkSize() frames causes a single callback.
+ EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
+ resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
+
+ // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
+ ::testing::Mock::VerifyAndClear(&mock_source);
+ EXPECT_CALL(mock_source, Run(_, _))
+ .Times(kChunks)
+ .WillRepeatedly(ClearBuffer());
+ resampler.Resample(max_chunk_size, resampled_destination.get());
+}
+
+// Test flush resets the internal state properly.
+TEST(SincResamplerTest, Flush) {
+ MockSource mock_source;
+ SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
+ &mock_source);
+ std::unique_ptr<float[]> resampled_destination(
+ new float[resampler.ChunkSize()]);
+
+ // Fill the resampler with junk data.
+ EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(FillBuffer());
+ resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
+ ASSERT_NE(resampled_destination[0], 0);
+
+ // Flush and request more data, which should all be zeros now.
+ resampler.Flush();
+ ::testing::Mock::VerifyAndClear(&mock_source);
+ EXPECT_CALL(mock_source, Run(_, _)).Times(1).WillOnce(ClearBuffer());
+ resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
+ for (size_t i = 0; i < resampler.ChunkSize() / 2; ++i)
+ ASSERT_FLOAT_EQ(resampled_destination[i], 0);
+}
+
+// Test flush resets the internal state properly.
+TEST(SincResamplerTest, DISABLED_SetRatioBench) {
+ MockSource mock_source;
+ SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
+ &mock_source);
+
+ int64_t start = rtc::TimeNanos();
+ for (int i = 1; i < 10000; ++i)
+ resampler.SetRatio(1.0 / i);
+ double total_time_c_us =
+ (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
+ printf("SetRatio() took %.2fms.\n", total_time_c_us / 1000);
+}
+
+// Ensure various optimized Convolve() methods return the same value. Only run
+// this test if other optimized methods exist, otherwise the default Convolve()
+// will be tested by the parameterized SincResampler tests below.
+TEST(SincResamplerTest, Convolve) {
+#if defined(WEBRTC_ARCH_X86_FAMILY)
+ ASSERT_TRUE(GetCPUInfo(kSSE2));
+#elif defined(WEBRTC_ARCH_ARM_V7)
+ ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
+#endif
+
+ // Initialize a dummy resampler.
+ MockSource mock_source;
+ SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
+ &mock_source);
+
+ // The optimized Convolve methods are slightly more precise than Convolve_C(),
+ // so comparison must be done using an epsilon.
+ static const double kEpsilon = 0.00000005;
+
+ // Use a kernel from SincResampler as input and kernel data, this has the
+ // benefit of already being properly sized and aligned for Convolve_SSE().
+ double result = resampler.Convolve_C(
+ resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ double result2 = resampler.convolve_proc_(
+ resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ EXPECT_NEAR(result2, result, kEpsilon);
+
+ // Test Convolve() w/ unaligned input pointer.
+ result = resampler.Convolve_C(
+ resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ result2 = resampler.convolve_proc_(
+ resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ EXPECT_NEAR(result2, result, kEpsilon);
+}
+
+// Benchmark for the various Convolve() methods. Make sure to build with
+// branding=Chrome so that RTC_DCHECKs are compiled out when benchmarking.
+// Original benchmarks were run with --convolve-iterations=50000000.
+TEST(SincResamplerTest, ConvolveBenchmark) {
+ // Initialize a dummy resampler.
+ MockSource mock_source;
+ SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
+ &mock_source);
+
+ // Retrieve benchmark iterations from command line.
+ // TODO(ajm): Reintroduce this as a command line option.
+ const int kConvolveIterations = 1000000;
+
+ printf("Benchmarking %d iterations:\n", kConvolveIterations);
+
+ // Benchmark Convolve_C().
+ int64_t start = rtc::TimeNanos();
+ for (int i = 0; i < kConvolveIterations; ++i) {
+ resampler.Convolve_C(
+ resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ }
+ double total_time_c_us =
+ (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
+ printf("Convolve_C took %.2fms.\n", total_time_c_us / 1000);
+
+#if defined(WEBRTC_ARCH_X86_FAMILY)
+ ASSERT_TRUE(GetCPUInfo(kSSE2));
+#elif defined(WEBRTC_ARCH_ARM_V7)
+ ASSERT_TRUE(GetCPUFeaturesARM() & kCPUFeatureNEON);
+#endif
+
+ // Benchmark with unaligned input pointer.
+ start = rtc::TimeNanos();
+ for (int j = 0; j < kConvolveIterations; ++j) {
+ resampler.convolve_proc_(
+ resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ }
+ double total_time_optimized_unaligned_us =
+ (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
+ printf(
+ "convolve_proc_(unaligned) took %.2fms; which is %.2fx "
+ "faster than Convolve_C.\n",
+ total_time_optimized_unaligned_us / 1000,
+ total_time_c_us / total_time_optimized_unaligned_us);
+
+ // Benchmark with aligned input pointer.
+ start = rtc::TimeNanos();
+ for (int j = 0; j < kConvolveIterations; ++j) {
+ resampler.convolve_proc_(
+ resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
+ resampler.kernel_storage_.get(), kKernelInterpolationFactor);
+ }
+ double total_time_optimized_aligned_us =
+ (rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
+ printf(
+ "convolve_proc_ (aligned) took %.2fms; which is %.2fx "
+ "faster than Convolve_C and %.2fx faster than "
+ "convolve_proc_ (unaligned).\n",
+ total_time_optimized_aligned_us / 1000,
+ total_time_c_us / total_time_optimized_aligned_us,
+ total_time_optimized_unaligned_us / total_time_optimized_aligned_us);
+}
+
+typedef std::tuple<int, int, double, double> SincResamplerTestData;
+class SincResamplerTest
+ : public ::testing::TestWithParam<SincResamplerTestData> {
+ public:
+ SincResamplerTest()
+ : input_rate_(std::get<0>(GetParam())),
+ output_rate_(std::get<1>(GetParam())),
+ rms_error_(std::get<2>(GetParam())),
+ low_freq_error_(std::get<3>(GetParam())) {}
+
+ virtual ~SincResamplerTest() {}
+
+ protected:
+ int input_rate_;
+ int output_rate_;
+ double rms_error_;
+ double low_freq_error_;
+};
+
+// Tests resampling using a given input and output sample rate.
+TEST_P(SincResamplerTest, Resample) {
+ // Make comparisons using one second of data.
+ static const double kTestDurationSecs = 1;
+ const size_t input_samples =
+ static_cast<size_t>(kTestDurationSecs * input_rate_);
+ const size_t output_samples =
+ static_cast<size_t>(kTestDurationSecs * output_rate_);
+
+ // Nyquist frequency for the input sampling rate.
+ const double input_nyquist_freq = 0.5 * input_rate_;
+
+ // Source for data to be resampled.
+ SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
+ input_nyquist_freq, 0);
+
+ const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
+ SincResampler resampler(io_ratio, SincResampler::kDefaultRequestSize,
+ &resampler_source);
+
+ // Force an update to the sample rate ratio to ensure dynamic sample rate
+ // changes are working correctly.
+ std::unique_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
+ memcpy(kernel.get(), resampler.get_kernel_for_testing(),
+ SincResampler::kKernelStorageSize);
+ resampler.SetRatio(M_PI);
+ ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
+ SincResampler::kKernelStorageSize));
+ resampler.SetRatio(io_ratio);
+ ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
+ SincResampler::kKernelStorageSize));
+
+ // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
+ // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
+ std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
+ std::unique_ptr<float[]> pure_destination(new float[output_samples]);
+
+ // Generate resampled signal.
+ resampler.Resample(output_samples, resampled_destination.get());
+
+ // Generate pure signal.
+ SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
+ input_nyquist_freq, 0);
+ pure_source.Run(output_samples, pure_destination.get());
+
+ // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
+ // we refer to as low and high.
+ static const double kLowFrequencyNyquistRange = 0.7;
+ static const double kHighFrequencyNyquistRange = 0.9;
+
+ // Calculate Root-Mean-Square-Error and maximum error for the resampling.
+ double sum_of_squares = 0;
+ double low_freq_max_error = 0;
+ double high_freq_max_error = 0;
+ int minimum_rate = std::min(input_rate_, output_rate_);
+ double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
+ double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
+ for (size_t i = 0; i < output_samples; ++i) {
+ double error = fabs(resampled_destination[i] - pure_destination[i]);
+
+ if (pure_source.Frequency(i) < low_frequency_range) {
+ if (error > low_freq_max_error)
+ low_freq_max_error = error;
+ } else if (pure_source.Frequency(i) < high_frequency_range) {
+ if (error > high_freq_max_error)
+ high_freq_max_error = error;
+ }
+ // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
+
+ sum_of_squares += error * error;
+ }
+
+ double rms_error = sqrt(sum_of_squares / output_samples);
+
+// Convert each error to dbFS.
+#define DBFS(x) 20 * log10(x)
+ rms_error = DBFS(rms_error);
+ low_freq_max_error = DBFS(low_freq_max_error);
+ high_freq_max_error = DBFS(high_freq_max_error);
+
+ EXPECT_LE(rms_error, rms_error_);
+ EXPECT_LE(low_freq_max_error, low_freq_error_);
+
+ // All conversions currently have a high frequency error around -6 dbFS.
+ static const double kHighFrequencyMaxError = -6.02;
+ EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
+}
+
+// Almost all conversions have an RMS error of around -14 dbFS.
+static const double kResamplingRMSError = -14.58;
+
+// Thresholds chosen arbitrarily based on what each resampling reported during
+// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
+INSTANTIATE_TEST_SUITE_P(
+ SincResamplerTest,
+ SincResamplerTest,
+ ::testing::Values(
+ // To 22.05kHz
+ std::make_tuple(8000, 22050, kResamplingRMSError, -62.73),
+ std::make_tuple(11025, 22050, kResamplingRMSError, -72.19),
+ std::make_tuple(16000, 22050, kResamplingRMSError, -62.54),
+ std::make_tuple(22050, 22050, kResamplingRMSError, -73.53),
+ std::make_tuple(32000, 22050, kResamplingRMSError, -46.45),
+ std::make_tuple(44100, 22050, kResamplingRMSError, -28.49),
+ std::make_tuple(48000, 22050, -15.01, -25.56),
+ std::make_tuple(96000, 22050, -18.49, -13.42),
+ std::make_tuple(192000, 22050, -20.50, -9.23),
+
+ // To 44.1kHz
+ std::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
+ std::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
+ std::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
+ std::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
+ std::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
+ std::make_tuple(44100, 44100, kResamplingRMSError, -73.52),
+ std::make_tuple(48000, 44100, -15.01, -64.04),
+ std::make_tuple(96000, 44100, -18.49, -25.51),
+ std::make_tuple(192000, 44100, -20.50, -13.31),
+
+ // To 48kHz
+ std::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
+ std::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
+ std::make_tuple(16000, 48000, kResamplingRMSError, -63.95),
+ std::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
+ std::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
+ std::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
+ std::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
+ std::make_tuple(96000, 48000, -18.40, -28.44),
+ std::make_tuple(192000, 48000, -20.43, -14.11),
+
+ // To 96kHz
+ std::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
+ std::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
+ std::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
+ std::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
+ std::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
+ std::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
+ std::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
+ std::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
+ std::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
+
+ // To 192kHz
+ std::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
+ std::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
+ std::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
+ std::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
+ std::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
+ std::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
+ std::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
+ std::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
+ std::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
+
+} // namespace webrtc