summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/common_audio/vad/vad_filterbank.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/common_audio/vad/vad_filterbank.c')
-rw-r--r--third_party/libwebrtc/common_audio/vad/vad_filterbank.c329
1 files changed, 329 insertions, 0 deletions
diff --git a/third_party/libwebrtc/common_audio/vad/vad_filterbank.c b/third_party/libwebrtc/common_audio/vad/vad_filterbank.c
new file mode 100644
index 0000000000..aff63f79cd
--- /dev/null
+++ b/third_party/libwebrtc/common_audio/vad/vad_filterbank.c
@@ -0,0 +1,329 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "common_audio/vad/vad_filterbank.h"
+
+#include "rtc_base/checks.h"
+#include "common_audio/signal_processing/include/signal_processing_library.h"
+
+// Constants used in LogOfEnergy().
+static const int16_t kLogConst = 24660; // 160*log10(2) in Q9.
+static const int16_t kLogEnergyIntPart = 14336; // 14 in Q10
+
+// Coefficients used by HighPassFilter, Q14.
+static const int16_t kHpZeroCoefs[3] = { 6631, -13262, 6631 };
+static const int16_t kHpPoleCoefs[3] = { 16384, -7756, 5620 };
+
+// Allpass filter coefficients, upper and lower, in Q15.
+// Upper: 0.64, Lower: 0.17
+static const int16_t kAllPassCoefsQ15[2] = { 20972, 5571 };
+
+// Adjustment for division with two in SplitFilter.
+static const int16_t kOffsetVector[6] = { 368, 368, 272, 176, 176, 176 };
+
+// High pass filtering, with a cut-off frequency at 80 Hz, if the `data_in` is
+// sampled at 500 Hz.
+//
+// - data_in [i] : Input audio data sampled at 500 Hz.
+// - data_length [i] : Length of input and output data.
+// - filter_state [i/o] : State of the filter.
+// - data_out [o] : Output audio data in the frequency interval
+// 80 - 250 Hz.
+static void HighPassFilter(const int16_t* data_in, size_t data_length,
+ int16_t* filter_state, int16_t* data_out) {
+ size_t i;
+ const int16_t* in_ptr = data_in;
+ int16_t* out_ptr = data_out;
+ int32_t tmp32 = 0;
+
+
+ // The sum of the absolute values of the impulse response:
+ // The zero/pole-filter has a max amplification of a single sample of: 1.4546
+ // Impulse response: 0.4047 -0.6179 -0.0266 0.1993 0.1035 -0.0194
+ // The all-zero section has a max amplification of a single sample of: 1.6189
+ // Impulse response: 0.4047 -0.8094 0.4047 0 0 0
+ // The all-pole section has a max amplification of a single sample of: 1.9931
+ // Impulse response: 1.0000 0.4734 -0.1189 -0.2187 -0.0627 0.04532
+
+ for (i = 0; i < data_length; i++) {
+ // All-zero section (filter coefficients in Q14).
+ tmp32 = kHpZeroCoefs[0] * *in_ptr;
+ tmp32 += kHpZeroCoefs[1] * filter_state[0];
+ tmp32 += kHpZeroCoefs[2] * filter_state[1];
+ filter_state[1] = filter_state[0];
+ filter_state[0] = *in_ptr++;
+
+ // All-pole section (filter coefficients in Q14).
+ tmp32 -= kHpPoleCoefs[1] * filter_state[2];
+ tmp32 -= kHpPoleCoefs[2] * filter_state[3];
+ filter_state[3] = filter_state[2];
+ filter_state[2] = (int16_t) (tmp32 >> 14);
+ *out_ptr++ = filter_state[2];
+ }
+}
+
+// All pass filtering of `data_in`, used before splitting the signal into two
+// frequency bands (low pass vs high pass).
+// Note that `data_in` and `data_out` can NOT correspond to the same address.
+//
+// - data_in [i] : Input audio signal given in Q0.
+// - data_length [i] : Length of input and output data.
+// - filter_coefficient [i] : Given in Q15.
+// - filter_state [i/o] : State of the filter given in Q(-1).
+// - data_out [o] : Output audio signal given in Q(-1).
+static void AllPassFilter(const int16_t* data_in, size_t data_length,
+ int16_t filter_coefficient, int16_t* filter_state,
+ int16_t* data_out) {
+ // The filter can only cause overflow (in the w16 output variable)
+ // if more than 4 consecutive input numbers are of maximum value and
+ // has the the same sign as the impulse responses first taps.
+ // First 6 taps of the impulse response:
+ // 0.6399 0.5905 -0.3779 0.2418 -0.1547 0.0990
+
+ size_t i;
+ int16_t tmp16 = 0;
+ int32_t tmp32 = 0;
+ int32_t state32 = ((int32_t) (*filter_state) * (1 << 16)); // Q15
+
+ for (i = 0; i < data_length; i++) {
+ tmp32 = state32 + filter_coefficient * *data_in;
+ tmp16 = (int16_t) (tmp32 >> 16); // Q(-1)
+ *data_out++ = tmp16;
+ state32 = (*data_in * (1 << 14)) - filter_coefficient * tmp16; // Q14
+ state32 *= 2; // Q15.
+ data_in += 2;
+ }
+
+ *filter_state = (int16_t) (state32 >> 16); // Q(-1)
+}
+
+// Splits `data_in` into `hp_data_out` and `lp_data_out` corresponding to
+// an upper (high pass) part and a lower (low pass) part respectively.
+//
+// - data_in [i] : Input audio data to be split into two frequency bands.
+// - data_length [i] : Length of `data_in`.
+// - upper_state [i/o] : State of the upper filter, given in Q(-1).
+// - lower_state [i/o] : State of the lower filter, given in Q(-1).
+// - hp_data_out [o] : Output audio data of the upper half of the spectrum.
+// The length is `data_length` / 2.
+// - lp_data_out [o] : Output audio data of the lower half of the spectrum.
+// The length is `data_length` / 2.
+static void SplitFilter(const int16_t* data_in, size_t data_length,
+ int16_t* upper_state, int16_t* lower_state,
+ int16_t* hp_data_out, int16_t* lp_data_out) {
+ size_t i;
+ size_t half_length = data_length >> 1; // Downsampling by 2.
+ int16_t tmp_out;
+
+ // All-pass filtering upper branch.
+ AllPassFilter(&data_in[0], half_length, kAllPassCoefsQ15[0], upper_state,
+ hp_data_out);
+
+ // All-pass filtering lower branch.
+ AllPassFilter(&data_in[1], half_length, kAllPassCoefsQ15[1], lower_state,
+ lp_data_out);
+
+ // Make LP and HP signals.
+ for (i = 0; i < half_length; i++) {
+ tmp_out = *hp_data_out;
+ *hp_data_out++ -= *lp_data_out;
+ *lp_data_out++ += tmp_out;
+ }
+}
+
+// Calculates the energy of `data_in` in dB, and also updates an overall
+// `total_energy` if necessary.
+//
+// - data_in [i] : Input audio data for energy calculation.
+// - data_length [i] : Length of input data.
+// - offset [i] : Offset value added to `log_energy`.
+// - total_energy [i/o] : An external energy updated with the energy of
+// `data_in`.
+// NOTE: `total_energy` is only updated if
+// `total_energy` <= `kMinEnergy`.
+// - log_energy [o] : 10 * log10("energy of `data_in`") given in Q4.
+static void LogOfEnergy(const int16_t* data_in, size_t data_length,
+ int16_t offset, int16_t* total_energy,
+ int16_t* log_energy) {
+ // `tot_rshifts` accumulates the number of right shifts performed on `energy`.
+ int tot_rshifts = 0;
+ // The `energy` will be normalized to 15 bits. We use unsigned integer because
+ // we eventually will mask out the fractional part.
+ uint32_t energy = 0;
+
+ RTC_DCHECK(data_in);
+ RTC_DCHECK_GT(data_length, 0);
+
+ energy = (uint32_t) WebRtcSpl_Energy((int16_t*) data_in, data_length,
+ &tot_rshifts);
+
+ if (energy != 0) {
+ // By construction, normalizing to 15 bits is equivalent with 17 leading
+ // zeros of an unsigned 32 bit value.
+ int normalizing_rshifts = 17 - WebRtcSpl_NormU32(energy);
+ // In a 15 bit representation the leading bit is 2^14. log2(2^14) in Q10 is
+ // (14 << 10), which is what we initialize `log2_energy` with. For a more
+ // detailed derivations, see below.
+ int16_t log2_energy = kLogEnergyIntPart;
+
+ tot_rshifts += normalizing_rshifts;
+ // Normalize `energy` to 15 bits.
+ // `tot_rshifts` is now the total number of right shifts performed on
+ // `energy` after normalization. This means that `energy` is in
+ // Q(-tot_rshifts).
+ if (normalizing_rshifts < 0) {
+ energy <<= -normalizing_rshifts;
+ } else {
+ energy >>= normalizing_rshifts;
+ }
+
+ // Calculate the energy of `data_in` in dB, in Q4.
+ //
+ // 10 * log10("true energy") in Q4 = 2^4 * 10 * log10("true energy") =
+ // 160 * log10(`energy` * 2^`tot_rshifts`) =
+ // 160 * log10(2) * log2(`energy` * 2^`tot_rshifts`) =
+ // 160 * log10(2) * (log2(`energy`) + log2(2^`tot_rshifts`)) =
+ // (160 * log10(2)) * (log2(`energy`) + `tot_rshifts`) =
+ // `kLogConst` * (`log2_energy` + `tot_rshifts`)
+ //
+ // We know by construction that `energy` is normalized to 15 bits. Hence,
+ // `energy` = 2^14 + frac_Q15, where frac_Q15 is a fractional part in Q15.
+ // Further, we'd like `log2_energy` in Q10
+ // log2(`energy`) in Q10 = 2^10 * log2(2^14 + frac_Q15) =
+ // 2^10 * log2(2^14 * (1 + frac_Q15 * 2^-14)) =
+ // 2^10 * (14 + log2(1 + frac_Q15 * 2^-14)) ~=
+ // (14 << 10) + 2^10 * (frac_Q15 * 2^-14) =
+ // (14 << 10) + (frac_Q15 * 2^-4) = (14 << 10) + (frac_Q15 >> 4)
+ //
+ // Note that frac_Q15 = (`energy` & 0x00003FFF)
+
+ // Calculate and add the fractional part to `log2_energy`.
+ log2_energy += (int16_t) ((energy & 0x00003FFF) >> 4);
+
+ // `kLogConst` is in Q9, `log2_energy` in Q10 and `tot_rshifts` in Q0.
+ // Note that we in our derivation above have accounted for an output in Q4.
+ *log_energy = (int16_t)(((kLogConst * log2_energy) >> 19) +
+ ((tot_rshifts * kLogConst) >> 9));
+
+ if (*log_energy < 0) {
+ *log_energy = 0;
+ }
+ } else {
+ *log_energy = offset;
+ return;
+ }
+
+ *log_energy += offset;
+
+ // Update the approximate `total_energy` with the energy of `data_in`, if
+ // `total_energy` has not exceeded `kMinEnergy`. `total_energy` is used as an
+ // energy indicator in WebRtcVad_GmmProbability() in vad_core.c.
+ if (*total_energy <= kMinEnergy) {
+ if (tot_rshifts >= 0) {
+ // We know by construction that the `energy` > `kMinEnergy` in Q0, so add
+ // an arbitrary value such that `total_energy` exceeds `kMinEnergy`.
+ *total_energy += kMinEnergy + 1;
+ } else {
+ // By construction `energy` is represented by 15 bits, hence any number of
+ // right shifted `energy` will fit in an int16_t. In addition, adding the
+ // value to `total_energy` is wrap around safe as long as
+ // `kMinEnergy` < 8192.
+ *total_energy += (int16_t) (energy >> -tot_rshifts); // Q0.
+ }
+ }
+}
+
+int16_t WebRtcVad_CalculateFeatures(VadInstT* self, const int16_t* data_in,
+ size_t data_length, int16_t* features) {
+ int16_t total_energy = 0;
+ // We expect `data_length` to be 80, 160 or 240 samples, which corresponds to
+ // 10, 20 or 30 ms in 8 kHz. Therefore, the intermediate downsampled data will
+ // have at most 120 samples after the first split and at most 60 samples after
+ // the second split.
+ int16_t hp_120[120], lp_120[120];
+ int16_t hp_60[60], lp_60[60];
+ const size_t half_data_length = data_length >> 1;
+ size_t length = half_data_length; // `data_length` / 2, corresponds to
+ // bandwidth = 2000 Hz after downsampling.
+
+ // Initialize variables for the first SplitFilter().
+ int frequency_band = 0;
+ const int16_t* in_ptr = data_in; // [0 - 4000] Hz.
+ int16_t* hp_out_ptr = hp_120; // [2000 - 4000] Hz.
+ int16_t* lp_out_ptr = lp_120; // [0 - 2000] Hz.
+
+ RTC_DCHECK_LE(data_length, 240);
+ RTC_DCHECK_LT(4, kNumChannels - 1); // Checking maximum `frequency_band`.
+
+ // Split at 2000 Hz and downsample.
+ SplitFilter(in_ptr, data_length, &self->upper_state[frequency_band],
+ &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
+
+ // For the upper band (2000 Hz - 4000 Hz) split at 3000 Hz and downsample.
+ frequency_band = 1;
+ in_ptr = hp_120; // [2000 - 4000] Hz.
+ hp_out_ptr = hp_60; // [3000 - 4000] Hz.
+ lp_out_ptr = lp_60; // [2000 - 3000] Hz.
+ SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
+ &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
+
+ // Energy in 3000 Hz - 4000 Hz.
+ length >>= 1; // `data_length` / 4 <=> bandwidth = 1000 Hz.
+
+ LogOfEnergy(hp_60, length, kOffsetVector[5], &total_energy, &features[5]);
+
+ // Energy in 2000 Hz - 3000 Hz.
+ LogOfEnergy(lp_60, length, kOffsetVector[4], &total_energy, &features[4]);
+
+ // For the lower band (0 Hz - 2000 Hz) split at 1000 Hz and downsample.
+ frequency_band = 2;
+ in_ptr = lp_120; // [0 - 2000] Hz.
+ hp_out_ptr = hp_60; // [1000 - 2000] Hz.
+ lp_out_ptr = lp_60; // [0 - 1000] Hz.
+ length = half_data_length; // `data_length` / 2 <=> bandwidth = 2000 Hz.
+ SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
+ &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
+
+ // Energy in 1000 Hz - 2000 Hz.
+ length >>= 1; // `data_length` / 4 <=> bandwidth = 1000 Hz.
+ LogOfEnergy(hp_60, length, kOffsetVector[3], &total_energy, &features[3]);
+
+ // For the lower band (0 Hz - 1000 Hz) split at 500 Hz and downsample.
+ frequency_band = 3;
+ in_ptr = lp_60; // [0 - 1000] Hz.
+ hp_out_ptr = hp_120; // [500 - 1000] Hz.
+ lp_out_ptr = lp_120; // [0 - 500] Hz.
+ SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
+ &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
+
+ // Energy in 500 Hz - 1000 Hz.
+ length >>= 1; // `data_length` / 8 <=> bandwidth = 500 Hz.
+ LogOfEnergy(hp_120, length, kOffsetVector[2], &total_energy, &features[2]);
+
+ // For the lower band (0 Hz - 500 Hz) split at 250 Hz and downsample.
+ frequency_band = 4;
+ in_ptr = lp_120; // [0 - 500] Hz.
+ hp_out_ptr = hp_60; // [250 - 500] Hz.
+ lp_out_ptr = lp_60; // [0 - 250] Hz.
+ SplitFilter(in_ptr, length, &self->upper_state[frequency_band],
+ &self->lower_state[frequency_band], hp_out_ptr, lp_out_ptr);
+
+ // Energy in 250 Hz - 500 Hz.
+ length >>= 1; // `data_length` / 16 <=> bandwidth = 250 Hz.
+ LogOfEnergy(hp_60, length, kOffsetVector[1], &total_energy, &features[1]);
+
+ // Remove 0 Hz - 80 Hz, by high pass filtering the lower band.
+ HighPassFilter(lp_60, length, self->hp_filter_state, hp_120);
+
+ // Energy in 80 Hz - 250 Hz.
+ LogOfEnergy(hp_120, length, kOffsetVector[0], &total_energy, &features[0]);
+
+ return total_energy;
+}