From 6bf0a5cb5034a7e684dcc3500e841785237ce2dd Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 19:32:43 +0200 Subject: Adding upstream version 1:115.7.0. Signed-off-by: Daniel Baumann --- js/src/jit/x86/Lowering-x86.cpp | 840 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 840 insertions(+) create mode 100644 js/src/jit/x86/Lowering-x86.cpp (limited to 'js/src/jit/x86/Lowering-x86.cpp') diff --git a/js/src/jit/x86/Lowering-x86.cpp b/js/src/jit/x86/Lowering-x86.cpp new file mode 100644 index 0000000000..968b5baf14 --- /dev/null +++ b/js/src/jit/x86/Lowering-x86.cpp @@ -0,0 +1,840 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/x86/Lowering-x86.h" + +#include "jit/Lowering.h" +#include "jit/MIR.h" +#include "jit/x86/Assembler-x86.h" + +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1, + Register reg2, bool useAtStart) { + MOZ_ASSERT(mir->type() == MIRType::Value); + MOZ_ASSERT(reg1 != reg2); + + ensureDefined(mir); + return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), + LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); +} + +LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) { + return useFixed(mir, eax); +} + +LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) { + return useFixedAtStart(mir, eax); +} + +LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant( + MDefinition* mir) { + return useFixed(mir, eax); +} + +LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); } + +void LIRGenerator::visitBox(MBox* box) { + MDefinition* inner = box->getOperand(0); + + // If the box wrapped a double, it needs a new register. + if (IsFloatingPointType(inner->type())) { + LDefinition spectreTemp = + JitOptions.spectreValueMasking ? temp() : LDefinition::BogusTemp(); + defineBox(new (alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), + tempCopy(inner, 0), spectreTemp, + inner->type()), + box); + return; + } + + if (box->canEmitAtUses()) { + emitAtUses(box); + return; + } + + if (inner->isConstant()) { + defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box); + return; + } + + LBox* lir = new (alloc()) LBox(use(inner), inner->type()); + + // Otherwise, we should not define a new register for the payload portion + // of the output, so bypass defineBox(). + uint32_t vreg = getVirtualRegister(); + + // Note that because we're using BogusTemp(), we do not change the type of + // the definition. We also do not define the first output as "TYPE", + // because it has no corresponding payload at (vreg + 1). Also note that + // although we copy the input's original type for the payload half of the + // definition, this is only for clarity. BogusTemp() definitions are + // ignored. + lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); + lir->setDef(1, LDefinition::BogusTemp()); + box->setVirtualRegister(vreg); + add(lir); +} + +void LIRGenerator::visitUnbox(MUnbox* unbox) { + MDefinition* inner = unbox->getOperand(0); + + // An unbox on x86 reads in a type tag (either in memory or a register) and + // a payload. Unlike most instructions consuming a box, we ask for the type + // second, so that the result can re-use the first input. + MOZ_ASSERT(inner->type() == MIRType::Value); + + ensureDefined(inner); + + if (IsFloatingPointType(unbox->type())) { + LUnboxFloatingPoint* lir = + new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + define(lir, unbox); + return; + } + + // Swap the order we use the box pieces so we can re-use the payload register. + LUnbox* lir = new (alloc()) LUnbox; + bool reusePayloadReg = !JitOptions.spectreValueMasking || + unbox->type() == MIRType::Int32 || + unbox->type() == MIRType::Boolean; + if (reusePayloadReg) { + lir->setOperand(0, usePayloadInRegisterAtStart(inner)); + lir->setOperand(1, useType(inner, LUse::ANY)); + } else { + lir->setOperand(0, usePayload(inner, LUse::REGISTER)); + lir->setOperand(1, useType(inner, LUse::ANY)); + } + + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + + // Types and payloads form two separate intervals. If the type becomes dead + // before the payload, it could be used as a Value without the type being + // recoverable. Unbox's purpose is to eagerly kill the definition of a type + // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. + // Instead, we create a new virtual register. + if (reusePayloadReg) { + defineReuseInput(lir, unbox, 0); + } else { + define(lir, unbox); + } +} + +void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { + MOZ_ASSERT(opd->type() == MIRType::Value); + + LReturn* ins = new (alloc()) LReturn(isGenerator); + ins->setOperand(0, LUse(JSReturnReg_Type)); + ins->setOperand(1, LUse(JSReturnReg_Data)); + fillBoxUses(ins, 0, opd); + add(ins); +} + +void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); + LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); + type->setOperand( + inputPosition, + LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); + payload->setOperand(inputPosition, + LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); +} + +void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) { + LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); + + uint32_t lowVreg = getVirtualRegister(); + + phi->setVirtualRegister(lowVreg); + + uint32_t highVreg = getVirtualRegister(); + MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); + + low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); + high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); + annotate(high); + annotate(low); +} + +void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); + low->setOperand(inputPosition, + LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); + high->setOperand( + inputPosition, + LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); +} + +void LIRGeneratorX86::lowerForALUInt64( + LInstructionHelper* ins, MDefinition* mir, + MDefinition* input) { + ins->setInt64Operand(0, useInt64RegisterAtStart(input)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorX86::lowerForALUInt64( + LInstructionHelper* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir, + MDefinition* lhs, MDefinition* rhs) { + bool needsTemp = true; + + if (rhs->isConstant()) { + int64_t constant = rhs->toConstant()->toInt64(); + int32_t shift = mozilla::FloorLog2(constant); + // See special cases in CodeGeneratorX86Shared::visitMulI64. + if (constant >= -1 && constant <= 2) { + needsTemp = false; + } + if (constant > 0 && int64_t(1) << shift == constant) { + needsTemp = false; + } + } + + // MulI64 on x86 needs output to be in edx, eax; + ins->setInt64Operand( + 0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + if (needsTemp) { + ins->setTemp(0, temp()); + } + + defineInt64Fixed(ins, mir, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); +} + +void LIRGenerator::visitCompareExchangeTypedArrayElement( + MCompareExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + if (Scalar::isBigIntType(ins->arrayType())) { + LUse elements = useFixed(ins->elements(), esi); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + LUse oldval = useFixed(ins->oldval(), eax); + LUse newval = useFixed(ins->newval(), edx); + LDefinition temp = tempFixed(ebx); + + auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( + elements, index, oldval, newval, temp); + defineFixed(lir, ins, LAllocation(AnyRegister(ecx))); + assignSafepoint(lir, ins); + return; + } + + lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true); +} + +void LIRGenerator::visitAtomicExchangeTypedArrayElement( + MAtomicExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + if (Scalar::isBigIntType(ins->arrayType())) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + LAllocation value = useFixed(ins->value(), edx); + LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx)); + + auto* lir = new (alloc()) + LAtomicExchangeTypedArrayElement64(elements, index, value, temp); + defineFixed(lir, ins, LAllocation(AnyRegister(eax))); + assignSafepoint(lir, ins); + return; + } + + lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/true); +} + +void LIRGenerator::visitAtomicTypedArrayElementBinop( + MAtomicTypedArrayElementBinop* ins) { + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + if (Scalar::isBigIntType(ins->arrayType())) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + LAllocation value = useFixed(ins->value(), edx); + LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx)); + + // Case 1: the result of the operation is not used. + // + // We can omit allocating the result BigInt. + + if (ins->isForEffect()) { + LDefinition tempLow = tempFixed(eax); + + auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( + elements, index, value, temp, tempLow); + add(lir, ins); + return; + } + + // Case 2: the result of the operation is used. + + auto* lir = new (alloc()) + LAtomicTypedArrayElementBinop64(elements, index, value, temp); + defineFixed(lir, ins, LAllocation(AnyRegister(eax))); + assignSafepoint(lir, ins); + return; + } + + lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true); +} + +void LIRGeneratorX86::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->storageType()); + + auto* lir = new (alloc()) LAtomicLoad64(elements, index, tempFixed(ebx), + tempInt64Fixed(Register64(edx, eax))); + defineFixed(lir, ins, LAllocation(AnyRegister(ecx))); + assignSafepoint(lir, ins); +} + +void LIRGeneratorX86::lowerAtomicStore64(MStoreUnboxedScalar* ins) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->writeType()); + LAllocation value = useFixed(ins->value(), edx); + LInt64Definition temp1 = tempInt64Fixed(Register64(ecx, ebx)); + LDefinition temp2 = tempFixed(eax); + + add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins); +} + +void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToDouble* lir = new (alloc()) + LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp()); + define(lir, ins); +} + +void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToFloat32* lir = new (alloc()) + LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp()); + define(lir, ins); +} + +// If the base is a constant, and it is zero or its offset is zero, then +// code generation will fold the values into the access. Allocate the +// pointer to a register only if that can't happen. + +static bool OptimizableConstantAccess(MDefinition* base, + const wasm::MemoryAccessDesc& access) { + MOZ_ASSERT(base->isConstant()); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (!(base->toConstant()->isInt32(0) || access.offset() == 0)) { + return false; + } + if (access.type() == Scalar::Int64) { + // For int64 accesses on 32-bit systems we will need to add another offset + // of 4 to access the high part of the value; make sure this does not + // overflow the value. + int32_t v; + if (base->toConstant()->isInt32(0)) { + v = access.offset(); + } else { + v = base->toConstant()->toInt32(); + } + return v <= int32_t(INT32_MAX - INT64HIGH_OFFSET); + } + return true; +} + +void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { + auto* lir = new (alloc()) LWasmHeapBase(useRegisterAtStart(ins->instance())); + define(lir, ins); +} + +void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* memoryBase = ins->memoryBase(); + MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) + LWasmAtomicLoadI64(useRegister(memoryBase), useRegister(base), + tempFixed(ecx), tempFixed(ebx)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + return; + } + + LAllocation baseAlloc; + if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) { + baseAlloc = ins->type() == MIRType::Int64 ? useRegister(base) + : useRegisterAtStart(base); + } + + if (ins->type() != MIRType::Int64) { + auto* lir = + new (alloc()) LWasmLoad(baseAlloc, useRegisterAtStart(memoryBase)); + define(lir, ins); + return; + } + + // "AtStart" register usage does not work for the 64-bit case because we + // clobber two registers for the result and may need two registers for a + // scaled address; we can't guarantee non-interference. + + auto* lir = new (alloc()) LWasmLoadI64(baseAlloc, useRegister(memoryBase)); + + Scalar::Type accessType = ins->access().type(); + if (accessType == Scalar::Int8 || accessType == Scalar::Int16 || + accessType == Scalar::Int32) { + // We use cdq to sign-extend the result and cdq demands these registers. + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + return; + } + + defineInt64(lir, ins); +} + +void LIRGenerator::visitWasmStore(MWasmStore* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* memoryBase = ins->memoryBase(); + MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) + LWasmAtomicStoreI64(useRegister(memoryBase), useRegister(base), + useInt64Fixed(ins->value(), Register64(ecx, ebx)), + tempFixed(edx), tempFixed(eax)); + add(lir, ins); + return; + } + + LAllocation baseAlloc; + if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) { + baseAlloc = useRegisterAtStart(base); + } + + LAllocation valueAlloc; + switch (ins->access().type()) { + case Scalar::Int8: + case Scalar::Uint8: + // See comment for LIRGeneratorX86::useByteOpRegister. + valueAlloc = useFixed(ins->value(), eax); + break; + case Scalar::Int16: + case Scalar::Uint16: + case Scalar::Int32: + case Scalar::Uint32: + case Scalar::Float32: + case Scalar::Float64: + // For now, don't allow constant values. The immediate operand affects + // instruction layout which affects patching. + valueAlloc = useRegisterAtStart(ins->value()); + break; + case Scalar::Simd128: +#ifdef ENABLE_WASM_SIMD + valueAlloc = useRegisterAtStart(ins->value()); + break; +#else + MOZ_CRASH("unexpected array type"); +#endif + case Scalar::Int64: { + LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value()); + auto* lir = new (alloc()) + LWasmStoreI64(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase)); + add(lir, ins); + return; + } + case Scalar::Uint8Clamped: + case Scalar::BigInt64: + case Scalar::BigUint64: + case Scalar::MaxTypedArrayViewType: + MOZ_CRASH("unexpected array type"); + } + + auto* lir = new (alloc()) + LWasmStore(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase)); + add(lir, ins); +} + +void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* memoryBase = ins->memoryBase(); + MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmCompareExchangeI64( + useRegisterAtStart(memoryBase), useRegisterAtStart(base), + useInt64FixedAtStart(ins->oldValue(), Register64(edx, eax)), + useInt64FixedAtStart(ins->newValue(), Register64(ecx, ebx))); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + + bool byteArray = byteSize(ins->access().type()) == 1; + + // Register allocation: + // + // The output may not be used, but eax will be clobbered regardless + // so pin the output to eax. + // + // oldval must be in a register. + // + // newval must be in a register. If the source is a byte array + // then newval must be a register that has a byte size: this must + // be ebx, ecx, or edx (eax is taken). + // + // Bug #1077036 describes some optimization opportunities. + + const LAllocation oldval = useRegister(ins->oldValue()); + const LAllocation newval = + byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue()); + + LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap( + useRegister(base), oldval, newval, useRegister(memoryBase)); + + lir->setAddrTemp(temp()); + defineFixed(lir, ins, LAllocation(AnyRegister(eax))); +} + +void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { + MDefinition* memoryBase = ins->memoryBase(); + MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); + + if (ins->access().type() == Scalar::Int64) { + MDefinition* base = ins->base(); + auto* lir = new (alloc()) LWasmAtomicExchangeI64( + useRegister(memoryBase), useRegister(base), + useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + return; + } + + const LAllocation base = useRegister(ins->base()); + const LAllocation value = useRegister(ins->value()); + + LWasmAtomicExchangeHeap* lir = new (alloc()) + LWasmAtomicExchangeHeap(base, value, useRegister(memoryBase)); + + lir->setAddrTemp(temp()); + if (byteSize(ins->access().type()) == 1) { + defineFixed(lir, ins, LAllocation(AnyRegister(eax))); + } else { + define(lir, ins); + } +} + +void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* memoryBase = ins->memoryBase(); + MOZ_ASSERT(memoryBase->type() == MIRType::Pointer); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) + LWasmAtomicBinopI64(useRegister(memoryBase), useRegister(base), + useInt64Fixed(ins->value(), Register64(ecx, ebx)), + ins->access(), ins->operation()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + + bool byteArray = byteSize(ins->access().type()) == 1; + + // Case 1: the result of the operation is not used. + // + // We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND, + // LOCK OR, or LOCK XOR. These can all take an immediate. + + if (!ins->hasUses()) { + LAllocation value; + if (byteArray && !ins->value()->isConstant()) { + value = useFixed(ins->value(), ebx); + } else { + value = useRegisterOrConstant(ins->value()); + } + LWasmAtomicBinopHeapForEffect* lir = + new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), value, + LDefinition::BogusTemp(), + useRegister(memoryBase)); + lir->setAddrTemp(temp()); + add(lir, ins); + return; + } + + // Case 2: the result of the operation is used. + // + // For ADD and SUB we'll use XADD: + // + // movl value, output + // lock xaddl output, mem + // + // For the 8-bit variants XADD needs a byte register for the + // output only, we can still set up with movl; just pin the output + // to eax (or ebx / ecx / edx). + // + // For AND/OR/XOR we need to use a CMPXCHG loop: + // + // movl *mem, eax + // L: mov eax, temp + // andl value, temp + // lock cmpxchg temp, mem ; reads eax also + // jnz L + // ; result in eax + // + // Note the placement of L, cmpxchg will update eax with *mem if + // *mem does not have the expected value, so reloading it at the + // top of the loop would be redundant. + // + // We want to fix eax as the output. We also need a temp for + // the intermediate value. + // + // For the 8-bit variants the temp must have a byte register. + // + // There are optimization opportunities: + // - better 8-bit register allocation and instruction selection, Bug + // #1077036. + + bool bitOp = !(ins->operation() == AtomicFetchAddOp || + ins->operation() == AtomicFetchSubOp); + LDefinition tempDef = LDefinition::BogusTemp(); + LAllocation value; + + if (byteArray) { + value = useFixed(ins->value(), ebx); + if (bitOp) { + tempDef = tempFixed(ecx); + } + } else if (bitOp || ins->value()->isConstant()) { + value = useRegisterOrConstant(ins->value()); + if (bitOp) { + tempDef = temp(); + } + } else { + value = useRegisterAtStart(ins->value()); + } + + LWasmAtomicBinopHeap* lir = new (alloc()) + LWasmAtomicBinopHeap(useRegister(base), value, tempDef, + LDefinition::BogusTemp(), useRegister(memoryBase)); + + lir->setAddrTemp(temp()); + if (byteArray || bitOp) { + defineFixed(lir, ins, LAllocation(AnyRegister(eax))); + } else if (ins->value()->isConstant()) { + define(lir, ins); + } else { + defineReuseInput(lir, ins, LWasmAtomicBinopHeap::valueOp); + } +} + +void LIRGeneratorX86::lowerDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGeneratorX86::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { + MOZ_ASSERT(div->lhs()->type() == div->rhs()->type()); + MOZ_ASSERT(IsNumberType(div->type())); + + MOZ_ASSERT(div->type() == MIRType::Int64); + + if (div->isUnsigned()) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)), + useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)), + useFixedAtStart(div->instance(), InstanceReg)); + defineReturn(lir, div); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)), + useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)), + useFixedAtStart(div->instance(), InstanceReg)); + defineReturn(lir, div); +} + +void LIRGeneratorX86::lowerModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGeneratorX86::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { + MDefinition* lhs = mod->lhs(); + MDefinition* rhs = mod->rhs(); + MOZ_ASSERT(lhs->type() == rhs->type()); + MOZ_ASSERT(IsNumberType(mod->type())); + + MOZ_ASSERT(mod->type() == MIRType::Int64); + MOZ_ASSERT(mod->type() == MIRType::Int64); + + if (mod->isUnsigned()) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)), + useInt64FixedAtStart(rhs, Register64(ecx, edx)), + useFixedAtStart(mod->instance(), InstanceReg)); + defineReturn(lir, mod); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)), + useInt64FixedAtStart(rhs, Register64(ecx, edx)), + useFixedAtStart(mod->instance(), InstanceReg)); + defineReturn(lir, mod); +} + +void LIRGeneratorX86::lowerUDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); +} + +void LIRGeneratorX86::lowerUModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGeneratorX86::lowerBigIntDiv(MBigIntDiv* ins) { + auto* lir = new (alloc()) LBigIntDiv( + useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp()); + defineFixed(lir, ins, LAllocation(AnyRegister(edx))); + assignSafepoint(lir, ins); +} + +void LIRGeneratorX86::lowerBigIntMod(MBigIntMod* ins) { + auto* lir = new (alloc()) LBigIntMod( + useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp()); + defineFixed(lir, ins, LAllocation(AnyRegister(edx))); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitSubstr(MSubstr* ins) { + // Due to lack of registers on x86, we reuse the string register as + // temporary. As a result we only need two temporary registers and take a + // bogus temporary as fifth argument. + LSubstr* lir = new (alloc()) + LSubstr(useRegister(ins->string()), useRegister(ins->begin()), + useRegister(ins->length()), temp(), LDefinition::BogusTemp(), + tempByteOpRegister()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + LDefinition temp = tempDouble(); + defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins); +} + +void LIRGeneratorX86::lowerWasmBuiltinTruncateToInt64( + MWasmBuiltinTruncateToInt64* ins) { + MOZ_CRASH("We don't use it for this architecture"); +} + +void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Int64); + MOZ_ASSERT(IsFloatingPointType(ins->type())); + + LDefinition maybeTemp = + (ins->isUnsigned() && + ((ins->type() == MIRType::Double && AssemblerX86Shared::HasSSE3()) || + ins->type() == MIRType::Float32)) + ? temp() + : LDefinition::BogusTemp(); + + define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp), + ins); +} + +void LIRGeneratorX86::lowerBuiltinInt64ToFloatingPoint( + MBuiltinInt64ToFloatingPoint* ins) { + MOZ_CRASH("We don't use it for this architecture"); +} + +void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { + if (ins->isUnsigned()) { + defineInt64(new (alloc()) + LExtendInt32ToInt64(useRegisterAtStart(ins->input())), + ins); + } else { + LExtendInt32ToInt64* lir = + new (alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); + } +} + +void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { + // Here we'll end up using cdq which requires input and output in (edx,eax). + LSignExtendInt64* lir = new (alloc()) LSignExtendInt64( + useInt64FixedAtStart(ins->input(), Register64(edx, eax))); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(edx)), + LAllocation(AnyRegister(eax)))); +} + +// On x86 we specialize the only cases where compare is {U,}Int32 and select +// is {U,}Int32. +bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect( + MCompare::CompareType compTy, MIRType insTy) { + return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 || + compTy == MCompare::Compare_UInt32); +} + +void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins, + MDefinition* lhs, + MDefinition* rhs, + MCompare::CompareType compTy, + JSOp jsop) { + MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); + auto* lir = new (alloc()) LWasmCompareAndSelect( + useRegister(lhs), useAny(rhs), compTy, jsop, + useRegisterAtStart(ins->trueExpr()), useAny(ins->falseExpr())); + defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex); +} -- cgit v1.2.3