From 6bf0a5cb5034a7e684dcc3500e841785237ce2dd Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 19:32:43 +0200 Subject: Adding upstream version 1:115.7.0. Signed-off-by: Daniel Baumann --- third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc | 109 +++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc (limited to 'third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc') diff --git a/third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc b/third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc new file mode 100644 index 0000000000..1c6699f99e --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/enc_optimize_test.cc @@ -0,0 +1,109 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/enc_optimize.h" + +#include + +#include "lib/jxl/testing.h" + +namespace jxl { +namespace optimize { +namespace { + +// The maximum number of iterations for the test. +static const size_t kMaxTestIter = 100000; + +// F(w) = (w - w_min)^2. +struct SimpleQuadraticFunction { + typedef Array ArrayType; + explicit SimpleQuadraticFunction(const ArrayType& w0) : w_min(w0) {} + + double Compute(const ArrayType& w, ArrayType* df) const { + ArrayType dw = w - w_min; + *df = -2.0 * dw; + return dw * dw; + } + + ArrayType w_min; +}; + +// F(alpha, beta, gamma| x,y) = \sum_i(y_i - (alpha x_i ^ gamma + beta))^2. +struct PowerFunction { + explicit PowerFunction(const std::vector& x0, + const std::vector& y0) + : x(x0), y(y0) {} + + typedef Array ArrayType; + double Compute(const ArrayType& w, ArrayType* df) const { + double loss_function = 0; + (*df)[0] = 0; + (*df)[1] = 0; + (*df)[2] = 0; + for (size_t ind = 0; ind < y.size(); ++ind) { + if (x[ind] != 0) { + double l_f = y[ind] - (w[0] * pow(x[ind], w[1]) + w[2]); + (*df)[0] += 2.0 * l_f * pow(x[ind], w[1]); + (*df)[1] += 2.0 * l_f * w[0] * pow(x[ind], w[1]) * log(x[ind]); + (*df)[2] += 2.0 * l_f * 1; + loss_function += l_f * l_f; + } + } + return loss_function; + } + + std::vector x; + std::vector y; +}; + +TEST(OptimizeTest, SimpleQuadraticFunction) { + SimpleQuadraticFunction::ArrayType w_min; + w_min[0] = 1.0; + w_min[1] = 2.0; + SimpleQuadraticFunction f(w_min); + SimpleQuadraticFunction::ArrayType w(0.); + static const double kPrecision = 1e-8; + w = optimize::OptimizeWithScaledConjugateGradientMethod(f, w, kPrecision, + kMaxTestIter); + EXPECT_NEAR(w[0], 1.0, kPrecision); + EXPECT_NEAR(w[1], 2.0, kPrecision); +} + +TEST(OptimizeTest, PowerFunction) { + std::vector x(10); + std::vector y(10); + for (int ind = 0; ind < 10; ++ind) { + x[ind] = 1. * ind; + y[ind] = 2. * pow(x[ind], 3) + 5.; + } + PowerFunction f(x, y); + PowerFunction::ArrayType w(0.); + + static const double kPrecision = 0.01; + w = optimize::OptimizeWithScaledConjugateGradientMethod(f, w, kPrecision, + kMaxTestIter); + EXPECT_NEAR(w[0], 2.0, kPrecision); + EXPECT_NEAR(w[1], 3.0, kPrecision); + EXPECT_NEAR(w[2], 5.0, kPrecision); +} + +TEST(OptimizeTest, SimplexOptTest) { + auto f = [](const std::vector& x) -> double { + double t1 = x[0] - 1.0; + double t2 = x[1] + 1.5; + return 2.0 + t1 * t1 + t2 * t2; + }; + auto opt = RunSimplex(2, 0.01, 100, f); + EXPECT_EQ(opt.size(), 3u); + + static const double kPrecision = 0.01; + EXPECT_NEAR(opt[0], 2.0, kPrecision); + EXPECT_NEAR(opt[1], 1.0, kPrecision); + EXPECT_NEAR(opt[2], -1.5, kPrecision); +} + +} // namespace +} // namespace optimize +} // namespace jxl -- cgit v1.2.3