From 6bf0a5cb5034a7e684dcc3500e841785237ce2dd Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 19:32:43 +0200 Subject: Adding upstream version 1:115.7.0. Signed-off-by: Daniel Baumann --- third_party/jpeg-xl/lib/jxl/fast_math-inl.h | 236 ++++++++++++++++++++++++++++ 1 file changed, 236 insertions(+) create mode 100644 third_party/jpeg-xl/lib/jxl/fast_math-inl.h (limited to 'third_party/jpeg-xl/lib/jxl/fast_math-inl.h') diff --git a/third_party/jpeg-xl/lib/jxl/fast_math-inl.h b/third_party/jpeg-xl/lib/jxl/fast_math-inl.h new file mode 100644 index 0000000000..5c48034290 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/fast_math-inl.h @@ -0,0 +1,236 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Fast SIMD math ops (log2, encoder only, cos, erf for splines) + +#if defined(LIB_JXL_FAST_MATH_INL_H_) == defined(HWY_TARGET_TOGGLE) +#ifdef LIB_JXL_FAST_MATH_INL_H_ +#undef LIB_JXL_FAST_MATH_INL_H_ +#else +#define LIB_JXL_FAST_MATH_INL_H_ +#endif + +#include + +#include "lib/jxl/common.h" +#include "lib/jxl/rational_polynomial-inl.h" +HWY_BEFORE_NAMESPACE(); +namespace jxl { +namespace HWY_NAMESPACE { + +// These templates are not found via ADL. +using hwy::HWY_NAMESPACE::Abs; +using hwy::HWY_NAMESPACE::Add; +using hwy::HWY_NAMESPACE::Eq; +using hwy::HWY_NAMESPACE::Floor; +using hwy::HWY_NAMESPACE::Ge; +using hwy::HWY_NAMESPACE::GetLane; +using hwy::HWY_NAMESPACE::IfThenElse; +using hwy::HWY_NAMESPACE::IfThenZeroElse; +using hwy::HWY_NAMESPACE::Le; +using hwy::HWY_NAMESPACE::Min; +using hwy::HWY_NAMESPACE::Mul; +using hwy::HWY_NAMESPACE::MulAdd; +using hwy::HWY_NAMESPACE::NegMulAdd; +using hwy::HWY_NAMESPACE::Rebind; +using hwy::HWY_NAMESPACE::ShiftLeft; +using hwy::HWY_NAMESPACE::ShiftRight; +using hwy::HWY_NAMESPACE::Sub; +using hwy::HWY_NAMESPACE::Xor; + +// Computes base-2 logarithm like std::log2. Undefined if negative / NaN. +// L1 error ~3.9E-6 +template +V FastLog2f(const DF df, V x) { + // 2,2 rational polynomial approximation of std::log1p(x) / std::log(2). + HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f), + HWY_REP4(1.4287160470083755E+00f), + HWY_REP4(7.4245873327820566E-01f)}; + HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f), + HWY_REP4(1.0096718572241148E+00f), + HWY_REP4(1.7409343003366853E-01f)}; + + const Rebind di; + const auto x_bits = BitCast(di, x); + + // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops + const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3 + // Shifted exponent = log2; also used to clear mantissa. + const auto exp_shifted = ShiftRight<23>(exp_bits); + const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted))); + const auto exp_val = ConvertTo(df, exp_shifted); + return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q), + exp_val); +} + +// max relative error ~3e-7 +template +V FastPow2f(const DF df, V x) { + const Rebind di; + auto floorx = Floor(x); + auto exp = + BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127)))); + auto frac = Sub(x, floorx); + auto num = Add(frac, Set(df, 1.01749063e+01)); + num = MulAdd(num, frac, Set(df, 4.88687798e+01)); + num = MulAdd(num, frac, Set(df, 9.85506591e+01)); + num = Mul(num, exp); + auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02)); + den = MulAdd(den, frac, Set(df, -1.94414990e+01)); + den = MulAdd(den, frac, Set(df, 9.85506633e+01)); + return Div(num, den); +} + +// max relative error ~3e-5 +template +V FastPowf(const DF df, V base, V exponent) { + return FastPow2f(df, Mul(FastLog2f(df, base), exponent)); +} + +// Computes cosine like std::cos. +// L1 error 7e-5. +template +V FastCosf(const DF df, V x) { + // Step 1: range reduction to [0, 2pi) + const auto pi2 = Set(df, kPi * 2.0f); + const auto pi2_inv = Set(df, 0.5f / kPi); + const auto npi2 = Mul(Floor(Mul(x, pi2_inv)), pi2); + const auto xmodpi2 = Sub(x, npi2); + // Step 2: range reduction to [0, pi] + const auto x_pi = Min(xmodpi2, Sub(pi2, xmodpi2)); + // Step 3: range reduction to [0, pi/2] + const auto above_pihalf = Ge(x_pi, Set(df, kPi / 2.0f)); + const auto x_pihalf = IfThenElse(above_pihalf, Sub(Set(df, kPi), x_pi), x_pi); + // Step 4: Taylor-like approximation, scaled by 2**0.75 to make angle + // duplication steps faster, on x/4. + const auto xs = Mul(x_pihalf, Set(df, 0.25f)); + const auto x2 = Mul(xs, xs); + const auto x4 = Mul(x2, x2); + const auto cosx_prescaling = + MulAdd(x4, Set(df, 0.06960438), + MulAdd(x2, Set(df, -0.84087373), Set(df, 1.68179268))); + // Step 5: angle duplication. + const auto cosx_scale1 = + MulAdd(cosx_prescaling, cosx_prescaling, Set(df, -1.414213562)); + const auto cosx_scale2 = MulAdd(cosx_scale1, cosx_scale1, Set(df, -1)); + // Step 6: change sign if needed. + const Rebind du; + auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, above_pihalf))); + return BitCast(df, Xor(signbit, BitCast(du, cosx_scale2))); +} + +// Computes the error function like std::erf. +// L1 error 7e-4. +template +V FastErff(const DF df, V x) { + // Formula from + // https://en.wikipedia.org/wiki/Error_function#Numerical_approximations + // but constants have been recomputed. + const auto xle0 = Le(x, Zero(df)); + const auto absx = Abs(x); + // Compute 1 - 1 / ((((x * a + b) * x + c) * x + d) * x + 1)**4 + const auto denom1 = + MulAdd(absx, Set(df, 7.77394369e-02), Set(df, 2.05260015e-04)); + const auto denom2 = MulAdd(denom1, absx, Set(df, 2.32120216e-01)); + const auto denom3 = MulAdd(denom2, absx, Set(df, 2.77820801e-01)); + const auto denom4 = MulAdd(denom3, absx, Set(df, 1.0f)); + const auto denom5 = Mul(denom4, denom4); + const auto inv_denom5 = Div(Set(df, 1.0f), denom5); + const auto result = NegMulAdd(inv_denom5, inv_denom5, Set(df, 1.0f)); + // Change sign if needed. + const Rebind du; + auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, xle0))); + return BitCast(df, Xor(signbit, BitCast(du, result))); +} + +inline float FastLog2f(float f) { + HWY_CAPPED(float, 1) D; + return GetLane(FastLog2f(D, Set(D, f))); +} + +inline float FastPow2f(float f) { + HWY_CAPPED(float, 1) D; + return GetLane(FastPow2f(D, Set(D, f))); +} + +inline float FastPowf(float b, float e) { + HWY_CAPPED(float, 1) D; + return GetLane(FastPowf(D, Set(D, b), Set(D, e))); +} + +inline float FastCosf(float f) { + HWY_CAPPED(float, 1) D; + return GetLane(FastCosf(D, Set(D, f))); +} + +inline float FastErff(float f) { + HWY_CAPPED(float, 1) D; + return GetLane(FastErff(D, Set(D, f))); +} + +// Returns cbrt(x) + add with 6 ulp max error. +// Modified from vectormath_exp.h, Apache 2 license. +// https://www.agner.org/optimize/vectorclass.zip +template +V CubeRootAndAdd(const V x, const V add) { + const HWY_FULL(float) df; + const HWY_FULL(int32_t) di; + + const auto kExpBias = Set(di, 0x54800000); // cast(1.) + cast(1.) / 3 + const auto kExpMul = Set(di, 0x002AAAAA); // shifted 1/3 + const auto k1_3 = Set(df, 1.0f / 3); + const auto k4_3 = Set(df, 4.0f / 3); + + const auto xa = x; // assume inputs never negative + const auto xa_3 = Mul(k1_3, xa); + + // Multiply exponent by -1/3 + const auto m1 = BitCast(di, xa); + // Special case for 0. 0 is represented with an exponent of 0, so the + // "kExpBias - 1/3 * exp" below gives the wrong result. The IfThenZeroElse() + // sets those values as 0, which prevents having NaNs in the computations + // below. + // TODO(eustas): use fused op + const auto m2 = IfThenZeroElse( + Eq(m1, Zero(di)), Sub(kExpBias, Mul((ShiftRight<23>(m1)), kExpMul))); + auto r = BitCast(df, m2); + + // Newton-Raphson iterations + for (int i = 0; i < 3; i++) { + const auto r2 = Mul(r, r); + r = NegMulAdd(xa_3, Mul(r2, r2), Mul(k4_3, r)); + } + // Final iteration + auto r2 = Mul(r, r); + r = MulAdd(k1_3, NegMulAdd(xa, Mul(r2, r2), r), r); + r2 = Mul(r, r); + r = MulAdd(r2, x, add); + + return r; +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace jxl +HWY_AFTER_NAMESPACE(); + +#endif // LIB_JXL_FAST_MATH_INL_H_ + +#if HWY_ONCE +#ifndef FAST_MATH_ONCE +#define FAST_MATH_ONCE + +namespace jxl { +inline float FastLog2f(float f) { return HWY_STATIC_DISPATCH(FastLog2f)(f); } +inline float FastPow2f(float f) { return HWY_STATIC_DISPATCH(FastPow2f)(f); } +inline float FastPowf(float b, float e) { + return HWY_STATIC_DISPATCH(FastPowf)(b, e); +} +inline float FastCosf(float f) { return HWY_STATIC_DISPATCH(FastCosf)(f); } +inline float FastErff(float f) { return HWY_STATIC_DISPATCH(FastErff)(f); } +} // namespace jxl + +#endif // FAST_MATH_ONCE +#endif // HWY_ONCE -- cgit v1.2.3