From 6bf0a5cb5034a7e684dcc3500e841785237ce2dd Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 19:32:43 +0200 Subject: Adding upstream version 1:115.7.0. Signed-off-by: Daniel Baumann --- .../jpeg-xl/lib/jxl/rational_polynomial_test.cc | 238 +++++++++++++++++++++ 1 file changed, 238 insertions(+) create mode 100644 third_party/jpeg-xl/lib/jxl/rational_polynomial_test.cc (limited to 'third_party/jpeg-xl/lib/jxl/rational_polynomial_test.cc') diff --git a/third_party/jpeg-xl/lib/jxl/rational_polynomial_test.cc b/third_party/jpeg-xl/lib/jxl/rational_polynomial_test.cc new file mode 100644 index 0000000000..13fc044a55 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/rational_polynomial_test.cc @@ -0,0 +1,238 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include + +#include +#include + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "lib/jxl/rational_polynomial_test.cc" +#include +#include +#include + +#include "lib/jxl/base/status.h" +#include "lib/jxl/common.h" +#include "lib/jxl/rational_polynomial-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace jxl { +namespace HWY_NAMESPACE { + +using T = float; // required by EvalLog2 +using D = HWY_FULL(T); + +// These templates are not found via ADL. +using hwy::HWY_NAMESPACE::Add; +using hwy::HWY_NAMESPACE::GetLane; +using hwy::HWY_NAMESPACE::ShiftLeft; +using hwy::HWY_NAMESPACE::ShiftRight; +using hwy::HWY_NAMESPACE::Sub; + +// Generic: only computes polynomial +struct EvalPoly { + template + T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const { + const HWY_FULL(T) d; + const auto vx = Set(d, x); + const auto approx = EvalRationalPolynomial(d, vx, p, q); + return GetLane(approx); + } +}; + +// Range reduction for log2 +struct EvalLog2 { + template + T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const { + const HWY_FULL(T) d; + auto vx = Set(d, x); + + const HWY_FULL(int32_t) di; + const auto x_bits = BitCast(di, vx); + // Cannot handle negative numbers / NaN. + JXL_DASSERT(AllTrue(di, Eq(Abs(x_bits), x_bits))); + + // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops + const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3 + // Shifted exponent = log2; also used to clear mantissa. + const auto exp_shifted = ShiftRight<23>(exp_bits); + const auto mantissa = BitCast(d, Sub(x_bits, ShiftLeft<23>(exp_shifted))); + const auto exp_val = ConvertTo(d, exp_shifted); + vx = Sub(mantissa, Set(d, 1.0f)); + + const auto approx = Add(EvalRationalPolynomial(d, vx, p, q), exp_val); + return GetLane(approx); + } +}; + +// Functions to approximate: + +T LinearToSrgb8Direct(T val) { + if (val < 0.0) return 0.0; + if (val >= 255.0) return 255.0; + if (val <= 10.0 / 12.92) return val * 12.92; + return 255.0 * (std::pow(val / 255.0, 1.0 / 2.4) * 1.055 - 0.055); +} + +T SimpleGamma(T v) { + static const T kGamma = 0.387494322593; + static const T limit = 43.01745241042018; + T bright = v - limit; + if (bright >= 0) { + static const T mul = 0.0383723643799; + v -= bright * mul; + } + static const T limit2 = 94.68634353321337; + T bright2 = v - limit2; + if (bright2 >= 0) { + static const T mul = 0.22885405968; + v -= bright2 * mul; + } + static const T offset = 0.156775786057; + static const T scale = 8.898059160493739; + T retval = scale * (offset + pow(v, kGamma)); + return retval; +} + +// Runs CaratheodoryFejer and verifies the polynomial using a lot of samples to +// return the biggest error. +template +T RunApproximation(T x0, T x1, const T (&p)[NP], const T (&q)[NQ], + const Eval& eval, T func_to_approx(T)) { + float maxerr = 0; + T lastPrint = 0; + // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter) + for (T x = x0; x <= x1; x += (x1 - x0) / 10000.0) { + const T f = func_to_approx(x); + const T g = eval(x, p, q); + maxerr = std::max(fabsf(g - f), maxerr); + if (x == x0 || x - lastPrint > (x1 - x0) / 20.0) { + printf("x: %11.6f, f: %11.6f, g: %11.6f, e: %11.6f\n", x, f, g, + fabs(g - f)); + lastPrint = x; + } + } + return maxerr; +} + +void TestSimpleGamma() { + const T p[4 * (6 + 1)] = { + HWY_REP4(-5.0646949363741811E-05), HWY_REP4(6.7369380528439771E-05), + HWY_REP4(8.9376652530412794E-05), HWY_REP4(2.1153513301520462E-06), + HWY_REP4(-6.9130322970386449E-08), HWY_REP4(3.9424752749293728E-10), + HWY_REP4(1.2360288207619576E-13)}; + + const T q[4 * (6 + 1)] = { + HWY_REP4(-6.6389733798591366E-06), HWY_REP4(1.3299859726565908E-05), + HWY_REP4(3.8538748358398873E-06), HWY_REP4(-2.8707687262928236E-08), + HWY_REP4(-6.6897385800005434E-10), HWY_REP4(6.1428748869186003E-12), + HWY_REP4(-2.5475738169252870E-15)}; + + const T err = RunApproximation(0.77, 274.579999999999984, p, q, EvalPoly(), + SimpleGamma); + EXPECT_LT(err, 0.05); +} + +void TestLinearToSrgb8Direct() { + const T p[4 * (5 + 1)] = { + HWY_REP4(-9.5357499040105154E-05), HWY_REP4(4.6761186249798248E-04), + HWY_REP4(2.5708174333943594E-04), HWY_REP4(1.5250087770436082E-05), + HWY_REP4(1.1946768008931187E-07), HWY_REP4(5.9916446295972850E-11)}; + + const T q[4 * (4 + 1)] = { + HWY_REP4(1.8932479758079768E-05), HWY_REP4(2.7312342474687321E-05), + HWY_REP4(4.3901204783327006E-06), HWY_REP4(1.0417787306920273E-07), + HWY_REP4(3.0084206762140419E-10)}; + + const T err = + RunApproximation(0.77, 255, p, q, EvalPoly(), LinearToSrgb8Direct); + EXPECT_LT(err, 0.05); +} + +void TestExp() { + const T p[4 * (2 + 1)] = {HWY_REP4(9.6266879665530902E-01), + HWY_REP4(4.8961265681586763E-01), + HWY_REP4(8.2619259189548433E-02)}; + const T q[4 * (2 + 1)] = {HWY_REP4(9.6259895571622622E-01), + HWY_REP4(-4.7272457588933831E-01), + HWY_REP4(7.4802088567547664E-02)}; + const T err = + RunApproximation(-1, 1, p, q, EvalPoly(), [](T x) { return T(exp(x)); }); + EXPECT_LT(err, 1E-4); +} + +void TestNegExp() { + // 4,3 is the min required for monotonicity; max error in 0,10: 751 ppm + // no benefit for k>50. + const T p[4 * (4 + 1)] = { + HWY_REP4(5.9580258551150123E-02), HWY_REP4(-2.5073728806886408E-02), + HWY_REP4(4.1561830213689248E-03), HWY_REP4(-3.1815408488900372E-04), + HWY_REP4(9.3866690094906802E-06)}; + const T q[4 * (3 + 1)] = { + HWY_REP4(5.9579108238812878E-02), HWY_REP4(3.4542074345478582E-02), + HWY_REP4(8.7263562483501714E-03), HWY_REP4(1.4095109143061216E-03)}; + + const T err = + RunApproximation(0, 10, p, q, EvalPoly(), [](T x) { return T(exp(-x)); }); + EXPECT_LT(err, sizeof(T) == 8 ? 2E-5 : 3E-5); +} + +void TestSin() { + const T p[4 * (6 + 1)] = { + HWY_REP4(1.5518122109203780E-05), HWY_REP4(2.3388958643675966E+00), + HWY_REP4(-8.6705520940849157E-01), HWY_REP4(-1.9702294764873535E-01), + HWY_REP4(1.2193404314472320E-01), HWY_REP4(-1.7373966109788839E-02), + HWY_REP4(7.8829435883034796E-04)}; + const T q[4 * (5 + 1)] = { + HWY_REP4(2.3394371422557279E+00), HWY_REP4(-8.7028221081288615E-01), + HWY_REP4(2.0052872219658430E-01), HWY_REP4(-3.2460335995264836E-02), + HWY_REP4(3.1546157932479282E-03), HWY_REP4(-1.6692542019380155E-04)}; + + const T err = RunApproximation(0, Pi(1) * 2, p, q, EvalPoly(), + [](T x) { return T(sin(x)); }); + EXPECT_LT(err, sizeof(T) == 8 ? 5E-4 : 7E-4); +} + +void TestLog() { + HWY_ALIGN const T p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06), + HWY_REP4(1.4287160470083755E+00), + HWY_REP4(7.4245873327820566E-01)}; + HWY_ALIGN const T q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01), + HWY_REP4(1.0096718572241148E+00), + HWY_REP4(1.7409343003366853E-01)}; + const T err = RunApproximation(1E-6, 1000, p, q, EvalLog2(), std::log2); + printf("%E\n", err); +} + +HWY_NOINLINE void TestRationalPolynomial() { + TestSimpleGamma(); + TestLinearToSrgb8Direct(); + TestExp(); + TestNegExp(); + TestSin(); + TestLog(); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace jxl +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace jxl { + +class RationalPolynomialTest : public hwy::TestWithParamTarget {}; +HWY_TARGET_INSTANTIATE_TEST_SUITE_P(RationalPolynomialTest); + +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSimpleGamma); +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLinearToSrgb8Direct); +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestExp); +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestNegExp); +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSin); +HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLog); + +} // namespace jxl +#endif // HWY_ONCE -- cgit v1.2.3