/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "clang/AST/AST.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Version.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendPluginRegistry.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/PPCallbacks.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/JSON.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include "FileOperations.h" #include "StringOperations.h" #include "from-clangd/HeuristicResolver.h" #if CLANG_VERSION_MAJOR < 8 // Starting with Clang 8.0 some basic functions have been renamed #define getBeginLoc getLocStart #define getEndLoc getLocEnd #endif // We want std::make_unique, but that's only available in c++14. In versions // prior to that, we need to fall back to llvm's make_unique. It's also the // case that we expect clang 10 to build with c++14 and clang 9 and earlier to // build with c++11, at least as suggested by the llvm-config --cxxflags on // non-windows platforms. mozilla-central seems to build with -std=c++17 on // windows so we need to make this decision based on __cplusplus instead of // the CLANG_VERSION_MAJOR. #if __cplusplus < 201402L using llvm::make_unique; #else using std::make_unique; #endif using namespace clang; const std::string GENERATED("__GENERATED__" PATHSEP_STRING); // Absolute path to directory containing source code. std::string Srcdir; // Absolute path to objdir (including generated code). std::string Objdir; // Absolute path where analysis JSON output will be stored. std::string Outdir; enum class FileType { // The file was either in the source tree nor objdir. It might be a system // include, for example. Unknown, // A file from the source tree. Source, // A file from the objdir. Generated, }; // Takes an absolute path to a file, and returns the type of file it is. If // it's a Source or Generated file, the provided inout path argument is modified // in-place so that it is relative to the source dir or objdir, respectively. FileType relativizePath(std::string& path) { if (path.compare(0, Objdir.length(), Objdir) == 0) { path.replace(0, Objdir.length(), GENERATED); return FileType::Generated; } // Empty filenames can get turned into Srcdir when they are resolved as // absolute paths, so we should exclude files that are exactly equal to // Srcdir or anything outside Srcdir. if (path.length() > Srcdir.length() && path.compare(0, Srcdir.length(), Srcdir) == 0) { // Remove the trailing `/' as well. path.erase(0, Srcdir.length() + 1); return FileType::Source; } return FileType::Unknown; } #if !defined(_WIN32) && !defined(_WIN64) #include static double time() { struct timeval Tv; gettimeofday(&Tv, nullptr); return double(Tv.tv_sec) + double(Tv.tv_usec) / 1000000.; } #endif // Return true if |input| is a valid C++ identifier. We don't want to generate // analysis information for operators, string literals, etc. by accident since // it trips up consumers of the data. static bool isValidIdentifier(std::string Input) { for (char C : Input) { if (!(isalpha(C) || isdigit(C) || C == '_')) { return false; } } return true; } struct RAIITracer { RAIITracer(const char *log) : mLog(log) { printf("<%s>\n", mLog); } ~RAIITracer() { printf("\n", mLog); } const char* mLog; }; #define TRACEFUNC RAIITracer tracer(__FUNCTION__); class IndexConsumer; // For each C++ file seen by the analysis (.cpp or .h), we track a // FileInfo. This object tracks whether the file is "interesting" (i.e., whether // it's in the source dir or the objdir). We also store the analysis output // here. struct FileInfo { FileInfo(std::string &Rname) : Realname(Rname) { switch (relativizePath(Realname)) { case FileType::Generated: Interesting = true; Generated = true; break; case FileType::Source: Interesting = true; Generated = false; break; case FileType::Unknown: Interesting = false; Generated = false; break; } } std::string Realname; std::vector Output; bool Interesting; bool Generated; }; class IndexConsumer; class PreprocessorHook : public PPCallbacks { IndexConsumer *Indexer; public: PreprocessorHook(IndexConsumer *C) : Indexer(C) {} virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason, SrcMgr::CharacteristicKind FileType, FileID PrevFID) override; virtual void InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok, StringRef FileName, bool IsAngled, CharSourceRange FileNameRange, #if CLANG_VERSION_MAJOR >= 16 OptionalFileEntryRef File, #elif CLANG_VERSION_MAJOR >= 15 Optional File, #else const FileEntry *File, #endif StringRef SearchPath, StringRef RelativePath, const Module *Imported, SrcMgr::CharacteristicKind FileType) override; virtual void MacroDefined(const Token &Tok, const MacroDirective *Md) override; virtual void MacroExpands(const Token &Tok, const MacroDefinition &Md, SourceRange Range, const MacroArgs *Ma) override; virtual void MacroUndefined(const Token &Tok, const MacroDefinition &Md, const MacroDirective *Undef) override; virtual void Defined(const Token &Tok, const MacroDefinition &Md, SourceRange Range) override; virtual void Ifdef(SourceLocation Loc, const Token &Tok, const MacroDefinition &Md) override; virtual void Ifndef(SourceLocation Loc, const Token &Tok, const MacroDefinition &Md) override; }; class IndexConsumer : public ASTConsumer, public RecursiveASTVisitor, public DiagnosticConsumer { private: CompilerInstance &CI; SourceManager &SM; LangOptions &LO; std::map> FileMap; MangleContext *CurMangleContext; ASTContext *AstContext; std::unique_ptr Resolver; typedef RecursiveASTVisitor Super; // Tracks the set of declarations that the current expression/statement is // nested inside of. struct AutoSetContext { AutoSetContext(IndexConsumer *Self, NamedDecl *Context, bool VisitImplicit = false) : Self(Self), Prev(Self->CurDeclContext), Decl(Context) { this->VisitImplicit = VisitImplicit || (Prev ? Prev->VisitImplicit : false); Self->CurDeclContext = this; } ~AutoSetContext() { Self->CurDeclContext = Prev; } IndexConsumer *Self; AutoSetContext *Prev; NamedDecl *Decl; bool VisitImplicit; }; AutoSetContext *CurDeclContext; FileInfo *getFileInfo(SourceLocation Loc) { FileID Id = SM.getFileID(Loc); std::map>::iterator It; It = FileMap.find(Id); if (It == FileMap.end()) { // We haven't seen this file before. We need to make the FileInfo // structure information ourselves std::string Filename = std::string(SM.getFilename(Loc)); std::string Absolute; // If Loc is a macro id rather than a file id, it Filename might be // empty. Also for some types of file locations that are clang-internal // like "" it can return an empty Filename. In these cases we // want to leave Absolute as empty. if (!Filename.empty()) { Absolute = getAbsolutePath(Filename); if (Absolute.empty()) { Absolute = Filename; } } std::unique_ptr Info = make_unique(Absolute); It = FileMap.insert(std::make_pair(Id, std::move(Info))).first; } return It->second.get(); } // Helpers for processing declarations // Should we ignore this location? bool isInterestingLocation(SourceLocation Loc) { if (Loc.isInvalid()) { return false; } return getFileInfo(Loc)->Interesting; } // Convert location to "line:column" or "line:column-column" given length. // In resulting string rep, line is 1-based and zero-padded to 5 digits, while // column is 0-based and unpadded. std::string locationToString(SourceLocation Loc, size_t Length = 0) { std::pair Pair = SM.getDecomposedLoc(Loc); bool IsInvalid; unsigned Line = SM.getLineNumber(Pair.first, Pair.second, &IsInvalid); if (IsInvalid) { return ""; } unsigned Column = SM.getColumnNumber(Pair.first, Pair.second, &IsInvalid); if (IsInvalid) { return ""; } if (Length) { return stringFormat("%05d:%d-%d", Line, Column - 1, Column - 1 + Length); } else { return stringFormat("%05d:%d", Line, Column - 1); } } // Convert SourceRange to "line-line". // In the resulting string rep, line is 1-based. std::string lineRangeToString(SourceRange Range) { std::pair Begin = SM.getDecomposedLoc(Range.getBegin()); std::pair End = SM.getDecomposedLoc(Range.getEnd()); bool IsInvalid; unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid); if (IsInvalid) { return ""; } unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid); if (IsInvalid) { return ""; } return stringFormat("%d-%d", Line1, Line2); } // Convert SourceRange to "line:column-line:column". // In the resulting string rep, line is 1-based, column is 0-based. std::string fullRangeToString(SourceRange Range) { std::pair Begin = SM.getDecomposedLoc(Range.getBegin()); std::pair End = SM.getDecomposedLoc(Range.getEnd()); bool IsInvalid; unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid); if (IsInvalid) { return ""; } unsigned Column1 = SM.getColumnNumber(Begin.first, Begin.second, &IsInvalid); if (IsInvalid) { return ""; } unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid); if (IsInvalid) { return ""; } unsigned Column2 = SM.getColumnNumber(End.first, End.second, &IsInvalid); if (IsInvalid) { return ""; } return stringFormat("%d:%d-%d:%d", Line1, Column1 - 1, Line2, Column2 - 1); } // Returns the qualified name of `d` without considering template parameters. std::string getQualifiedName(const NamedDecl *D) { const DeclContext *Ctx = D->getDeclContext(); if (Ctx->isFunctionOrMethod()) { return D->getQualifiedNameAsString(); } std::vector Contexts; // Collect contexts. while (Ctx && isa(Ctx)) { Contexts.push_back(Ctx); Ctx = Ctx->getParent(); } std::string Result; std::reverse(Contexts.begin(), Contexts.end()); for (const DeclContext *DC : Contexts) { if (const auto *Spec = dyn_cast(DC)) { Result += Spec->getNameAsString(); if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { std::string Backing; llvm::raw_string_ostream Stream(Backing); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); printTemplateArgumentList( Stream, TemplateArgs.asArray(), PrintingPolicy(CI.getLangOpts())); Result += Stream.str(); } } else if (const auto *Nd = dyn_cast(DC)) { if (Nd->isAnonymousNamespace() || Nd->isInline()) { continue; } Result += Nd->getNameAsString(); } else if (const auto *Rd = dyn_cast(DC)) { if (!Rd->getIdentifier()) { Result += "(anonymous)"; } else { Result += Rd->getNameAsString(); } } else if (const auto *Fd = dyn_cast(DC)) { Result += Fd->getNameAsString(); } else if (const auto *Ed = dyn_cast(DC)) { // C++ [dcl.enum]p10: Each enum-name and each unscoped // enumerator is declared in the scope that immediately contains // the enum-specifier. Each scoped enumerator is declared in the // scope of the enumeration. if (Ed->isScoped() || Ed->getIdentifier()) Result += Ed->getNameAsString(); else continue; } else { Result += cast(DC)->getNameAsString(); } Result += "::"; } if (D->getDeclName()) Result += D->getNameAsString(); else Result += "(anonymous)"; return Result; } std::string mangleLocation(SourceLocation Loc, std::string Backup = std::string()) { FileInfo *F = getFileInfo(Loc); std::string Filename = F->Realname; if (Filename.length() == 0 && Backup.length() != 0) { return Backup; } if (F->Generated) { // Since generated files may be different on different platforms, // we need to include a platform-specific thing in the hash. Otherwise // we can end up with hash collisions where different symbols from // different platforms map to the same thing. char* Platform = getenv("MOZSEARCH_PLATFORM"); Filename = std::string(Platform ? Platform : "") + std::string("@") + Filename; } return hash(Filename + std::string("@") + locationToString(Loc)); } bool isAcceptableSymbolChar(char c) { return isalpha(c) || isdigit(c) || c == '_' || c == '/'; } std::string mangleFile(std::string Filename, FileType Type) { // "Mangle" the file path, such that: // 1. The majority of paths will still be mostly human-readable. // 2. The sanitization algorithm doesn't produce collisions where two // different unsanitized paths can result in the same sanitized paths. // 3. The produced symbol doesn't cause problems with downstream consumers. // In order to accomplish this, we keep alphanumeric chars, underscores, // and slashes, and replace everything else with an "@xx" hex encoding. // The majority of path characters are letters and slashes which don't get // encoded, so that satisfies (1). Since "@" characters in the unsanitized // path get encoded, there should be no "@" characters in the sanitized path // that got preserved from the unsanitized input, so that should satisfy (2). // And (3) was done by trial-and-error. Note in particular the dot (.) // character needs to be encoded, or the symbol-search feature of mozsearch // doesn't work correctly, as all dot characters in the symbol query get // replaced by #. for (size_t i = 0; i < Filename.length(); i++) { char c = Filename[i]; if (isAcceptableSymbolChar(c)) { continue; } char hex[4]; sprintf(hex, "@%02X", ((int)c) & 0xFF); Filename.replace(i, 1, hex); i += 2; } if (Type == FileType::Generated) { // Since generated files may be different on different platforms, // we need to include a platform-specific thing in the hash. Otherwise // we can end up with hash collisions where different symbols from // different platforms map to the same thing. char* Platform = getenv("MOZSEARCH_PLATFORM"); Filename = std::string(Platform ? Platform : "") + std::string("@") + Filename; } return Filename; } std::string mangleQualifiedName(std::string Name) { std::replace(Name.begin(), Name.end(), ' ', '_'); return Name; } std::string getMangledName(clang::MangleContext *Ctx, const clang::NamedDecl *Decl) { if (isa(Decl) && cast(Decl)->isExternC()) { return cast(Decl)->getNameAsString(); } if (isa(Decl) || isa(Decl)) { const DeclContext *DC = Decl->getDeclContext(); if (isa(DC) || isa(DC) || isa(DC) || // isa(DC) || isa(DC)) { llvm::SmallVector Output; llvm::raw_svector_ostream Out(Output); #if CLANG_VERSION_MAJOR >= 11 // This code changed upstream in version 11: // https://github.com/llvm/llvm-project/commit/29e1a16be8216066d1ed733a763a749aed13ff47 GlobalDecl GD; if (const CXXConstructorDecl *D = dyn_cast(Decl)) { GD = GlobalDecl(D, Ctor_Complete); } else if (const CXXDestructorDecl *D = dyn_cast(Decl)) { GD = GlobalDecl(D, Dtor_Complete); } else { GD = GlobalDecl(Decl); } Ctx->mangleName(GD, Out); #else if (const CXXConstructorDecl *D = dyn_cast(Decl)) { Ctx->mangleCXXCtor(D, CXXCtorType::Ctor_Complete, Out); } else if (const CXXDestructorDecl *D = dyn_cast(Decl)) { Ctx->mangleCXXDtor(D, CXXDtorType::Dtor_Complete, Out); } else { Ctx->mangleName(Decl, Out); } #endif return Out.str().str(); } else { return std::string("V_") + mangleLocation(Decl->getLocation()) + std::string("_") + hash(std::string(Decl->getName())); } } else if (isa(Decl) || isa(Decl) || isa(Decl)) { if (!Decl->getIdentifier()) { // Anonymous. return std::string("T_") + mangleLocation(Decl->getLocation()); } return std::string("T_") + mangleQualifiedName(getQualifiedName(Decl)); } else if (isa(Decl) || isa(Decl)) { if (!Decl->getIdentifier()) { // Anonymous. return std::string("NS_") + mangleLocation(Decl->getLocation()); } return std::string("NS_") + mangleQualifiedName(getQualifiedName(Decl)); } else if (const ObjCIvarDecl *D2 = dyn_cast(Decl)) { const ObjCInterfaceDecl *Iface = D2->getContainingInterface(); return std::string("F_<") + getMangledName(Ctx, Iface) + ">_" + D2->getNameAsString(); } else if (const FieldDecl *D2 = dyn_cast(Decl)) { const RecordDecl *Record = D2->getParent(); return std::string("F_<") + getMangledName(Ctx, Record) + ">_" + D2->getNameAsString(); } else if (const EnumConstantDecl *D2 = dyn_cast(Decl)) { const DeclContext *DC = Decl->getDeclContext(); if (const NamedDecl *Named = dyn_cast(DC)) { return std::string("E_<") + getMangledName(Ctx, Named) + ">_" + D2->getNameAsString(); } } assert(false); return std::string(""); } void debugLocation(SourceLocation Loc) { std::string S = locationToString(Loc); StringRef Filename = SM.getFilename(Loc); printf("--> %s %s\n", std::string(Filename).c_str(), S.c_str()); } void debugRange(SourceRange Range) { printf("Range\n"); debugLocation(Range.getBegin()); debugLocation(Range.getEnd()); } public: IndexConsumer(CompilerInstance &CI) : CI(CI), SM(CI.getSourceManager()), LO(CI.getLangOpts()), CurMangleContext(nullptr), AstContext(nullptr), CurDeclContext(nullptr), TemplateStack(nullptr) { CI.getPreprocessor().addPPCallbacks( make_unique(this)); } virtual DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { return new IndexConsumer(CI); } #if !defined(_WIN32) && !defined(_WIN64) struct AutoTime { AutoTime(double *Counter) : Counter(Counter), Start(time()) {} ~AutoTime() { if (Start) { *Counter += time() - Start; } } void stop() { *Counter += time() - Start; Start = 0; } double *Counter; double Start; }; #endif // All we need is to follow the final declaration. virtual void HandleTranslationUnit(ASTContext &Ctx) { CurMangleContext = clang::ItaniumMangleContext::create(Ctx, CI.getDiagnostics()); AstContext = &Ctx; Resolver = std::make_unique(Ctx); TraverseDecl(Ctx.getTranslationUnitDecl()); // Emit the JSON data for all files now. std::map>::iterator It; for (It = FileMap.begin(); It != FileMap.end(); It++) { if (!It->second->Interesting) { continue; } FileInfo &Info = *It->second; std::string Filename = Outdir + Info.Realname; std::string SrcFilename = Info.Generated ? Objdir + Info.Realname.substr(GENERATED.length()) : Srcdir + PATHSEP_STRING + Info.Realname; ensurePath(Filename); // We lock the output file in case some other clang process is trying to // write to it at the same time. AutoLockFile Lock(SrcFilename, Filename); if (!Lock.success()) { fprintf(stderr, "Unable to lock file %s\n", Filename.c_str()); exit(1); } // Merge our results with the existing lines from the output file. // This ensures that header files that are included multiple times // in different ways are analyzed completely. std::ifstream Fin(Filename.c_str(), std::ios::in | std::ios::binary); FILE *OutFp = Lock.openTmp(); if (!OutFp) { fprintf(stderr, "Unable to open tmp out file for %s\n", Filename.c_str()); exit(1); } // Sort our new results and get an iterator to them std::sort(Info.Output.begin(), Info.Output.end()); std::vector::const_iterator NewLinesIter = Info.Output.begin(); std::string LastNewWritten; // Loop over the existing (sorted) lines in the analysis output file. // (The good() check also handles the case where Fin did not exist when we // went to open it.) while(Fin.good()) { std::string OldLine; std::getline(Fin, OldLine); // Skip blank lines. if (OldLine.length() == 0) { continue; } // We need to put the newlines back that getline() eats. OldLine.push_back('\n'); // Write any results from Info.Output that are lexicographically // smaller than OldLine (read from the existing file), but make sure // to skip duplicates. Keep advancing NewLinesIter until we reach an // entry that is lexicographically greater than OldLine. for (; NewLinesIter != Info.Output.end(); NewLinesIter++) { if (*NewLinesIter > OldLine) { break; } if (*NewLinesIter == OldLine) { continue; } if (*NewLinesIter == LastNewWritten) { // dedupe the new entries being written continue; } if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) != 1) { fprintf(stderr, "Unable to write %zu bytes[1] to tmp output file for %s\n", NewLinesIter->length(), Filename.c_str()); exit(1); } LastNewWritten = *NewLinesIter; } // Write the entry read from the existing file. if (fwrite(OldLine.c_str(), OldLine.length(), 1, OutFp) != 1) { fprintf(stderr, "Unable to write %zu bytes[2] to tmp output file for %s\n", OldLine.length(), Filename.c_str()); exit(1); } } // We finished reading from Fin Fin.close(); // Finish iterating our new results, discarding duplicates for (; NewLinesIter != Info.Output.end(); NewLinesIter++) { if (*NewLinesIter == LastNewWritten) { continue; } if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) != 1) { fprintf(stderr, "Unable to write %zu bytes[3] to tmp output file for %s\n", NewLinesIter->length(), Filename.c_str()); exit(1); } LastNewWritten = *NewLinesIter; } // Done writing all the things, close it and replace the old output file // with the new one. fclose(OutFp); if (!Lock.moveTmp()) { fprintf(stderr, "Unable to move tmp output file into place for %s (err %d)\n", Filename.c_str(), errno); exit(1); } } } // Unfortunately, we have to override all these methods in order to track the // context we're inside. bool TraverseEnumDecl(EnumDecl *D) { AutoSetContext Asc(this, D); return Super::TraverseEnumDecl(D); } bool TraverseRecordDecl(RecordDecl *D) { AutoSetContext Asc(this, D); return Super::TraverseRecordDecl(D); } bool TraverseCXXRecordDecl(CXXRecordDecl *D) { AutoSetContext Asc(this, D); return Super::TraverseCXXRecordDecl(D); } bool TraverseFunctionDecl(FunctionDecl *D) { AutoSetContext Asc(this, D); const FunctionDecl *Def; // (See the larger AutoTemplateContext comment for more information.) If a // method on a templated class is declared out-of-line, we need to analyze // the definition inside the scope of the template or else we won't properly // handle member access on the templated type. if (TemplateStack && D->isDefined(Def) && Def && D != Def) { TraverseFunctionDecl(const_cast(Def)); } return Super::TraverseFunctionDecl(D); } bool TraverseCXXMethodDecl(CXXMethodDecl *D) { AutoSetContext Asc(this, D); const FunctionDecl *Def; // See TraverseFunctionDecl. if (TemplateStack && D->isDefined(Def) && Def && D != Def) { TraverseFunctionDecl(const_cast(Def)); } return Super::TraverseCXXMethodDecl(D); } bool TraverseCXXConstructorDecl(CXXConstructorDecl *D) { AutoSetContext Asc(this, D, /*VisitImplicit=*/true); const FunctionDecl *Def; // See TraverseFunctionDecl. if (TemplateStack && D->isDefined(Def) && Def && D != Def) { TraverseFunctionDecl(const_cast(Def)); } return Super::TraverseCXXConstructorDecl(D); } bool TraverseCXXConversionDecl(CXXConversionDecl *D) { AutoSetContext Asc(this, D); const FunctionDecl *Def; // See TraverseFunctionDecl. if (TemplateStack && D->isDefined(Def) && Def && D != Def) { TraverseFunctionDecl(const_cast(Def)); } return Super::TraverseCXXConversionDecl(D); } bool TraverseCXXDestructorDecl(CXXDestructorDecl *D) { AutoSetContext Asc(this, D); const FunctionDecl *Def; // See TraverseFunctionDecl. if (TemplateStack && D->isDefined(Def) && Def && D != Def) { TraverseFunctionDecl(const_cast(Def)); } return Super::TraverseCXXDestructorDecl(D); } // Used to keep track of the context in which a token appears. struct Context { // Ultimately this becomes the "context" JSON property. std::string Name; // Ultimately this becomes the "contextsym" JSON property. std::string Symbol; Context() {} Context(std::string Name, std::string Symbol) : Name(Name), Symbol(Symbol) {} }; Context translateContext(NamedDecl *D) { const FunctionDecl *F = dyn_cast(D); if (F && F->isTemplateInstantiation()) { D = F->getTemplateInstantiationPattern(); } return Context(D->getQualifiedNameAsString(), getMangledName(CurMangleContext, D)); } Context getContext(SourceLocation Loc) { if (SM.isMacroBodyExpansion(Loc)) { // If we're inside a macro definition, we don't return any context. It // will probably not be what the user expects if we do. return Context(); } if (CurDeclContext) { return translateContext(CurDeclContext->Decl); } return Context(); } // Similar to GetContext(SourceLocation), but it skips the declaration passed // in. This is useful if we want the context of a declaration that's already // on the stack. Context getContext(Decl *D) { if (SM.isMacroBodyExpansion(D->getLocation())) { // If we're inside a macro definition, we don't return any context. It // will probably not be what the user expects if we do. return Context(); } AutoSetContext *Ctxt = CurDeclContext; while (Ctxt) { if (Ctxt->Decl != D) { return translateContext(Ctxt->Decl); } Ctxt = Ctxt->Prev; } return Context(); } // Analyzing template code is tricky. Suppose we have this code: // // template // bool Foo(T* ptr) { return T::StaticMethod(ptr); } // // If we analyze the body of Foo without knowing the type T, then we will not // be able to generate any information for StaticMethod. However, analyzing // Foo for every possible instantiation is inefficient and it also generates // too much data in some cases. For example, the following code would generate // one definition of Baz for every instantiation, which is undesirable: // // template // class Bar { struct Baz { ... }; }; // // To solve this problem, we analyze templates only once. We do so in a // GatherDependent mode where we look for "dependent scoped member // expressions" (i.e., things like StaticMethod). We keep track of the // locations of these expressions. If we find one or more of them, we analyze // the template for each instantiation, in an AnalyzeDependent mode. This mode // ignores all source locations except for the ones where we found dependent // scoped member expressions before. For these locations, we generate a // separate JSON result for each instantiation. // // We inherit our parent's mode if it is exists. This is because if our // parent is in analyze mode, it means we've already lived a full life in // gather mode and we must not restart in gather mode or we'll cause the // indexer to visit EVERY identifier, which is way too much data. struct AutoTemplateContext { AutoTemplateContext(IndexConsumer *Self) : Self(Self) , CurMode(Self->TemplateStack ? Self->TemplateStack->CurMode : Mode::GatherDependent) , Parent(Self->TemplateStack) { Self->TemplateStack = this; } ~AutoTemplateContext() { Self->TemplateStack = Parent; } // We traverse templates in two modes: enum class Mode { // Gather mode does not traverse into specializations. It looks for // locations where it would help to have more info from template // specializations. GatherDependent, // Analyze mode traverses into template specializations and records // information about token locations saved in gather mode. AnalyzeDependent, }; // We found a dependent scoped member expression! Keep track of it for // later. void visitDependent(SourceLocation Loc) { if (CurMode == Mode::AnalyzeDependent) { return; } DependentLocations.insert(Loc.getRawEncoding()); if (Parent) { Parent->visitDependent(Loc); } } bool inGatherMode() { return CurMode == Mode::GatherDependent; } // Do we need to perform the extra AnalyzeDependent passes (one per // instantiation)? bool needsAnalysis() const { if (!DependentLocations.empty()) { return true; } if (Parent) { return Parent->needsAnalysis(); } return false; } void switchMode() { CurMode = Mode::AnalyzeDependent; } // Do we want to analyze each template instantiation separately? bool shouldVisitTemplateInstantiations() const { if (CurMode == Mode::AnalyzeDependent) { return true; } if (Parent) { return Parent->shouldVisitTemplateInstantiations(); } return false; } // For a given expression/statement, should we emit JSON data for it? bool shouldVisit(SourceLocation Loc) { if (CurMode == Mode::GatherDependent) { return true; } if (DependentLocations.find(Loc.getRawEncoding()) != DependentLocations.end()) { return true; } if (Parent) { return Parent->shouldVisit(Loc); } return false; } private: IndexConsumer *Self; Mode CurMode; std::unordered_set DependentLocations; AutoTemplateContext *Parent; }; AutoTemplateContext *TemplateStack; bool shouldVisitTemplateInstantiations() const { if (TemplateStack) { return TemplateStack->shouldVisitTemplateInstantiations(); } return false; } bool shouldVisitImplicitCode() const { return CurDeclContext && CurDeclContext->VisitImplicit; } bool TraverseClassTemplateDecl(ClassTemplateDecl *D) { AutoTemplateContext Atc(this); Super::TraverseClassTemplateDecl(D); if (!Atc.needsAnalysis()) { return true; } Atc.switchMode(); if (D != D->getCanonicalDecl()) { return true; } for (auto *Spec : D->specializations()) { for (auto *Rd : Spec->redecls()) { // We don't want to visit injected-class-names in this traversal. if (cast(Rd)->isInjectedClassName()) continue; TraverseDecl(Rd); } } return true; } bool TraverseFunctionTemplateDecl(FunctionTemplateDecl *D) { AutoTemplateContext Atc(this); if (Atc.inGatherMode()) { Super::TraverseFunctionTemplateDecl(D); } if (!Atc.needsAnalysis()) { return true; } Atc.switchMode(); if (D != D->getCanonicalDecl()) { return true; } for (auto *Spec : D->specializations()) { for (auto *Rd : Spec->redecls()) { TraverseDecl(Rd); } } return true; } bool shouldVisit(SourceLocation Loc) { if (TemplateStack) { return TemplateStack->shouldVisit(Loc); } return true; } enum { // Flag to omit the identifier from being cross-referenced across files. // This is usually desired for local variables. NoCrossref = 1 << 0, // Flag to indicate the token with analysis data is not an identifier. Indicates // we want to skip the check that tries to ensure a sane identifier token. NotIdentifierToken = 1 << 1, // This indicates that the end of the provided SourceRange is valid and // should be respected. If this flag is not set, the visitIdentifier // function should use only the start of the SourceRange and auto-detect // the end based on whatever token is found at the start. LocRangeEndValid = 1 << 2 }; void emitStructuredInfo(SourceLocation Loc, const RecordDecl *decl) { std::string json_str; llvm::raw_string_ostream ros(json_str); llvm::json::OStream J(ros); // Start the top-level object. J.objectBegin(); unsigned StartOffset = SM.getFileOffset(Loc); unsigned EndOffset = StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts()); J.attribute("loc", locationToString(Loc, EndOffset - StartOffset)); J.attribute("structured", 1); J.attribute("pretty", getQualifiedName(decl)); J.attribute("sym", getMangledName(CurMangleContext, decl)); J.attribute("kind", TypeWithKeyword::getTagTypeKindName(decl->getTagKind())); const ASTContext &C = *AstContext; const ASTRecordLayout &Layout = C.getASTRecordLayout(decl); J.attribute("sizeBytes", Layout.getSize().getQuantity()); auto cxxDecl = dyn_cast(decl); if (cxxDecl) { J.attributeBegin("supers"); J.arrayBegin(); for (const CXXBaseSpecifier &Base : cxxDecl->bases()) { const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); J.objectBegin(); J.attribute("pretty", getQualifiedName(BaseDecl)); J.attribute("sym", getMangledName(CurMangleContext, BaseDecl)); J.attributeBegin("props"); J.arrayBegin(); if (Base.isVirtual()) { J.value("virtual"); } J.arrayEnd(); J.attributeEnd(); J.objectEnd(); } J.arrayEnd(); J.attributeEnd(); J.attributeBegin("methods"); J.arrayBegin(); for (const CXXMethodDecl *MethodDecl : cxxDecl->methods()) { J.objectBegin(); J.attribute("pretty", getQualifiedName(MethodDecl)); J.attribute("sym", getMangledName(CurMangleContext, MethodDecl)); // TODO: Better figure out what to do for non-isUserProvided methods // which means there's potentially semantic data that doesn't correspond // to a source location in the source. Should we be emitting // structured info for those when we're processing the class here? J.attributeBegin("props"); J.arrayBegin(); if (MethodDecl->isStatic()) { J.value("static"); } if (MethodDecl->isInstance()) { J.value("instance"); } if (MethodDecl->isVirtual()) { J.value("virtual"); } if (MethodDecl->isUserProvided()) { J.value("user"); } if (MethodDecl->isDefaulted()) { J.value("defaulted"); } if (MethodDecl->isDeleted()) { J.value("deleted"); } if (MethodDecl->isConstexpr()) { J.value("constexpr"); } J.arrayEnd(); J.attributeEnd(); J.objectEnd(); } J.arrayEnd(); J.attributeEnd(); } J.attributeBegin("fields"); J.arrayBegin(); uint64_t iField = 0; for (RecordDecl::field_iterator It = decl->field_begin(), End = decl->field_end(); It != End; ++It, ++iField) { const FieldDecl &Field = **It; uint64_t localOffsetBits = Layout.getFieldOffset(iField); CharUnits localOffsetBytes = C.toCharUnitsFromBits(localOffsetBits); J.objectBegin(); J.attribute("pretty", getQualifiedName(&Field)); J.attribute("sym", getMangledName(CurMangleContext, &Field)); QualType FieldType = Field.getType(); J.attribute("type", FieldType.getAsString()); QualType CanonicalFieldType = FieldType.getCanonicalType(); const TagDecl *tagDecl = CanonicalFieldType->getAsTagDecl(); if (tagDecl) { J.attribute("typesym", getMangledName(CurMangleContext, tagDecl)); } J.attribute("offsetBytes", localOffsetBytes.getQuantity()); if (Field.isBitField()) { J.attributeBegin("bitPositions"); J.objectBegin(); J.attribute("begin", unsigned(localOffsetBits - C.toBits(localOffsetBytes))); J.attribute("width", Field.getBitWidthValue(C)); J.objectEnd(); J.attributeEnd(); } else { // Try and get the field as a record itself so we can know its size, but // we don't actually want to recurse into it. if (auto FieldRec = Field.getType()->getAs()) { auto const &FieldLayout = C.getASTRecordLayout(FieldRec->getDecl()); J.attribute("sizeBytes", FieldLayout.getSize().getQuantity()); } else { // We were unable to get it as a record, which suggests it's a normal // type, in which case let's just ask for the type size. (Maybe this // would also work for the above case too?) uint64_t typeSizeBits = C.getTypeSize(Field.getType()); CharUnits typeSizeBytes = C.toCharUnitsFromBits(typeSizeBits); J.attribute("sizeBytes", typeSizeBytes.getQuantity()); } } J.objectEnd(); } J.arrayEnd(); J.attributeEnd(); // End the top-level object. J.objectEnd(); FileInfo *F = getFileInfo(Loc); // we want a newline. ros << '\n'; F->Output.push_back(std::move(ros.str())); } void emitStructuredInfo(SourceLocation Loc, const FunctionDecl *decl) { std::string json_str; llvm::raw_string_ostream ros(json_str); llvm::json::OStream J(ros); // Start the top-level object. J.objectBegin(); unsigned StartOffset = SM.getFileOffset(Loc); unsigned EndOffset = StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts()); J.attribute("loc", locationToString(Loc, EndOffset - StartOffset)); J.attribute("structured", 1); J.attribute("pretty", getQualifiedName(decl)); J.attribute("sym", getMangledName(CurMangleContext, decl)); auto cxxDecl = dyn_cast(decl); if (cxxDecl) { J.attribute("kind", "method"); if (auto parentDecl = cxxDecl->getParent()) { J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl)); } J.attributeBegin("overrides"); J.arrayBegin(); for (const CXXMethodDecl *MethodDecl : cxxDecl->overridden_methods()) { J.objectBegin(); // TODO: Make sure we're doing template traversals appropriately... // findOverriddenMethods (now removed) liked to do: // if (Decl->isTemplateInstantiation()) { // Decl = dyn_cast(Decl->getTemplateInstantiationPattern()); // } // I think our pre-emptive dereferencing/avoidance of templates may // protect us from this, but it needs more investigation. J.attribute("pretty", getQualifiedName(MethodDecl)); J.attribute("sym", getMangledName(CurMangleContext, MethodDecl)); J.objectEnd(); } J.arrayEnd(); J.attributeEnd(); } else { J.attribute("kind", "function"); } // ## Props J.attributeBegin("props"); J.arrayBegin(); // some of these are only possible on a CXXMethodDecl, but we want them all // in the same array, so condition these first ones. if (cxxDecl) { if (cxxDecl->isStatic()) { J.value("static"); } if (cxxDecl->isInstance()) { J.value("instance"); } if (cxxDecl->isVirtual()) { J.value("virtual"); } if (cxxDecl->isUserProvided()) { J.value("user"); } } if (decl->isDefaulted()) { J.value("defaulted"); } if (decl->isDeleted()) { J.value("deleted"); } if (decl->isConstexpr()) { J.value("constexpr"); } J.arrayEnd(); J.attributeEnd(); // End the top-level object. J.objectEnd(); FileInfo *F = getFileInfo(Loc); // we want a newline. ros << '\n'; F->Output.push_back(std::move(ros.str())); } /** * Emit structured info for a field. Right now the intent is for this to just * be a pointer to its parent's structured info with this method entirely * avoiding getting the ASTRecordLayout. * * TODO: Give more thought on where to locate the canonical info on fields and * how to normalize their exposure over the web. We could relink the info * both at cross-reference time and web-server lookup time. This is also * called out in `analysis.md`. */ void emitStructuredInfo(SourceLocation Loc, const FieldDecl *decl) { // XXX the call to decl::getParent will assert below for ObjCIvarDecl // instances because their DecContext is not a RecordDecl. So just bail // for now. // TODO: better support ObjC. if (const ObjCIvarDecl *D2 = dyn_cast(decl)) { return; } std::string json_str; llvm::raw_string_ostream ros(json_str); llvm::json::OStream J(ros); // Start the top-level object. J.objectBegin(); unsigned StartOffset = SM.getFileOffset(Loc); unsigned EndOffset = StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts()); J.attribute("loc", locationToString(Loc, EndOffset - StartOffset)); J.attribute("structured", 1); J.attribute("pretty", getQualifiedName(decl)); J.attribute("sym", getMangledName(CurMangleContext, decl)); J.attribute("kind", "field"); if (auto parentDecl = decl->getParent()) { J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl)); } // End the top-level object. J.objectEnd(); FileInfo *F = getFileInfo(Loc); // we want a newline. ros << '\n'; F->Output.push_back(std::move(ros.str())); } // XXX Type annotating. // QualType is the type class. It has helpers like TagDecl via getAsTagDecl. // ValueDecl exposes a getType() method. // // Arguably it makes sense to only expose types that Searchfox has definitions // for as first-class. Probably the way to go is like context/contextsym. // We expose a "type" which is just a human-readable string which has no // semantic purposes and is just a display string, plus then a "typesym" which // we expose if we were able to map the type. // // Other meta-info: field offsets. Ancestor types. // This is the only function that emits analysis JSON data. It should be // called for each identifier that corresponds to a symbol. void visitIdentifier(const char *Kind, const char *SyntaxKind, llvm::StringRef QualName, SourceRange LocRange, std::string Symbol, QualType MaybeType = QualType(), Context TokenContext = Context(), int Flags = 0, SourceRange PeekRange = SourceRange(), SourceRange NestingRange = SourceRange()) { SourceLocation Loc = LocRange.getBegin(); if (!shouldVisit(Loc)) { return; } // Find the file positions corresponding to the token. unsigned StartOffset = SM.getFileOffset(Loc); unsigned EndOffset = (Flags & LocRangeEndValid) ? SM.getFileOffset(LocRange.getEnd()) : StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts()); std::string LocStr = locationToString(Loc, EndOffset - StartOffset); std::string RangeStr = locationToString(Loc, EndOffset - StartOffset); std::string PeekRangeStr; if (!(Flags & NotIdentifierToken)) { // Get the token's characters so we can make sure it's a valid token. const char *StartChars = SM.getCharacterData(Loc); std::string Text(StartChars, EndOffset - StartOffset); if (!isValidIdentifier(Text)) { return; } } FileInfo *F = getFileInfo(Loc); if (!(Flags & NoCrossref)) { std::string json_str; llvm::raw_string_ostream ros(json_str); llvm::json::OStream J(ros); // Start the top-level object. J.objectBegin(); J.attribute("loc", LocStr); J.attribute("target", 1); J.attribute("kind", Kind); J.attribute("pretty", QualName.data()); J.attribute("sym", Symbol); if (!TokenContext.Name.empty()) { J.attribute("context", TokenContext.Name); } if (!TokenContext.Symbol.empty()) { J.attribute("contextsym", TokenContext.Symbol); } if (PeekRange.isValid()) { PeekRangeStr = lineRangeToString(PeekRange); if (!PeekRangeStr.empty()) { J.attribute("peekRange", PeekRangeStr); } } // End the top-level object. J.objectEnd(); // we want a newline. ros << '\n'; F->Output.push_back(std::move(ros.str())); } // Generate a single "source":1 for all the symbols. If we search from here, // we want to union the results for every symbol in `symbols`. std::string json_str; llvm::raw_string_ostream ros(json_str); llvm::json::OStream J(ros); // Start the top-level object. J.objectBegin(); J.attribute("loc", RangeStr); J.attribute("source", 1); if (NestingRange.isValid()) { std::string NestingRangeStr = fullRangeToString(NestingRange); if (!NestingRangeStr.empty()) { J.attribute("nestingRange", NestingRangeStr); } } std::string Syntax; if (Flags & NoCrossref) { J.attribute("syntax", ""); } else { Syntax = Kind; Syntax.push_back(','); Syntax.append(SyntaxKind); J.attribute("syntax", Syntax); } if (!MaybeType.isNull()) { J.attribute("type", MaybeType.getAsString()); QualType canonical = MaybeType.getCanonicalType(); const TagDecl *decl = canonical->getAsTagDecl(); if (decl) { std::string Mangled = getMangledName(CurMangleContext, decl); J.attribute("typesym", Mangled); } } std::string Pretty(SyntaxKind); Pretty.push_back(' '); Pretty.append(QualName.data()); J.attribute("pretty", Pretty); J.attribute("sym", Symbol); if (Flags & NoCrossref) { J.attribute("no_crossref", 1); } // End the top-level object. J.objectEnd(); // we want a newline. ros << '\n'; F->Output.push_back(std::move(ros.str())); } void normalizeLocation(SourceLocation *Loc) { *Loc = SM.getSpellingLoc(*Loc); } // For cases where the left-brace is not directly accessible from the AST, // helper to use the lexer to find the brace. Make sure you're picking the // start location appropriately! SourceLocation findLeftBraceFromLoc(SourceLocation Loc) { return Lexer::findLocationAfterToken(Loc, tok::l_brace, SM, LO, false); } // If the provided statement is compound, return its range. SourceRange getCompoundStmtRange(Stmt* D) { if (!D) { return SourceRange(); } CompoundStmt *D2 = dyn_cast(D); if (D2) { return D2->getSourceRange(); } return SourceRange(); } SourceRange getFunctionPeekRange(FunctionDecl* D) { // We always start at the start of the function decl, which may include the // return type on a separate line. SourceLocation Start = D->getBeginLoc(); // By default, we end at the line containing the function's name. SourceLocation End = D->getLocation(); std::pair FuncLoc = SM.getDecomposedLoc(End); // But if there are parameters, we want to include those as well. for (ParmVarDecl* Param : D->parameters()) { std::pair ParamLoc = SM.getDecomposedLoc(Param->getLocation()); // It's possible there are macros involved or something. We don't include // the parameters in that case. if (ParamLoc.first == FuncLoc.first) { // Assume parameters are in order, so we always take the last one. End = Param->getEndLoc(); } } return SourceRange(Start, End); } SourceRange getTagPeekRange(TagDecl* D) { SourceLocation Start = D->getBeginLoc(); // By default, we end at the line containing the name. SourceLocation End = D->getLocation(); std::pair FuncLoc = SM.getDecomposedLoc(End); if (CXXRecordDecl* D2 = dyn_cast(D)) { // But if there are parameters, we want to include those as well. for (CXXBaseSpecifier& Base : D2->bases()) { std::pair Loc = SM.getDecomposedLoc(Base.getEndLoc()); // It's possible there are macros involved or something. We don't include // the parameters in that case. if (Loc.first == FuncLoc.first) { // Assume parameters are in order, so we always take the last one. End = Base.getEndLoc(); } } } return SourceRange(Start, End); } SourceRange getCommentRange(NamedDecl* D) { const RawComment* RC = AstContext->getRawCommentForDeclNoCache(D); if (!RC) { return SourceRange(); } return RC->getSourceRange(); } // Sanity checks that all ranges are in the same file, returning the first if // they're in different files. Unions the ranges based on which is first. SourceRange combineRanges(SourceRange Range1, SourceRange Range2) { if (Range1.isInvalid()) { return Range2; } if (Range2.isInvalid()) { return Range1; } std::pair Begin1 = SM.getDecomposedLoc(Range1.getBegin()); std::pair End1 = SM.getDecomposedLoc(Range1.getEnd()); std::pair Begin2 = SM.getDecomposedLoc(Range2.getBegin()); std::pair End2 = SM.getDecomposedLoc(Range2.getEnd()); if (End1.first != Begin2.first) { // Something weird is probably happening with the preprocessor. Just // return the first range. return Range1; } // See which range comes first. if (Begin1.second <= End2.second) { return SourceRange(Range1.getBegin(), Range2.getEnd()); } else { return SourceRange(Range2.getBegin(), Range1.getEnd()); } } // Given a location and a range, returns the range if: // - The location and the range live in the same file. // - The range is well ordered (end is not before begin). // Returns an empty range otherwise. SourceRange validateRange(SourceLocation Loc, SourceRange Range) { std::pair Decomposed = SM.getDecomposedLoc(Loc); std::pair Begin = SM.getDecomposedLoc(Range.getBegin()); std::pair End = SM.getDecomposedLoc(Range.getEnd()); if (Begin.first != Decomposed.first || End.first != Decomposed.first) { return SourceRange(); } if (Begin.second >= End.second) { return SourceRange(); } return Range; } bool VisitNamedDecl(NamedDecl *D) { SourceLocation Loc = D->getLocation(); // If the token is from a macro expansion and the expansion location // is interesting, use that instead as it tends to be more useful. SourceLocation expandedLoc = Loc; if (SM.isMacroBodyExpansion(Loc)) { Loc = SM.getFileLoc(Loc); } normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } if (isa(D) && !D->getDeclName().getAsIdentifierInfo()) { // Unnamed parameter in function proto. return true; } int Flags = 0; const char *Kind = "def"; const char *PrettyKind = "?"; bool wasTemplate = false; SourceRange PeekRange(D->getBeginLoc(), D->getEndLoc()); // The nesting range identifies the left brace and right brace, which // heavily depends on the AST node type. SourceRange NestingRange; if (FunctionDecl *D2 = dyn_cast(D)) { if (D2->isTemplateInstantiation()) { wasTemplate = true; D = D2->getTemplateInstantiationPattern(); } // We treat pure virtual declarations as definitions. Kind = (D2->isThisDeclarationADefinition() || D2->isPure()) ? "def" : "decl"; PrettyKind = "function"; PeekRange = getFunctionPeekRange(D2); // Only emit the nesting range if: // - This is a definition AND // - This isn't a template instantiation. Function templates' // instantiations can end up as a definition with a Loc at their point // of declaration but with the CompoundStmt of the template's // point of definition. This really messes up the nesting range logic. // At the time of writing this, the test repo's `big_header.h`'s // `WhatsYourVector_impl::forwardDeclaredTemplateThingInlinedBelow` as // instantiated by `big_cpp.cpp` triggers this phenomenon. // // Note: As covered elsewhere, template processing is tricky and it's // conceivable that we may change traversal patterns in the future, // mooting this guard. if (D2->isThisDeclarationADefinition() && !D2->isTemplateInstantiation()) { // The CompoundStmt range is the brace range. NestingRange = getCompoundStmtRange(D2->getBody()); } } else if (TagDecl *D2 = dyn_cast(D)) { Kind = D2->isThisDeclarationADefinition() ? "def" : "forward"; PrettyKind = "type"; if (D2->isThisDeclarationADefinition() && D2->getDefinition() == D2) { PeekRange = getTagPeekRange(D2); NestingRange = D2->getBraceRange(); } else { PeekRange = SourceRange(); } } else if (isa(D)) { Kind = "def"; PrettyKind = "type"; PeekRange = SourceRange(Loc, Loc); } else if (VarDecl *D2 = dyn_cast(D)) { if (D2->isLocalVarDeclOrParm()) { Flags = NoCrossref; } Kind = D2->isThisDeclarationADefinition() == VarDecl::DeclarationOnly ? "decl" : "def"; PrettyKind = "variable"; } else if (isa(D) || isa(D)) { Kind = "def"; PrettyKind = "namespace"; PeekRange = SourceRange(Loc, Loc); NamespaceDecl *D2 = dyn_cast(D); if (D2) { // There's no exposure of the left brace so we have to find it. NestingRange = SourceRange( findLeftBraceFromLoc(D2->isAnonymousNamespace() ? D2->getBeginLoc() : Loc), D2->getRBraceLoc()); } } else if (isa(D)) { Kind = "def"; PrettyKind = "field"; } else if (isa(D)) { Kind = "def"; PrettyKind = "enum constant"; } else { return true; } QualType qtype = QualType(); if (ValueDecl *D2 = dyn_cast(D)) { qtype = D2->getType(); } SourceRange CommentRange = getCommentRange(D); PeekRange = combineRanges(PeekRange, CommentRange); PeekRange = validateRange(Loc, PeekRange); NestingRange = validateRange(Loc, NestingRange); std::string Symbol = getMangledName(CurMangleContext, D); // In the case of destructors, Loc might point to the ~ character. In that // case we want to skip to the name of the class. However, Loc might also // point to other places that generate destructors, such as the use site of // a macro that expands to generate a destructor, or a lambda (apparently // clang 8 creates a destructor declaration for at least some lambdas). In // the former case we'll use the macro use site as the location, and in the // latter we'll just drop the declaration. if (isa(D)) { PrettyKind = "destructor"; const char *P = SM.getCharacterData(Loc); if (*P == '~') { // Advance Loc to the class name P++; unsigned Skipped = 1; while (*P == ' ' || *P == '\t' || *P == '\r' || *P == '\n') { P++; Skipped++; } Loc = Loc.getLocWithOffset(Skipped); } else { // See if the destructor is coming from a macro expansion P = SM.getCharacterData(expandedLoc); if (*P != '~') { // It's not return true; } // It is, so just use Loc as-is } } visitIdentifier(Kind, PrettyKind, getQualifiedName(D), SourceRange(Loc), Symbol, qtype, getContext(D), Flags, PeekRange, NestingRange); // In-progress structured info emission. if (RecordDecl *D2 = dyn_cast(D)) { if (D2->isThisDeclarationADefinition() && // XXX getASTRecordLayout doesn't work for dependent types, so we // avoid calling into emitStructuredInfo for now if there's a // dependent type or if we're in any kind of template context. This // should be re-evaluated once this is working for normal classes and // we can better evaluate what is useful. !D2->isDependentType() && !TemplateStack) { emitStructuredInfo(Loc, D2); } } if (FunctionDecl *D2 = dyn_cast(D)) { if ((D2->isThisDeclarationADefinition() || D2->isPure()) && // a clause at the top should have generalized and set wasTemplate so // it shouldn't be the case that isTemplateInstantiation() is true. !D2->isTemplateInstantiation() && !wasTemplate && !D2->isFunctionTemplateSpecialization() && !TemplateStack) { emitStructuredInfo(Loc, D2); } } if (FieldDecl *D2 = dyn_cast(D)) { if (!D2->isTemplated() && !TemplateStack) { emitStructuredInfo(Loc, D2); } } return true; } bool VisitCXXConstructExpr(CXXConstructExpr *E) { SourceLocation Loc = E->getBeginLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } FunctionDecl *Ctor = E->getConstructor(); if (Ctor->isTemplateInstantiation()) { Ctor = Ctor->getTemplateInstantiationPattern(); } std::string Mangled = getMangledName(CurMangleContext, Ctor); // FIXME: Need to do something different for list initialization. visitIdentifier("use", "constructor", getQualifiedName(Ctor), Loc, Mangled, QualType(), getContext(Loc)); return true; } bool VisitCallExpr(CallExpr *E) { Decl *Callee = E->getCalleeDecl(); if (!Callee || !FunctionDecl::classof(Callee)) { return true; } const NamedDecl *NamedCallee = dyn_cast(Callee); SourceLocation Loc; const FunctionDecl *F = dyn_cast(NamedCallee); if (F->isTemplateInstantiation()) { NamedCallee = F->getTemplateInstantiationPattern(); } std::string Mangled = getMangledName(CurMangleContext, NamedCallee); int Flags = 0; Expr *CalleeExpr = E->getCallee()->IgnoreParenImpCasts(); if (CXXOperatorCallExpr::classof(E)) { // Just take the first token. CXXOperatorCallExpr *Op = dyn_cast(E); Loc = Op->getOperatorLoc(); Flags |= NotIdentifierToken; } else if (MemberExpr::classof(CalleeExpr)) { MemberExpr *Member = dyn_cast(CalleeExpr); Loc = Member->getMemberLoc(); } else if (DeclRefExpr::classof(CalleeExpr)) { // We handle this in VisitDeclRefExpr. return true; } else { return true; } normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } visitIdentifier("use", "function", getQualifiedName(NamedCallee), Loc, Mangled, E->getCallReturnType(*AstContext), getContext(Loc), Flags); return true; } bool VisitTagTypeLoc(TagTypeLoc L) { SourceLocation Loc = L.getBeginLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } TagDecl *Decl = L.getDecl(); std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled, L.getType(), getContext(Loc)); return true; } bool VisitTypedefTypeLoc(TypedefTypeLoc L) { SourceLocation Loc = L.getBeginLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } NamedDecl *Decl = L.getTypedefNameDecl(); std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled, L.getType(), getContext(Loc)); return true; } bool VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc L) { SourceLocation Loc = L.getBeginLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } NamedDecl *Decl = L.getDecl(); std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled, L.getType(), getContext(Loc)); return true; } bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) { SourceLocation Loc = L.getBeginLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } TemplateDecl *Td = L.getTypePtr()->getTemplateName().getAsTemplateDecl(); if (ClassTemplateDecl *D = dyn_cast(Td)) { NamedDecl *Decl = D->getTemplatedDecl(); std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled, QualType(), getContext(Loc)); } else if (TypeAliasTemplateDecl *D = dyn_cast(Td)) { NamedDecl *Decl = D->getTemplatedDecl(); std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled, QualType(), getContext(Loc)); } return true; } bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) { SourceLocation Loc = L.getNameLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } for (const NamedDecl *D : Resolver->resolveDependentNameType(L.getTypePtr())) { visitHeuristicResult(Loc, D); } return true; } bool VisitDeclRefExpr(DeclRefExpr *E) { SourceLocation Loc = E->getExprLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } if (E->hasQualifier()) { Loc = E->getNameInfo().getLoc(); normalizeLocation(&Loc); } NamedDecl *Decl = E->getDecl(); if (const VarDecl *D2 = dyn_cast(Decl)) { int Flags = 0; if (D2->isLocalVarDeclOrParm()) { Flags = NoCrossref; } std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "variable", getQualifiedName(Decl), Loc, Mangled, D2->getType(), getContext(Loc), Flags); } else if (isa(Decl)) { const FunctionDecl *F = dyn_cast(Decl); if (F->isTemplateInstantiation()) { Decl = F->getTemplateInstantiationPattern(); } std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "function", getQualifiedName(Decl), Loc, Mangled, E->getType(), getContext(Loc)); } else if (isa(Decl)) { std::string Mangled = getMangledName(CurMangleContext, Decl); visitIdentifier("use", "enum", getQualifiedName(Decl), Loc, Mangled, E->getType(), getContext(Loc)); } return true; } bool VisitCXXConstructorDecl(CXXConstructorDecl *D) { if (!isInterestingLocation(D->getLocation())) { return true; } for (CXXConstructorDecl::init_const_iterator It = D->init_begin(); It != D->init_end(); ++It) { const CXXCtorInitializer *Ci = *It; if (!Ci->getMember() || !Ci->isWritten()) { continue; } SourceLocation Loc = Ci->getMemberLocation(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { continue; } FieldDecl *Member = Ci->getMember(); std::string Mangled = getMangledName(CurMangleContext, Member); visitIdentifier("use", "field", getQualifiedName(Member), Loc, Mangled, Member->getType(), getContext(D)); } return true; } bool VisitMemberExpr(MemberExpr *E) { SourceLocation Loc = E->getExprLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } ValueDecl *Decl = E->getMemberDecl(); if (FieldDecl *Field = dyn_cast(Decl)) { std::string Mangled = getMangledName(CurMangleContext, Field); visitIdentifier("use", "field", getQualifiedName(Field), Loc, Mangled, Field->getType(), getContext(Loc)); } return true; } // Helper function for producing heuristic results for usages in dependent // code. These should be distinguished from concrete results (obtained for // dependent code using the AutoTemplateContext machinery) once bug 1833552 is // fixed. // We don't expect this method to be intentionally called multiple times for // a given (Loc, NamedDecl) pair because our callers should be mutually // exclusive AST node types. However, it's fine if this method is called // multiple time for a given pair because we explicitly de-duplicate records // with an identical string representation (which is a good reason to have // this helper, as it ensures identical representations). void visitHeuristicResult(SourceLocation Loc, const NamedDecl *ND) { if (const TemplateDecl *TD = dyn_cast(ND)) { ND = TD->getTemplatedDecl(); } QualType MaybeType; const char *SyntaxKind = nullptr; if (const FunctionDecl *F = dyn_cast(ND)) { MaybeType = F->getType(); SyntaxKind = "function"; } else if (const FieldDecl *F = dyn_cast(ND)) { MaybeType = F->getType(); SyntaxKind = "field"; } else if (const EnumConstantDecl *E = dyn_cast(ND)) { MaybeType = E->getType(); SyntaxKind = "enum"; } else if (const TypedefNameDecl *T = dyn_cast(ND)) { MaybeType = T->getUnderlyingType(); SyntaxKind = "type"; } if (SyntaxKind) { std::string Mangled = getMangledName(CurMangleContext, ND); visitIdentifier("use", SyntaxKind, getQualifiedName(ND), Loc, Mangled, MaybeType, getContext(Loc)); } } bool VisitOverloadExpr(OverloadExpr *E) { SourceLocation Loc = E->getExprLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } for (auto *Candidate : E->decls()) { visitHeuristicResult(Loc, Candidate); } return true; } bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) { SourceLocation Loc = E->getMemberLoc(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } // If possible, provide a heuristic result without instantiation. for (const NamedDecl *D : Resolver->resolveMemberExpr(E)) { visitHeuristicResult(Loc, D); } // Also record this location so that if we have instantiations, we can // gather more accurate results from them. if (TemplateStack) { TemplateStack->visitDependent(Loc); } return true; } bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) { SourceLocation Loc = E->getLocation(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return true; } for (const NamedDecl *D : Resolver->resolveDeclRefExpr(E)) { visitHeuristicResult(Loc, D); } return true; } void enterSourceFile(SourceLocation Loc) { normalizeLocation(&Loc); FileInfo* newFile = getFileInfo(Loc); if (!newFile->Interesting) { return; } FileType type = newFile->Generated ? FileType::Generated : FileType::Source; std::string symbol = std::string("FILE_") + mangleFile(newFile->Realname, type); // We use an explicit zero-length source range at the start of the file. If we // don't set the LocRangeEndValid flag, the visitIdentifier code will use the // entire first token, which could be e.g. a long multiline-comment. visitIdentifier("def", "file", newFile->Realname, SourceRange(Loc), symbol, QualType(), Context(), NotIdentifierToken | LocRangeEndValid); } void inclusionDirective(SourceRange FileNameRange, const FileEntry* File) { std::string includedFile(File->tryGetRealPathName()); FileType type = relativizePath(includedFile); if (type == FileType::Unknown) { return; } std::string symbol = std::string("FILE_") + mangleFile(includedFile, type); visitIdentifier("use", "file", includedFile, FileNameRange, symbol, QualType(), Context(), NotIdentifierToken | LocRangeEndValid); } void macroDefined(const Token &Tok, const MacroDirective *Macro) { if (Macro->getMacroInfo()->isBuiltinMacro()) { return; } SourceLocation Loc = Tok.getLocation(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return; } IdentifierInfo *Ident = Tok.getIdentifierInfo(); if (Ident) { std::string Mangled = std::string("M_") + mangleLocation(Loc, std::string(Ident->getName())); visitIdentifier("def", "macro", Ident->getName(), Loc, Mangled); } } void macroUsed(const Token &Tok, const MacroInfo *Macro) { if (!Macro) { return; } if (Macro->isBuiltinMacro()) { return; } SourceLocation Loc = Tok.getLocation(); normalizeLocation(&Loc); if (!isInterestingLocation(Loc)) { return; } IdentifierInfo *Ident = Tok.getIdentifierInfo(); if (Ident) { std::string Mangled = std::string("M_") + mangleLocation(Macro->getDefinitionLoc(), std::string(Ident->getName())); visitIdentifier("use", "macro", Ident->getName(), Loc, Mangled); } } }; void PreprocessorHook::FileChanged(SourceLocation Loc, FileChangeReason Reason, SrcMgr::CharacteristicKind FileType, FileID PrevFID = FileID()) { switch (Reason) { case PPCallbacks::RenameFile: case PPCallbacks::SystemHeaderPragma: // Don't care about these, since we want the actual on-disk filenames break; case PPCallbacks::EnterFile: Indexer->enterSourceFile(Loc); break; case PPCallbacks::ExitFile: // Don't care about exiting files break; } } void PreprocessorHook::InclusionDirective(SourceLocation HashLoc, const Token &IncludeTok, StringRef FileName, bool IsAngled, CharSourceRange FileNameRange, #if CLANG_VERSION_MAJOR >= 16 OptionalFileEntryRef File, #elif CLANG_VERSION_MAJOR >= 15 Optional File, #else const FileEntry *File, #endif StringRef SearchPath, StringRef RelativePath, const Module *Imported, SrcMgr::CharacteristicKind FileType) { #if CLANG_VERSION_MAJOR >= 15 if (!File) { return; } Indexer->inclusionDirective(FileNameRange.getAsRange(), &File->getFileEntry()); #else Indexer->inclusionDirective(FileNameRange.getAsRange(), File); #endif } void PreprocessorHook::MacroDefined(const Token &Tok, const MacroDirective *Md) { Indexer->macroDefined(Tok, Md); } void PreprocessorHook::MacroExpands(const Token &Tok, const MacroDefinition &Md, SourceRange Range, const MacroArgs *Ma) { Indexer->macroUsed(Tok, Md.getMacroInfo()); } void PreprocessorHook::MacroUndefined(const Token &Tok, const MacroDefinition &Md, const MacroDirective *Undef) { Indexer->macroUsed(Tok, Md.getMacroInfo()); } void PreprocessorHook::Defined(const Token &Tok, const MacroDefinition &Md, SourceRange Range) { Indexer->macroUsed(Tok, Md.getMacroInfo()); } void PreprocessorHook::Ifdef(SourceLocation Loc, const Token &Tok, const MacroDefinition &Md) { Indexer->macroUsed(Tok, Md.getMacroInfo()); } void PreprocessorHook::Ifndef(SourceLocation Loc, const Token &Tok, const MacroDefinition &Md) { Indexer->macroUsed(Tok, Md.getMacroInfo()); } class IndexAction : public PluginASTAction { protected: std::unique_ptr CreateASTConsumer(CompilerInstance &CI, llvm::StringRef F) { return make_unique(CI); } bool ParseArgs(const CompilerInstance &CI, const std::vector &Args) { if (Args.size() != 3) { DiagnosticsEngine &D = CI.getDiagnostics(); unsigned DiagID = D.getCustomDiagID( DiagnosticsEngine::Error, "Need arguments for the source, output, and object directories"); D.Report(DiagID); return false; } // Load our directories Srcdir = getAbsolutePath(Args[0]); if (Srcdir.empty()) { DiagnosticsEngine &D = CI.getDiagnostics(); unsigned DiagID = D.getCustomDiagID( DiagnosticsEngine::Error, "Source directory '%0' does not exist"); D.Report(DiagID) << Args[0]; return false; } ensurePath(Args[1] + PATHSEP_STRING); Outdir = getAbsolutePath(Args[1]); Outdir += PATHSEP_STRING; Objdir = getAbsolutePath(Args[2]); if (Objdir.empty()) { DiagnosticsEngine &D = CI.getDiagnostics(); unsigned DiagID = D.getCustomDiagID(DiagnosticsEngine::Error, "Objdir '%0' does not exist"); D.Report(DiagID) << Args[2]; return false; } Objdir += PATHSEP_STRING; printf("MOZSEARCH: %s %s %s\n", Srcdir.c_str(), Outdir.c_str(), Objdir.c_str()); return true; } void printHelp(llvm::raw_ostream &Ros) { Ros << "Help for mozsearch plugin goes here\n"; } }; static FrontendPluginRegistry::Add Y("mozsearch-index", "create the mozsearch index database");