/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ var pv = function () { /** * @namespace The Protovis namespace, pv. All public methods and fields * should be registered on this object. Note that core Protovis source is * surrounded by an anonymous function, so any other declared globals will not * be visible outside of core methods. This also allows multiple versions of * Protovis to coexist, since each version will see their own pv * namespace. */ var pv = {}; /** * Returns a prototype object suitable for extending the given class * f. Rather than constructing a new instance of f to serve as * the prototype (which unnecessarily runs the constructor on the created * prototype object, potentially polluting it), an anonymous function is * generated internally that shares the same prototype: * *
function g() {}
 * g.prototype = f.prototype;
 * return new g();
* * For more details, see Douglas Crockford's essay on prototypal inheritance. * * @param {function} f a constructor. * @returns a suitable prototype object. * @see Douglas Crockford's essay on prototypal * inheritance. */ pv.extend = function(f) { function g() {} g.prototype = f.prototype; return new g(); }; /** * Returns the passed-in argument, x; the identity function. This method * is provided for convenience since it is used as the default behavior for a * number of property functions. * * @param x a value. * @returns the value x. */ pv.identity = function(x) { return x; }; /** * Returns an array of numbers, starting at start, incrementing by * step, until stop is reached. The stop value is exclusive. If * only a single argument is specified, this value is interpreted as the * stop value, with the start value as zero. If only two arguments * are specified, the step value is implied to be one. * *

The method is modeled after the built-in range method from * Python. See the Python documentation for more details. * * @see Python range. * @param {number} [start] the start value. * @param {number} stop the stop value. * @param {number} [step] the step value. * @returns {number[]} an array of numbers. */ pv.range = function(start, stop, step) { if (arguments.length == 1) { stop = start; start = 0; } if (step == undefined) step = 1; else if (!step) throw new Error("step must be non-zero"); var array = [], i = 0, j; if (step < 0) { while ((j = start + step * i++) > stop) { array.push(j); } } else { while ((j = start + step * i++) < stop) { array.push(j); } } return array; }; /** * Given two arrays a and b, returns an array of all possible * pairs of elements [ai, bj]. The outer loop is on array * a, while the inner loop is on b, such that the order of * returned elements is [a0, b0], [a0, * b1], ... [a0, bm], [a1, * b0], [a1, b1], ... [a1, * bm], ... [an, bm]. If either array is empty, * an empty array is returned. * * @param {array} a an array. * @param {array} b an array. * @returns {array} an array of pairs of elements in a and b. */ pv.cross = function(a, b) { var array = []; for (var i = 0, n = a.length, m = b.length; i < n; i++) { for (var j = 0, x = a[i]; j < m; j++) { array.push([x, b[j]]); } } return array; }; /** * Given the specified array of arrays, concatenates the arrays into a * single array. If the individual arrays are explicitly known, an alternative * to blend is to use JavaScript's concat method directly. These two * equivalent expressions:

return [1, 2, 3, "a", "b", "c"]. * * @param {array[]} arrays an array of arrays. * @returns {array} an array containing all the elements of each array in * arrays. */ pv.blend = function(arrays) { return Array.prototype.concat.apply([], arrays); }; /** * Returns all of the property names (keys) of the specified object (a map). The * order of the returned array is not defined. * * @param map an object. * @returns {string[]} an array of strings corresponding to the keys. * @see #entries */ pv.keys = function(map) { var array = []; for (var key in map) { array.push(key); } return array; }; /** * Returns all of the entries (key-value pairs) of the specified object (a * map). The order of the returned array is not defined. Each key-value pair is * represented as an object with key and value attributes, * e.g., {key: "foo", value: 42}. * * @param map an object. * @returns {array} an array of key-value pairs corresponding to the keys. */ pv.entries = function(map) { var array = []; for (var key in map) { array.push({ key: key, value: map[key] }); } return array; }; /** * Returns all of the values (attribute values) of the specified object (a * map). The order of the returned array is not defined. * * @param map an object. * @returns {array} an array of objects corresponding to the values. * @see #entries */ pv.values = function(map) { var array = []; for (var key in map) { array.push(map[key]); } return array; }; /** * Returns a normalized copy of the specified array, such that the sum of the * returned elements sum to one. If the specified array is not an array of * numbers, an optional accessor function f can be specified to map the * elements to numbers. For example, if array is an array of objects, * and each object has a numeric property "foo", the expression * *
pv.normalize(array, function(d) d.foo)
* * returns a normalized array on the "foo" property. If an accessor function is * not specified, the identity function is used. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number[]} an array of numbers that sums to one. */ pv.normalize = function(array, f) { if (!f) f = pv.identity; var sum = pv.sum(array, f); return array.map(function(d) { return f(d) / sum; }); }; /** * Returns the sum of the specified array. If the specified array is not an * array of numbers, an optional accessor function f can be specified * to map the elements to numbers. See {@link #normalize} for an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the sum of the specified array. */ pv.sum = function(array, f) { if (!f) f = pv.identity; return pv.reduce(array, function(p, d) { return p + f(d); }, 0); }; /** * Returns the maximum value of the specified array. If the specified array is * not an array of numbers, an optional accessor function f can be * specified to map the elements to numbers. See {@link #normalize} for an * example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the maximum value of the specified array. */ pv.max = function(array, f) { if (!f) f = pv.identity; return pv.reduce(array, function(p, d) { return Math.max(p, f(d)); }, -Infinity); }; /** * Returns the index of the maximum value of the specified array. If the * specified array is not an array of numbers, an optional accessor function * f can be specified to map the elements to numbers. See * {@link #normalize} for an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the index of the maximum value of the specified array. */ pv.max.index = function(array, f) { if (!f) f = pv.identity; var maxi = -1, maxx = -Infinity; for (var i = 0; i < array.length; i++) { var x = f(array[i]); if (x > maxx) { maxx = x; maxi = i; } } return maxi; } /** * Returns the minimum value of the specified array of numbers. If the specified * array is not an array of numbers, an optional accessor function f * can be specified to map the elements to numbers. See {@link #normalize} for * an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the minimum value of the specified array. */ pv.min = function(array, f) { if (!f) f = pv.identity; return pv.reduce(array, function(p, d) { return Math.min(p, f(d)); }, Infinity); }; /** * Returns the index of the minimum value of the specified array. If the * specified array is not an array of numbers, an optional accessor function * f can be specified to map the elements to numbers. See * {@link #normalize} for an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the index of the minimum value of the specified array. */ pv.min.index = function(array, f) { if (!f) f = pv.identity; var mini = -1, minx = Infinity; for (var i = 0; i < array.length; i++) { var x = f(array[i]); if (x < minx) { minx = x; mini = i; } } return mini; } /** * Returns the arithmetic mean, or average, of the specified array. If the * specified array is not an array of numbers, an optional accessor function * f can be specified to map the elements to numbers. See * {@link #normalize} for an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the mean of the specified array. */ pv.mean = function(array, f) { return pv.sum(array, f) / array.length; }; /** * Returns the median of the specified array. If the specified array is not an * array of numbers, an optional accessor function f can be specified * to map the elements to numbers. See {@link #normalize} for an example. * * @param {array} array an array of objects, or numbers. * @param {function} [f] an optional accessor function. * @returns {number} the median of the specified array. */ pv.median = function(array, f) { if (!f) f = pv.identity; array = array.map(f).sort(function(a, b) { return a - b; }); if (array.length % 2) return array[Math.floor(array.length / 2)]; var i = array.length / 2; return (array[i - 1] + array[i]) / 2; }; if (/\[native code\]/.test(Array.prototype.reduce)) { /** * Applies the specified function f against an accumulator and each * value of the specified array (from left-ot-right) so as to reduce it to a * single value. * *

Array reduce was added in JavaScript 1.8. This implementation uses the native * method if provided; otherwise we use our own implementation derived from the * JavaScript documentation. Note that we don't want to add it to the Array * prototype directly because this breaks certain (bad) for loop idioms. * * @see Array.reduce. * @param {array} array an array. * @param {function} [f] a callback function to execute on each value in the array. * @param [v] the object to use as the first argument to the first callback. * @returns the reduced value. */ pv.reduce = function(array, f, v) { var p = Array.prototype; return p.reduce.apply(array, p.slice.call(arguments, 1)); }; } else { pv.reduce = function(array, f, v) { var len = array.length; if (!len && (arguments.length == 2)) { throw new Error(); } var i = 0; if (arguments.length < 3) { while (true) { if (i in array) { v = array[i++]; break; } if (++i >= len) { throw new Error(); } } } for (; i < len; i++) { if (i in array) { v = f.call(null, v, array[i], i, array); } } return v; }; }; /** * Returns a map constructed from the specified keys, using the function * f to compute the value for each key. The arguments to the value * function are the same as those used in the built-in array map * function: the key, the index, and the array itself. The callback is invoked * only for indexes of the array which have assigned values; it is not invoked * for indexes which have been deleted or which have never been assigned values. * *

For example, this expression creates a map from strings to string length: * *

pv.dict(["one", "three", "seventeen"], function(s) s.length)
* * The returned value is {one: 3, three: 5, seventeen: 9}. * * @see Array.map. * @param {array} keys an array. * @param {function} f a value function. * @returns a map from keys to values. */ pv.dict = function(keys, f) { var m = {}; for (var i = 0; i < keys.length; i++) { if (i in keys) { var k = keys[i]; m[k] = f.call(null, k, i, keys); } } return m; }; /** * Returns a permutation of the specified array, using the specified array of * indexes. The returned array contains the corresponding element in * array for each index in indexes, in order. For example, * *
pv.permute(["a", "b", "c"], [1, 2, 0])
* * returns ["b", "c", "a"]. It is acceptable for the array of indexes * to be a different length from the array of elements, and for indexes to be * duplicated or omitted. The optional accessor function f can be used * to perform a simultaneous mapping of the array elements. * * @param {array} array an array. * @param {number[]} indexes an array of indexes into array. * @param {function} [f] an optional accessor function. * @returns {array} an array of elements from array; a permutation. */ pv.permute = function(array, indexes, f) { if (!f) f = pv.identity; var p = new Array(indexes.length); indexes.forEach(function(j, i) { p[i] = f(array[j]); }); return p; }; /** * Returns a map from key to index for the specified keys array. For * example, * *
pv.numerate(["a", "b", "c"])
* * returns {a: 0, b: 1, c: 2}. Note that since JavaScript maps only * support string keys, keys must contain strings, or other values that * naturally map to distinct string values. Alternatively, an optional accessor * function f can be specified to compute the string key for the given * element. * * @param {array} keys an array, usually of string keys. * @param {function} [f] an optional key function. * @returns a map from key to index. */ pv.numerate = function(keys, f) { if (!f) f = pv.identity; var map = {}; keys.forEach(function(x, i) { map[f(x)] = i; }); return map; }; /** * The comparator function for natural order. This can be used in conjunction with * the built-in array sort method to sort elements by their natural * order, ascending. Note that if no comparator function is specified to the * built-in sort method, the default order is lexicographic, not * natural! * * @see Array.sort. * @param a an element to compare. * @param b an element to compare. * @returns {number} negative if a < b; positive if a > b; otherwise 0. */ pv.naturalOrder = function(a, b) { return (a < b) ? -1 : ((a > b) ? 1 : 0); }; /** * The comparator function for reverse natural order. This can be used in * conjunction with the built-in array sort method to sort elements by * their natural order, descending. Note that if no comparator function is * specified to the built-in sort method, the default order is * lexicographic, not natural! * * @see #naturalOrder * @param a an element to compare. * @param b an element to compare. * @returns {number} negative if a < b; positive if a > b; otherwise 0. */ pv.reverseOrder = function(b, a) { return (a < b) ? -1 : ((a > b) ? 1 : 0); }; /** @namespace Namespace constants for SVG, XMLNS, and XLINK. */ pv.ns = { /** * The SVG namespace, "http://www.w3.org/2000/svg". * * @type string */ svg: "http://www.w3.org/2000/svg", /** * The XMLNS namespace, "http://www.w3.org/2000/xmlns". * * @type string */ xmlns: "http://www.w3.org/2000/xmlns", /** * The XLINK namespace, "http://www.w3.org/1999/xlink". * * @type string */ xlink: "http://www.w3.org/1999/xlink" }; /** @namespace Protovis major and minor version numbers. */ pv.version = { /** * The major version number. * * @type number */ major: 2, /** * The minor version number. * * @type number */ minor: 6 }; /** * Returns the {@link pv.Color} for the specified color format string. Colors * may have an associated opacity, or alpha channel. Color formats are specified * by CSS Color Modular Level 3, using either in RGB or HSL color space. For * example:The SVG 1.0 color keywords names are also supported, such as "aliceblue" * and yellowgreen". The "transparent" keyword is also supported for a * fully-transparent color. * *

If the format argument is already an instance of Color, * the argument is returned with no further processing. * * @param {string} format the color specification string, e.g., "#f00". * @returns {pv.Color} the corresponding Color. * @see SVG color keywords. * @see CSS3 color module. */ pv.color = function(format) { if (!format || (format == "transparent")) { return new pv.Color.Rgb(0, 0, 0, 0); } if (format instanceof pv.Color) { return format; } /* Handle hsl, rgb. */ var m1 = /([a-z]+)\((.*)\)/i.exec(format); if (m1) { var m2 = m1[2].split(","), a = 1; switch (m1[1]) { case "hsla": case "rgba": { a = parseFloat(m2[3]); break; } } switch (m1[1]) { case "hsla": case "hsl": { var h = parseFloat(m2[0]), // degrees s = parseFloat(m2[1]) / 100, // percentage l = parseFloat(m2[2]) / 100; // percentage return (new pv.Color.Hsl(h, s, l, a)).rgb(); } case "rgba": case "rgb": { let parse = function(c) { // either integer or percentage let f = parseFloat(c); return (c[c.length - 1] == '%') ? Math.round(f * 2.55) : f; }; let r = parse(m2[0]), g = parse(m2[1]), b = parse(m2[2]); return new pv.Color.Rgb(r, g, b, a); } } } /* Otherwise, assume named colors. TODO allow lazy conversion to RGB. */ return new pv.Color(format, 1); }; /** * Constructs a color with the specified color format string and opacity. This * constructor should not be invoked directly; use {@link pv.color} instead. * * @class Represents an abstract (possibly translucent) color. The color is * divided into two parts: the color attribute, an opaque color format * string, and the opacity attribute, a float in [0, 1]. The color * space is dependent on the implementing class; all colors support the * {@link #rgb} method to convert to RGB color space for interpolation. * *

See also the Color guide. * * @param {string} color an opaque color format string, such as "#f00". * @param {number} opacity the opacity, in [0,1]. * @see pv.color */ pv.Color = function(color, opacity) { /** * An opaque color format string, such as "#f00". * * @type string * @see SVG color keywords. * @see CSS3 color module. */ this.color = color; /** * The opacity, a float in [0, 1]. * * @type number */ this.opacity = opacity; }; /** * Constructs a new RGB color with the specified channel values. * * @class Represents a color in RGB space. * * @param {number} r the red channel, an integer in [0,255]. * @param {number} g the green channel, an integer in [0,255]. * @param {number} b the blue channel, an integer in [0,255]. * @param {number} a the alpha channel, a float in [0,1]. * @extends pv.Color */ pv.Color.Rgb = function(r, g, b, a) { pv.Color.call(this, a ? ("rgb(" + r + "," + g + "," + b + ")") : "none", a); /** * The red channel, an integer in [0, 255]. * * @type number */ this.r = r; /** * The green channel, an integer in [0, 255]. * * @type number */ this.g = g; /** * The blue channel, an integer in [0, 255]. * * @type number */ this.b = b; /** * The alpha channel, a float in [0, 1]. * * @type number */ this.a = a; }; pv.Color.Rgb.prototype = pv.extend(pv.Color); /** * Returns the RGB color equivalent to this color. This method is abstract and * must be implemented by subclasses. * * @returns {pv.Color.Rgb} an RGB color. * @function * @name pv.Color.prototype.rgb */ /** * Returns this. * * @returns {pv.Color.Rgb} this. */ pv.Color.Rgb.prototype.rgb = function() { return this; }; /** * Constructs a new HSL color with the specified values. * * @class Represents a color in HSL space. * * @param {number} h the hue, an integer in [0, 360]. * @param {number} s the saturation, a float in [0, 1]. * @param {number} l the lightness, a float in [0, 1]. * @param {number} a the opacity, a float in [0, 1]. * @extends pv.Color */ pv.Color.Hsl = function(h, s, l, a) { pv.Color.call(this, "hsl(" + h + "," + (s * 100) + "%," + (l * 100) + "%)", a); /** * The hue, an integer in [0, 360]. * * @type number */ this.h = h; /** * The saturation, a float in [0, 1]. * * @type number */ this.s = s; /** * The lightness, a float in [0, 1]. * * @type number */ this.l = l; /** * The opacity, a float in [0, 1]. * * @type number */ this.a = a; }; pv.Color.Hsl.prototype = pv.extend(pv.Color); /** * Returns the RGB color equivalent to this HSL color. * * @returns {pv.Color.Rgb} an RGB color. */ pv.Color.Hsl.prototype.rgb = function() { var h = this.h, s = this.s, l = this.l; /* Some simple corrections for h, s and l. */ h = h % 360; if (h < 0) h += 360; s = Math.max(0, Math.min(s, 1)); l = Math.max(0, Math.min(l, 1)); /* From FvD 13.37 */ var m2 = (l < .5) ? (l * (l + s)) : (l + s - l * s); var m1 = 2 * l - m2; if (s == 0) { return new rgb(l, l, l); } function v(h) { if (h > 360) h -= 360; else if (h < 0) h += 360; if (h < 60) return m1 + (m2 - m1) * h / 60; else if (h < 180) return m2; else if (h < 240) return m1 + (m2 - m1) * (240 - h) / 60; return m1; } function vv(h) { return Math.round(v(h) * 255); } return new pv.Color.Rgb(vv(h + 120), vv(h), vv(h - 120), this.a); }; /** * Returns a new categorical color encoding using the specified colors. The * arguments to this method are an array of colors; see {@link pv.color}. For * example, to create a categorical color encoding using the species * attribute: * *

pv.colors("red", "green", "blue").by(function(d) d.species)
* * The result of this expression can be used as a fill- or stroke-style * property. This assumes that the data's species attribute is a * string. * * @returns {pv.Colors} a new categorical color encoding. * @param {string} colors... categorical colors. * @see pv.Colors */ pv.colors = function() { return pv.Colors(arguments); }; /** * Returns a new categorical color encoding using the specified colors. This * constructor is typically not used directly; use {@link pv.colors} instead. * * @class Represents a categorical color encoding using the specified colors. * The returned object can be used as a property function; the appropriate * categorical color will be returned by evaluating the current datum, or * through whatever other means the encoding uses to determine uniqueness, per * the {@link #by} method. The default implementation allocates a distinct color * per {@link pv.Mark#childIndex}. * * @param {string[]} values an array of colors; see {@link pv.color}. * @returns {pv.Colors} a new categorical color encoding. * @see pv.colors */ pv.Colors = function(values) { /** * @ignore Each set of colors has an associated (numeric) ID that is used to * store a cache of assigned colors on the root scene. As unique keys are * discovered, a new color is allocated and assigned to the given key. * * The key function determines how uniqueness is determined. By default, * colors are assigned using the mark's childIndex, such that each new mark * added is given a new color. Note that derived marks will not inherit the * exact color of the prototype, but instead inherit the set of colors. */ function colors(keyf) { var id = pv.Colors.count++; function color() { var key = keyf.apply(this, this.root.scene.data); var state = this.root.scene.colors; if (!state) this.root.scene.colors = state = {}; if (!state[id]) state[id] = { count: 0 }; var color = state[id][key]; if (color == undefined) { color = state[id][key] = values[state[id].count++ % values.length]; } return color; } return color; } var c = colors(function() { return this.childIndex; }); /** * Allows a new set of colors to be derived from the current set using a * different key function. For instance, to color marks using the value of the * field "foo", say: * *
pv.Colors.category10.by(function(d) d.foo)
* * For convenience, "index" and "parent.index" keys are predefined. * * @param {function} v the new key function. * @name pv.Colors.prototype.by * @function * @returns {pv.Colors} a new color scheme */ c.by = colors; /** * A derivative color encoding using the same colors, but allocating unique * colors based on the mark index. * * @name pv.Colors.prototype.unique * @type pv.Colors */ c.unique = c.by(function() { return this.index; }); /** * A derivative color encoding using the same colors, but allocating unique * colors based on the parent index. * * @name pv.Colors.prototype.parent * @type pv.Colors */ c.parent = c.by(function() { return this.parent.index; }); /** * The underlying array of colors. * * @type string[] * @name pv.Colors.prototype.values */ c.values = values; return c; }; /** @private */ pv.Colors.count = 0; /* From Flare. */ /** * A 10-color scheme. * * @type pv.Colors */ pv.Colors.category10 = pv.colors( "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf" ); /** * A 20-color scheme. * * @type pv.Colors */ pv.Colors.category20 = pv.colors( "#1f77b4", "#aec7e8", "#ff7f0e", "#ffbb78", "#2ca02c", "#98df8a", "#d62728", "#ff9896", "#9467bd", "#c5b0d5", "#8c564b", "#c49c94", "#e377c2", "#f7b6d2", "#7f7f7f", "#c7c7c7", "#bcbd22", "#dbdb8d", "#17becf", "#9edae5" ); /** * An alternative 19-color scheme. * * @type pv.Colors */ pv.Colors.category19 = pv.colors( "#9c9ede", "#7375b5", "#4a5584", "#cedb9c", "#b5cf6b", "#8ca252", "#637939", "#e7cb94", "#e7ba52", "#bd9e39", "#8c6d31", "#e7969c", "#d6616b", "#ad494a", "#843c39", "#de9ed6", "#ce6dbd", "#a55194", "#7b4173" ); // TODO support arbitrary color stops /** * Returns a linear color ramp from the specified start color to the * specified end color. The color arguments may be specified either as * strings or as {@link pv.Color}s. * * @param {string} start the start color; may be a pv.Color. * @param {string} end the end color; may be a pv.Color. * @returns {pv.Ramp} a color ramp from start to end. */ pv.ramp = function(start, end) { return pv.Ramp(pv.color(start), pv.color(end)); }; /** * Constructs a ramp from the specified start color to the specified end * color. This constructor should not be invoked directly; use {@link pv.ramp} * instead. * * @class Represents a linear color ramp from the specified start color * to the specified end color. Ramps can be used as property functions; * their behavior is equivalent to calling {@link #value}, passing in the * current datum as the sample point. If the data is not a float in [0, * 1], the {@link #by} method can be used to map the datum to a suitable sample * point. * * @extends Function * @param {pv.Color} start the start color. * @param {pv.Color} end the end color. * @see pv.ramp */ pv.Ramp = function(start, end) { var s = start.rgb(), e = end.rgb(), f = pv.identity; /** @ignore Property function. */ function ramp() { return value(f.apply(this, this.root.scene.data)); } /** @ignore Interpolates between start and end at value aT in [0,1]. */ function value(aT) { var t = Math.max(0, Math.min(1, aT)); var a = s.a * (1 - t) + e.a * t; if (a < 1e-5) a = 0; // avoid scientific notation return (s.a == 0) ? new pv.Color.Rgb(e.r, e.g, e.b, a) : ((e.a == 0) ? new pv.Color.Rgb(s.r, s.g, s.b, a) : new pv.Color.Rgb( Math.round(s.r * (1 - t) + e.r * t), Math.round(s.g * (1 - t) + e.g * t), Math.round(s.b * (1 - t) + e.b * t), a)); } /** * Sets the sample function to be the specified function v. * * @param {function} v the new sample function. * @name pv.Ramp.prototype.by * @function * @returns {pv.Ramp} this. */ ramp.by = function(v) { f = v; return this; }; /** * Returns the interpolated color at the specified sample point. * * @param {number} t the sample point in [0, 1]. * @name pv.Ramp.prototype.value * @function * @returns {pv.Color.Rgb} the interpolated color. */ ramp.value = value; return ramp; }; /** * Constructs a new mark with default properties. Marks, with the exception of * the root panel, are not typically constructed directly; instead, they are * added to a panel or an existing mark via {@link pv.Mark#add}. * * @class Represents a data-driven graphical mark. The Mark class is * the base class for all graphical marks in Protovis; it does not provide any * specific rendering functionality, but together with {@link Panel} establishes * the core framework. * *

Concrete mark types include familiar visual elements such as bars, lines * and labels. Although a bar mark may be used to construct a bar chart, marks * know nothing about charts; it is only through their specification and * composition that charts are produced. These building blocks permit many * combinatorial possibilities. * *

Marks are associated with data: a mark is generated once per * associated datum, mapping the datum to visual properties such as * position and color. Thus, a single mark specification represents a set of * visual elements that share the same data and visual encoding. The type of * mark defines the names of properties and their meaning. A property may be * static, ignoring the associated datum and returning a constant; or, it may be * dynamic, derived from the associated datum or index. Such dynamic encodings * can be specified succinctly using anonymous functions. Special properties * called event handlers can be registered to add interactivity. * *

While most properties are variable, some mark types, such as lines * and areas, generate a single visual element rather than a distinct visual * element per datum. With these marks, some properties may be fixed. * Fixed properties can vary per mark, but not per datum! These * properties are evaluated solely for the first (0-index) datum, and typically * are specified as a constant. However, it is valid to use a function if the * property varies between panels or is dynamically generated. * *

Protovis uses inheritance to simplify the specification of related * marks: a new mark can be derived from an existing mark, inheriting its * properties. The new mark can then override properties to specify new * behavior, potentially in terms of the old behavior. In this way, the old mark * serves as the prototype for the new mark. Most mark types share the * same basic properties for consistency and to facilitate inheritance. * *

See also the Protovis guide. */ pv.Mark = function() {}; /** * Returns the mark type name. Names should be lower case, with words separated * by hyphens. For example, the mark class FooBar should return * "foo-bar". * *

Note that this method is defined on the constructor, not on the prototype, * and thus is a static method. The constructor is accessible through the * {@link #type} field. * * @returns {string} the mark type name, such as "mark". */ pv.Mark.toString = function() { return "mark"; }; /** * Defines and registers a property method for the property with the given name. * This method should be called on a mark class prototype to define each exposed * property. (Note this refers to the JavaScript prototype, not the * Protovis mark prototype, which is the {@link #proto} field.) * *

The created property method supports several modes of invocation:

    * *
  1. If invoked with a Function argument, this function is evaluated * for each associated datum. The return value of the function is used as the * computed property value. The context of the function (this) is this * mark. The arguments to the function are the associated data of this mark and * any enclosing panels. For example, a linear encoding of numerical data to * height is specified as * *
    m.height(function(d) d * 100);
    * * The expression d * 100 will be evaluated for the height property of * each mark instance. This function is stored in the $height field. The * return value of the property method (e.g., m.height) is this mark * (m)).

    * *

  2. If invoked with a non-function argument, the property is treated as a * constant, and wrapped with an accessor function. This wrapper function is * stored in the equivalent internal ($-prefixed) field. The return * value of the property method (e.g., m.height) is this mark.

    * *

  3. If invoked from an event handler, the property is set to the specified * value on the current instance (i.e., the instance that triggered the event, * such as a mouse click). In this case, the value should be a constant and not * a function. The return value is this mark. For example, saying * *
    this.fillStyle("red").strokeStyle("black");
    * * from a "click" event handler will set the fill color to red, and the stroke * color to black, for any marks that are clicked.

    * *

  4. If invoked with no arguments, the computed property value for the current * mark instance in the scene graph is returned. This facilitates property * chaining, where one mark's properties are defined in terms of another's. * For example, to offset a mark's location from its prototype, you might say * *
    m.top(function() this.proto.top() + 10);
    * * Note that the index of the mark being evaluated (in the above example, * this.proto) is inherited from the Mark class and set by * this mark. So, if the fifth element's top property is being evaluated, the * fifth instance of this.proto will similarly be queried for the value * of its top property. If the mark being evaluated has a different number of * instances, or its data is unrelated, the behavior of this method is * undefined. In these cases it may be better to index the scene * explicitly to specify the exact instance. * *

Property names should follow standard JavaScript method naming * conventions, using lowerCamel-style capitalization. * *

In addition to creating the property method, every property is registered * in the {@link #properties} array on the prototype. Although this * array is an instance field, it is considered immutable and shared by all * instances of a given mark type. The properties array can be queried * to see if a mark type defines a particular property, such as width or height. * * @param {string} name the property name. */ pv.Mark.prototype.defineProperty = function(name) { if (!this.hasOwnProperty("properties")) { this.properties = (this.properties || []).concat(); } this.properties.push(name); this[name] = function(v) { if (arguments.length) { if (this.scene) { this.scene[this.index][name] = v; } else { this["$" + name] = (v instanceof Function) ? v : function() { return v; }; } return this; } return this.scene[this.index][name]; }; }; /** * The constructor; the mark type. This mark type may define default property * functions (see {@link #defaults}) that are used if the property is not * overridden by the mark or any of its prototypes. * * @type function */ pv.Mark.prototype.type = pv.Mark; /** * The mark prototype, possibly null, from which to inherit property * functions. The mark prototype is not necessarily of the same type as this * mark. Any properties defined on this mark will override properties inherited * either from the prototype or from the type-specific defaults. * * @type pv.Mark */ pv.Mark.prototype.proto = null; /** * The enclosing parent panel. The parent panel is generally null only for the * root panel; however, it is possible to create "offscreen" marks that are used * only for inheritance purposes. * * @type pv.Panel */ pv.Mark.prototype.parent = null; /** * The child index. -1 if the enclosing parent panel is null; otherwise, the * zero-based index of this mark into the parent panel's children array. * * @type number */ pv.Mark.prototype.childIndex = -1; /** * The mark index. The value of this field depends on which instance (i.e., * which element of the data array) is currently being evaluated. During the * build phase, the index is incremented over each datum; when handling events, * the index is set to the instance that triggered the event. * * @type number */ pv.Mark.prototype.index = -1; /** * The scene graph. The scene graph is an array of objects; each object (or * "node") corresponds to an instance of this mark and an element in the data * array. The scene graph can be traversed to lookup previously-evaluated * properties. * *

For instance, consider a stacked area chart. The bottom property of the * area can be defined using the cousin instance, which is the current * area instance in the previous instantiation of the parent panel. In this * sample code, * *

new pv.Panel()
 *     .width(150).height(150)
 *   .add(pv.Panel)
 *     .data([[1, 1.2, 1.7, 1.5, 1.7],
 *            [.5, 1, .8, 1.1, 1.3],
 *            [.2, .5, .8, .9, 1]])
 *   .add(pv.Area)
 *     .data(function(d) d)
 *     .bottom(function() {
 *         var c = this.cousin();
 *         return c ? (c.bottom + c.height) : 0;
 *       })
 *     .height(function(d) d * 40)
 *     .left(function() this.index * 35)
 *   .root.render();
* * the bottom property is computed based on the upper edge of the corresponding * datum in the previous series. The area's parent panel is instantiated once * per series, so the cousin refers to the previous (below) area mark. (Note * that the position of the upper edge is not the same as the top property, * which refers to the top margin: the distance from the top edge of the panel * to the top edge of the mark.) * * @see #first * @see #last * @see #sibling * @see #cousin */ pv.Mark.prototype.scene = null; /** * The root parent panel. This may be null for "offscreen" marks that are * created for inheritance purposes only. * * @type pv.Panel */ pv.Mark.prototype.root = null; /** * The data property; an array of objects. The size of the array determines the * number of marks that will be instantiated; each element in the array will be * passed to property functions to compute the property values. Typically, the * data property is specified as a constant array, such as * *
m.data([1, 2, 3, 4, 5]);
* * However, it is perfectly acceptable to define the data property as a * function. This function might compute the data dynamically, allowing * different data to be used per enclosing panel. For instance, in the stacked * area graph example (see {@link #scene}), the data function on the area mark * dereferences each series. * * @type array * @name pv.Mark.prototype.data */ pv.Mark.prototype.defineProperty("data"); /** * The visible property; a boolean determining whether or not the mark instance * is visible. If a mark instance is not visible, its other properties will not * be evaluated. Similarly, for panels no child marks will be rendered. * * @type boolean * @name pv.Mark.prototype.visible */ pv.Mark.prototype.defineProperty("visible"); /** * The left margin; the distance, in pixels, between the left edge of the * enclosing panel and the left edge of this mark. Note that in some cases this * property may be redundant with the right property, or with the conjunction of * right and width. * * @type number * @name pv.Mark.prototype.left */ pv.Mark.prototype.defineProperty("left"); /** * The right margin; the distance, in pixels, between the right edge of the * enclosing panel and the right edge of this mark. Note that in some cases this * property may be redundant with the left property, or with the conjunction of * left and width. * * @type number * @name pv.Mark.prototype.right */ pv.Mark.prototype.defineProperty("right"); /** * The top margin; the distance, in pixels, between the top edge of the * enclosing panel and the top edge of this mark. Note that in some cases this * property may be redundant with the bottom property, or with the conjunction * of bottom and height. * * @type number * @name pv.Mark.prototype.top */ pv.Mark.prototype.defineProperty("top"); /** * The bottom margin; the distance, in pixels, between the bottom edge of the * enclosing panel and the bottom edge of this mark. Note that in some cases * this property may be redundant with the top property, or with the conjunction * of top and height. * * @type number * @name pv.Mark.prototype.bottom */ pv.Mark.prototype.defineProperty("bottom"); /** * The cursor property; corresponds to the CSS cursor property. This is * typically used in conjunction with event handlers to indicate interactivity. * * @type string * @name pv.Mark.prototype.cursor * @see CSS2 cursor. */ pv.Mark.prototype.defineProperty("cursor"); /** * The title property; corresponds to the HTML/SVG title property, allowing the * general of simple plain text tooltips. * * @type string * @name pv.Mark.prototype.title */ pv.Mark.prototype.defineProperty("title"); /** * Default properties for all mark types. By default, the data array is a single * null element; if the data property is not specified, this causes each mark to * be instantiated as a singleton. The visible property is true by default. * * @type pv.Mark */ pv.Mark.defaults = new pv.Mark() .data([null]) .visible(true); /** * Sets the prototype of this mark to the specified mark. Any properties not * defined on this mark may be inherited from the specified prototype mark, or * its prototype, and so on. The prototype mark need not be the same type of * mark as this mark. (Note that for inheritance to be useful, properties with * the same name on different mark types should have equivalent meaning.) * * @param {pv.Mark} proto the new prototype. * @return {pv.Mark} this mark. */ pv.Mark.prototype.extend = function(proto) { this.proto = proto; return this; }; /** * Adds a new mark of the specified type to the enclosing parent panel, whilst * simultaneously setting the prototype of the new mark to be this mark. * * @param {function} type the type of mark to add; a constructor, such as * pv.Bar. * @return {pv.Mark} the new mark. */ pv.Mark.prototype.add = function(type) { return this.parent.add(type).extend(this); }; /** * Constructs a new mark anchor with default properties. * * @class Represents an anchor on a given mark. An anchor is itself a mark, but * without a visual representation. It serves only to provide useful default * properties that can be inherited by other marks. Each type of mark can define * any number of named anchors for convenience. If the concrete mark type does * not define an anchor implementation specifically, one will be inherited from * the mark's parent class. * *

For example, the bar mark provides anchors for its four sides: left, * right, top and bottom. Adding a label to the top anchor of a bar, * *

bar.anchor("top").add(pv.Label);
* * will render a text label on the top edge of the bar; the top anchor defines * the appropriate position properties (top and left), as well as text-rendering * properties for convenience (textAlign and textBaseline). * * @extends pv.Mark */ pv.Mark.Anchor = function() { pv.Mark.call(this); }; pv.Mark.Anchor.prototype = pv.extend(pv.Mark); /** * The anchor name. The set of supported anchor names is dependent on the * concrete mark type; see the mark type for details. For example, bars support * left, right, top and bottom anchors. * *

While anchor names are typically constants, the anchor name is a true * property, which means you can specify a function to compute the anchor name * dynamically. For instance, if you wanted to alternate top and bottom anchors, * saying * *

m.anchor(function() (this.index % 2) ? "top" : "bottom").add(pv.Dot);
* * would have the desired effect. * * @type string * @name pv.Mark.Anchor.prototype.name */ pv.Mark.Anchor.prototype.defineProperty("name"); /** * Returns an anchor with the specified name. While anchor names are typically * constants, the anchor name is a true property, which means you can specify a * function to compute the anchor name dynamically. See the * {@link pv.Mark.Anchor#name} property for details. * * @param {string} name the anchor name; either a string or a property function. * @returns {pv.Mark.Anchor} the new anchor. */ pv.Mark.prototype.anchor = function(name) { var anchorType = this.type; while (!anchorType.Anchor) { anchorType = anchorType.defaults.proto.type; } var anchor = new anchorType.Anchor().extend(this).name(name); anchor.parent = this.parent; anchor.type = this.type; return anchor; }; /** * Returns the anchor target of this mark, if it is derived from an anchor; * otherwise returns null. For example, if a label is derived from a bar anchor, * *
bar.anchor("top").add(pv.Label);
* * then property functions on the label can refer to the bar via the * anchorTarget method. This method is also useful for mark types * defining properties on custom anchors. * * @returns {pv.Mark} the anchor target of this mark; possibly null. */ pv.Mark.prototype.anchorTarget = function() { var target = this; while (!(target instanceof pv.Mark.Anchor)) { target = target.proto; if (!target) return null; } return target.proto; }; /** * Returns the first instance of this mark in the scene graph. This method can * only be called when the mark is bound to the scene graph (for example, from * an event handler, or within a property function). * * @returns a node in the scene graph. */ pv.Mark.prototype.first = function() { return this.scene[0]; }; /** * Returns the last instance of this mark in the scene graph. This method can * only be called when the mark is bound to the scene graph (for example, from * an event handler, or within a property function). In addition, note that mark * instances are built sequentially, so the last instance of this mark may not * yet be constructed. * * @returns a node in the scene graph. */ pv.Mark.prototype.last = function() { return this.scene[this.scene.length - 1]; }; /** * Returns the previous instance of this mark in the scene graph, or null if * this is the first instance. * * @returns a node in the scene graph, or null. */ pv.Mark.prototype.sibling = function() { return (this.index == 0) ? null : this.scene[this.index - 1]; }; /** * Returns the current instance in the scene graph of this mark, in the previous * instance of the enclsoing parent panel. May return null if this instance * could not be found. * * @returns a node in the scene graph, or null. */ pv.Mark.prototype.cousin = function() { var p = this.parent, s = p && p.sibling(); return (s && s.children) ? s.children[this.childIndex][this.index] : null; }; /** * Renders this mark, including recursively rendering all child marks if this is * a panel. Rendering consists of two phases: build and update. In * the future, the update phase could conceivably be decoupled to allow * different rendering engines. Similarly, future work is needed to allow * dynamic rebuilding based on interaction. (For example, dynamic expansion of a * tree visualization.) * *

In the build phase (see {@link #build}), all properties are evaluated, and * the scene graph is generated. However, nothing is rendered. * *

In the update phase (see {@link #update}), the mark is rendered by * creating and updating elements and attributes in the SVG image. No properties * are evaluated during the update phase; instead the values computed previously * in the build phase are simply translated into SVG. */ pv.Mark.prototype.render = function() { this.build(); this.update(); }; /** * Evaluates properties and computes implied properties. Properties are stored * in the {@link #scene} array for each instance of this mark. * *

As marks are built recursively, the {@link #index} property is updated to * match the current index into the data array for each mark. Note that the * index property is only set for the mark currently being built and its * enclosing parent panels. The index property for other marks is unset, but is * inherited from the global Mark class prototype. This allows mark * properties to refer to properties on other marks in the same panel * conveniently; however, in general it is better to reference mark instances * specifically through the scene graph rather than depending on the magical * behavior of {@link #index}. * *

The root scene array has a special property, data, which stores * the current data stack. The first element in this stack is the current datum, * followed by the datum of the enclosing parent panel, and so on. The data * stack should not be accessed directly; instead, property functions are passed * the current data stack as arguments. * *

The evaluation of the data and visible properties is * special. The data property is evaluated first; unlike the other * properties, the data stack is from the parent panel, rather than the current * mark, since the data is not defined until the data property is evaluated. * The visible property is subsequently evaluated for each instance; * only if true will the {@link #buildInstance} method be called, evaluating * other properties and recursively building the scene graph. * *

If this mark is being re-built, any old instances of this mark that no * longer exist (because the new data array contains fewer elements) will be * cleared using {@link #clearInstance}. * * @param parent the instance of the parent panel from the scene graph. */ pv.Mark.prototype.build = function(parent) { if (!this.scene) { this.scene = []; if (!this.parent) { this.scene.data = []; } } var data = this.get("data"); var stack = this.root.scene.data; stack.unshift(null); this.index = -1; this.$$data = data; // XXX for (var i = 0, d; i < data.length; i++) { pv.Mark.prototype.index = ++this.index; var s = {}; /* * This is a bit confusing and could be cleaned up. This "scene" stores the * previous scene graph; we want to reuse SVG elements that were created * previously rather than recreating them, so we extract them. We also want * to reuse SVG child elements as well. */ if (this.scene[this.index]) { s.svg = this.scene[this.index].svg; s.children = this.scene[this.index].children; } this.scene[this.index] = s; s.index = i; s.data = stack[0] = data[i]; s.parent = parent; s.visible = this.get("visible"); if (s.visible) { this.buildInstance(s); } } stack.shift(); delete this.index; pv.Mark.prototype.index = -1; /* Clear any old instances from the scene. */ for (var i = data.length; i < this.scene.length; i++) { this.clearInstance(this.scene[i]); } this.scene.length = data.length; return this; }; /** * Removes the specified mark instance from the SVG image. This method depends * on the svg property of the scene graph node. If the specified mark * instance was not present in the SVG image (for example, because it was not * visible), this method has no effect. * * @param s a node in the scene graph; the instance of the mark to clear. */ pv.Mark.prototype.clearInstance = function(s) { if (s.svg) { s.parent.svg.removeChild(s.svg); } }; /** * Evaluates all of the properties for this mark for the specified instance * s in the scene graph. The set of properties to evaluate is retrieved * from the {@link #properties} array for this mark type (see {@link #type}). * After these properties are evaluated, any implied properties may be * computed by the mark and set on the scene graph; see {@link #buildImplied}. * *

For panels, this method recursively builds the scene graph for all child * marks as well. In general, this method should not need to be overridden by * concrete mark types. * * @param s a node in the scene graph; the instance of the mark to build. */ pv.Mark.prototype.buildInstance = function(s) { var p = this.type.prototype; for (var i = 0; i < p.properties.length; i++) { var name = p.properties[i]; if (!(name in s)) { s[name] = this.get(name); } } this.buildImplied(s); }; /** * Computes the implied properties for this mark for the specified instance * s in the scene graph. Implied properties are those with dependencies * on multiple other properties; for example, the width property may be implied * if the left and right properties are set. This method can be overridden by * concrete mark types to define new implied properties, if necessary. * *

The default implementation computes the implied CSS box model properties. * The prioritization of redundant properties is as follows:

    * *
  1. If the width property is not specified (i.e., null), its value is * the width of the parent panel, minus this mark's left and right margins; the * left and right margins are zero if not specified. * *
  2. Otherwise, if the right margin is not specified, its value is the * width of the parent panel, minus this mark's width and left margin; the left * margin is zero if not specified. * *
  3. Otherwise, if the left property is not specified, its value is * the width of the parent panel, minus this mark's width and the right margin. * *
This prioritization is then duplicated for the height, * bottom and top properties, respectively. * * @param s a node in the scene graph; the instance of the mark to build. */ pv.Mark.prototype.buildImplied = function(s) { var l = s.left; var r = s.right; var t = s.top; var b = s.bottom; /* Assume width and height are zero if not supported by this mark type. */ var p = this.type.prototype; var w = p.width ? s.width : 0; var h = p.height ? s.height : 0; /* Compute implied width, right and left. */ var width = s.parent ? s.parent.width : 0; if (w == null) { w = width - (r = r || 0) - (l = l || 0); } else if (r == null) { r = width - w - (l = l || 0); } else if (l == null) { l = width - w - (r = r || 0); } /* Compute implied height, bottom and top. */ var height = s.parent ? s.parent.height : 0; if (h == null) { h = height - (t = t || 0) - (b = b || 0); } else if (b == null) { b = height - h - (t = t || 0); } else if (t == null) { t = height - h - (b = b || 0); } s.left = l; s.right = r; s.top = t; s.bottom = b; /* Only set width and height if they are supported by this mark type. */ if (p.width) s.width = w; if (p.height) s.height = h; }; var property; // XXX /** * Evaluates the property function with the specified name for the current data * stack. The data stack, this.root.scene.data, contains the current * datum, followed by the datum for the enclosing panel, and so on. * *

This method first finds the implementing property function by querying the * current mark. If the current mark does not define the property function, the * prototype mark is queried, and so on. If none of the mark prototypes define a * property function with the given name, the type default function is used. If * no default function is provided, this method returns null. * *

The context of the property function is this instance (i.e., the * leaf-level mark), rather than whatever mark defined the property function. * Because of this behavior, a property function may be called on an object of a * different "class" (e.g., a Dot inheriting the fill style from a Line). Also * note that properties are not inherited statically; inheritance happens at the * property function / mark level, not per property value / mark instance. Thus, * even if a Dot extends from a Line, if the Line's fill style is defined using * a function that generates a random color, the Dot may get a different color. * * @param {string} name the property name. * @returns the evaluated property value. */ pv.Mark.prototype.get = function(name) { var mark = this; while (!mark["$" + name]) { mark = mark.proto; if (!mark) { mark = this.type.defaults; while (!mark["$" + name]) { mark = mark.proto; if (!mark) { return null; } } break; } } property = name; // XXX return mark["$" + name].apply(this, this.root.scene.data); }; /** * Updates the display, propagating property values computed in the build phase * to the SVG image. This method is typically invoked by {@link #render}, but is * also invoked after an event handler is triggered to update the display of a * specific mark. * * @see #event */ pv.Mark.prototype.update = function() { for (var i = 0; i < this.scene.length; i++) { this.updateInstance(this.scene[i]); } }; /** * Updates the display for the specified mark instance s in the scene * graph. This implementation handles basic properties for all mark types, such * as visibility, cursor and title tooltip. Concrete mark types should override * this method to specify how marks are rendered. * * @param s a node in the scene graph; the instance of the mark to update. */ pv.Mark.prototype.updateInstance = function(s) { var that = this, v = s.svg; /* visible */ if (!s.visible) { if (v) v.setAttribute("display", "none"); return; } v.removeAttribute("display"); /* cursor */ if (s.cursor) v.style.cursor = s.cursor; /* title (Safari only supports xlink:title on anchor elements) */ var p = v.parentNode; if (s.title) { if (!v.$title) { v.$title = document.createElementNS(pv.ns.svg, "a"); p.insertBefore(v.$title, v); v.$title.appendChild(v); } v.$title.setAttributeNS(pv.ns.xlink, "title", s.title); } else if (v.$title) { p.insertBefore(v, v.$title); p.removeChild(v.$title); delete v.$title; } /* event */ function dispatch(type) { return function(e) { /* TODO set full scene stack. */ var data = [s.data], p = s; while ((p = p.parent)) { data.push(p.data); } that.index = s.index; that.scene = s.parent.children[that.childIndex]; that.events[type].apply(that, data); that.updateInstance(s); // XXX updateInstance, bah! delete that.index; delete that.scene; e.preventDefault(); }; }; /* TODO inherit event handlers. */ if (!this.events) return; for (var type in this.events) { v["on" + type] = dispatch(type); } }; /** * Registers an event handler for the specified event type with this mark. When * an event of the specified type is triggered, the specified handler will be * invoked. The handler is invoked in a similar method to property functions: * the context is this mark instance, and the arguments are the full * data stack. Event handlers can use property methods to manipulate the display * properties of the mark: * *

m.event("click", function() this.fillStyle("red"));
* * Alternatively, the external data can be manipulated and the visualization * redrawn: * *
m.event("click", function(d) {
 *     data = all.filter(function(k) k.name == d);
 *     vis.render();
 *   });
* * TODO In the current event handler implementation, only the mark instance that * triggered the event is updated, even if the event handler dirties the rest of * the scene. While this can be ameliorated by explicitly re-rendering, it would * be better and more efficient for the event dispatcher to handle dirtying and * redraw automatically. * *

The complete set of event types is defined by SVG; see the reference * below. The set of supported event types is:

Since Protovis does not specify any concept of focus, it does not * support key events; these should be handled outside the visualization using * standard JavaScript. In the future, support for interaction may be extended * to support additional event types, particularly those most relevant to * interactive visualization, such as selection. * *

TODO In the current implementation, event handlers are not inherited from * prototype marks. They must be defined explicitly on each interactive mark. In * addition, only one event handler for a given event type can be defined; when * specifying multiple event handlers for the same type, only the last one will * be used. * * @see SVG events. * @param {string} type the event type. * @param {function} handler the event handler. * @returns {pv.Mark} this. */ pv.Mark.prototype.event = function(type, handler) { if (!this.events) this.events = {}; this.events[type] = handler; return this; }; /** * Constructs a new area mark with default properties. Areas are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents an area mark: the solid area between two series of * connected line segments. Unsurprisingly, areas are used most frequently for * area charts. * *

Just as a line represents a polyline, the Area mark type * represents a polygon. However, an area is not an arbitrary polygon; * vertices are paired either horizontally or vertically into parallel * spans, and each span corresponds to an associated datum. Either the * width or the height must be specified, but not both; this determines whether * the area is horizontally-oriented or vertically-oriented. Like lines, areas * can be stroked and filled with arbitrary colors. * *

See also the Area guide. * * @extends pv.Mark */ pv.Area = function() { pv.Mark.call(this); }; pv.Area.prototype = pv.extend(pv.Mark); pv.Area.prototype.type = pv.Area; /** * Returns "area". * * @returns {string} "area". */ pv.Area.toString = function() { return "area"; }; /** * The width of a given span, in pixels; used for horizontal spans. If the width * is specified, the height property should be 0 (the default). Either the top * or bottom property should be used to space the spans vertically, typically as * a multiple of the index. * * @type number * @name pv.Area.prototype.width */ pv.Area.prototype.defineProperty("width"); /** * The height of a given span, in pixels; used for vertical spans. If the height * is specified, the width property should be 0 (the default). Either the left * or right property should be used to space the spans horizontally, typically * as a multiple of the index. * * @type number * @name pv.Area.prototype.height */ pv.Area.prototype.defineProperty("height"); /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the perimeter of the area. Unlike the * {@link Line} mark type, the entire perimeter is stroked, rather than just one * edge. The default value of this property is 1.5, but since the default stroke * style is null, area marks are not stroked by default. * *

This property is fixed. See {@link pv.Mark}. * * @type number * @name pv.Area.prototype.lineWidth */ pv.Area.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the perimeter of the area. Unlike the {@link Line} mark type, the * entire perimeter is stroked, rather than just one edge. The default value of * this property is null, meaning areas are not stroked by default. * *

This property is fixed. See {@link pv.Mark}. * * @type string * @name pv.Area.prototype.strokeStyle * @see pv.color */ pv.Area.prototype.defineProperty("strokeStyle"); /** * The area fill style; if non-null, the interior of the polygon forming the * area is filled with the specified color. The default value of this property * is a categorical color. * *

This property is fixed. See {@link pv.Mark}. * * @type string * @name pv.Area.prototype.fillStyle * @see pv.color */ pv.Area.prototype.defineProperty("fillStyle"); /** * Default properties for areas. By default, there is no stroke and the fill * style is a categorical color. * * @type pv.Area */ pv.Area.defaults = new pv.Area().extend(pv.Mark.defaults) .lineWidth(1.5) .fillStyle(pv.Colors.category20); /** * Constructs a new area anchor with default properties. * * @class Represents an anchor for an area mark. Areas support five different * anchors:

In addition to positioning properties (left, right, top bottom), the * anchors support text rendering properties (text-align, text-baseline). Text is * rendered to appear inside the area polygon. * *

To facilitate stacking of areas, the anchors are defined in terms of their * opposite edge. For example, the top anchor defines the bottom property, such * that the area grows upwards; the bottom anchor instead defines the top * property, such that the area grows downwards. Of course, in general it is * more robust to use panels and the cousin accessor to define stacked area * marks; see {@link pv.Mark#scene} for an example. * * @extends pv.Mark.Anchor */ pv.Area.Anchor = function() { pv.Mark.Anchor.call(this); }; pv.Area.Anchor.prototype = pv.extend(pv.Mark.Anchor); pv.Area.Anchor.prototype.type = pv.Area; /** * The left property; null for "left" anchors, non-null otherwise. * * @type number * @name pv.Area.Anchor.prototype.left */ /** @private */ pv.Area.Anchor.prototype.$left = function() { var area = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return area.left() + area.width() / 2; case "right": return area.left() + area.width(); } return null; }; /** * The right property; null for "right" anchors, non-null otherwise. * * @type number * @name pv.Area.Anchor.prototype.right */ /** @private */ pv.Area.Anchor.prototype.$right = function() { var area = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return area.right() + area.width() / 2; case "left": return area.right() + area.width(); } return null; }; /** * The top property; null for "top" anchors, non-null otherwise. * * @type number * @name pv.Area.Anchor.prototype.top */ /** @private */ pv.Area.Anchor.prototype.$top = function() { var area = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return area.top() + area.height() / 2; case "bottom": return area.top() + area.height(); } return null; }; /** * The bottom property; null for "bottom" anchors, non-null otherwise. * * @type number * @name pv.Area.Anchor.prototype.bottom */ /** @private */ pv.Area.Anchor.prototype.$bottom = function() { var area = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return area.bottom() + area.height() / 2; case "top": return area.bottom() + area.height(); } return null; }; /** * The text-align property, for horizontal alignment inside the area. * * @type string * @name pv.Area.Anchor.prototype.textAlign */ /** @private */ pv.Area.Anchor.prototype.$textAlign = function() { switch (this.get("name")) { case "left": return "left"; case "bottom": case "top": case "center": return "center"; case "right": return "right"; } return null; }; /** * The text-baseline property, for vertical alignment inside the area. * * @type string * @name pv.Area.Anchor.prototype.textBasline */ /** @private */ pv.Area.Anchor.prototype.$textBaseline = function() { switch (this.get("name")) { case "right": case "left": case "center": return "middle"; case "top": return "top"; case "bottom": return "bottom"; } return null; }; /** * Overrides the default behavior of {@link pv.Mark#buildImplied} such that the * width and height are set to zero if null. * * @param s a node in the scene graph; the instance of the mark to build. */ pv.Area.prototype.buildImplied = function(s) { if (s.height == null) s.height = 0; if (s.width == null) s.width = 0; pv.Mark.prototype.buildImplied.call(this, s); }; /** * Override the default update implementation, since the area mark generates a * single graphical element rather than multiple distinct elements. */ pv.Area.prototype.update = function() { if (!this.scene.length) return; var s = this.scene[0], v = s.svg; if (s.visible) { /* Create the element, if necessary. */ if (!v) { v = s.svg = document.createElementNS(pv.ns.svg, "polygon"); s.parent.svg.appendChild(v); } /* points */ var p = ""; for (var i = 0; i < this.scene.length; i++) { var si = this.scene[i]; p += si.left + "," + si.top + " "; } for (var i = this.scene.length - 1; i >= 0; i--) { var si = this.scene[i]; p += (si.left + si.width) + "," + (si.top + si.height) + " "; } v.setAttribute("points", p); } this.updateInstance(s); }; /** * Updates the display for the (singleton) area instance. The area mark * generates a single graphical element rather than multiple distinct elements. * *

TODO Recompute points? For efficiency, the points (the span positions) are * not recomputed, and therefore cannot be updated automatically from event * handlers without an explicit call to rebuild the area. * * @param s a node in the scene graph; the area to update. */ pv.Area.prototype.updateInstance = function(s) { var v = s.svg; pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* fill, stroke TODO gradient, patterns */ var fill = pv.color(s.fillStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); }; /** * Constructs a new bar mark with default properties. Bars are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a bar: an axis-aligned rectangle that can be stroked and * filled. Bars are used for many chart types, including bar charts, histograms * and Gantt charts. Bars can also be used as decorations, for example to draw a * frame border around a panel; in fact, a panel is a special type (a subclass) * of bar. * *

Bars can be positioned in several ways. Most commonly, one of the four * corners is fixed using two margins, and then the width and height properties * determine the extent of the bar relative to this fixed location. For example, * using the bottom and left properties fixes the bottom-left corner; the width * then extends to the right, while the height extends to the top. As an * alternative to the four corners, a bar can be positioned exclusively using * margins; this is convenient as an inset from the containing panel, for * example. See {@link pv.Mark#buildImplied} for details on the prioritization * of redundant positioning properties. * *

See also the Bar guide. * * @extends pv.Mark */ pv.Bar = function() { pv.Mark.call(this); }; pv.Bar.prototype = pv.extend(pv.Mark); pv.Bar.prototype.type = pv.Bar; /** * Returns "bar". * * @returns {string} "bar". */ pv.Bar.toString = function() { return "bar"; }; /** * The width of the bar, in pixels. If the left position is specified, the bar * extends rightward from the left edge; if the right position is specified, the * bar extends leftward from the right edge. * * @type number * @name pv.Bar.prototype.width */ pv.Bar.prototype.defineProperty("width"); /** * The height of the bar, in pixels. If the bottom position is specified, the * bar extends upward from the bottom edge; if the top position is specified, * the bar extends downward from the top edge. * * @type number * @name pv.Bar.prototype.height */ pv.Bar.prototype.defineProperty("height"); /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the bar's border. * * @type number * @name pv.Bar.prototype.lineWidth */ pv.Bar.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the bar's border. The default value of this property is null, meaning * bars are not stroked by default. * * @type string * @name pv.Bar.prototype.strokeStyle * @see pv.color */ pv.Bar.prototype.defineProperty("strokeStyle"); /** * The bar fill style; if non-null, the interior of the bar is filled with the * specified color. The default value of this property is a categorical color. * * @type string * @name pv.Bar.prototype.fillStyle * @see pv.color */ pv.Bar.prototype.defineProperty("fillStyle"); /** * Default properties for bars. By default, there is no stroke and the fill * style is a categorical color. * * @type pv.Bar */ pv.Bar.defaults = new pv.Bar().extend(pv.Mark.defaults) .lineWidth(1.5) .fillStyle(pv.Colors.category20); /** * Constructs a new bar anchor with default properties. * * @class Represents an anchor for a bar mark. Bars support five different * anchors:

In addition to positioning properties (left, right, top bottom), the * anchors support text rendering properties (text-align, text-baseline). Text * is rendered to appear inside the bar. * *

To facilitate stacking of bars, the anchors are defined in terms of their * opposite edge. For example, the top anchor defines the bottom property, such * that the bar grows upwards; the bottom anchor instead defines the top * property, such that the bar grows downwards. Of course, in general it is more * robust to use panels and the cousin accessor to define stacked bars; see * {@link pv.Mark#scene} for an example. * *

Bar anchors also "smartly" specify position properties based on whether * the derived mark type supports the width and height properties. If the * derived mark type does not support these properties (e.g., dots), the * position will be centered on the corresponding edge. Otherwise (e.g., bars), * the position will be in the opposite side. * * @extends pv.Mark.Anchor */ pv.Bar.Anchor = function() { pv.Mark.Anchor.call(this); }; pv.Bar.Anchor.prototype = pv.extend(pv.Mark.Anchor); pv.Bar.Anchor.prototype.type = pv.Bar; /** * The left property; null for "left" anchors, non-null otherwise. * * @type number * @name pv.Bar.Anchor.prototype.left */ /** @private */ pv.Bar.Anchor.prototype.$left = function() { var bar = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return bar.left() + (this.type.prototype.width ? 0 : (bar.width() / 2)); case "right": return bar.left() + bar.width(); } return null; }; /** * The right property; null for "right" anchors, non-null otherwise. * * @type number * @name pv.Bar.Anchor.prototype.right */ /** @private */ pv.Bar.Anchor.prototype.$right = function() { var bar = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return bar.right() + (this.type.prototype.width ? 0 : (bar.width() / 2)); case "left": return bar.right() + bar.width(); } return null; }; /** * The top property; null for "top" anchors, non-null otherwise. * * @type number * @name pv.Bar.Anchor.prototype.top */ /** @private */ pv.Bar.Anchor.prototype.$top = function() { var bar = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return bar.top() + (this.type.prototype.height ? 0 : (bar.height() / 2)); case "bottom": return bar.top() + bar.height(); } return null; }; /** * The bottom property; null for "bottom" anchors, non-null otherwise. * * @type number * @name pv.Bar.Anchor.prototype.bottom */ /** @private */ pv.Bar.Anchor.prototype.$bottom = function() { var bar = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return bar.bottom() + (this.type.prototype.height ? 0 : (bar.height() / 2)); case "top": return bar.bottom() + bar.height(); } return null; }; /** * The text-align property, for horizontal alignment inside the bar. * * @type string * @name pv.Bar.Anchor.prototype.textAlign */ /** @private */ pv.Bar.Anchor.prototype.$textAlign = function() { switch (this.get("name")) { case "left": return "left"; case "bottom": case "top": case "center": return "center"; case "right": return "right"; } return null; }; /** * The text-baseline property, for vertical alignment inside the bar. * * @type string * @name pv.Bar.Anchor.prototype.textBaseline */ /** @private */ pv.Bar.Anchor.prototype.$textBaseline = function() { switch (this.get("name")) { case "right": case "left": case "center": return "middle"; case "top": return "top"; case "bottom": return "bottom"; } return null; }; /** * Updates the display for the specified bar instance s in the scene * graph. This implementation handles the fill and stroke style for the bar, as * well as positional properties. * * @param s a node in the scene graph; the instance of the bar to update. */ pv.Bar.prototype.updateInstance = function(s) { var v = s.svg; if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "rect"); s.parent.svg.appendChild(v); } pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* left, top */ v.setAttribute("x", s.left); v.setAttribute("y", s.top); /* If width and height are exactly zero, the rect is not stroked! */ v.setAttribute("width", Math.max(1E-10, s.width)); v.setAttribute("height", Math.max(1E-10, s.height)); /* fill, stroke TODO gradient, patterns */ var fill = pv.color(s.fillStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); }; /** * Constructs a new dot mark with default properties. Dots are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a dot; a dot is simply a sized glyph centered at a given * point that can also be stroked and filled. The size property is * proportional to the area of the rendered glyph to encourage meaningful visual * encodings. Dots can visually encode up to eight dimensions of data, though * this may be unwise due to integrality. See {@link pv.Mark#buildImplied} for * details on the prioritization of redundant positioning properties. * *

See also the Dot guide. * * @extends pv.Mark */ pv.Dot = function() { pv.Mark.call(this); }; pv.Dot.prototype = pv.extend(pv.Mark); pv.Dot.prototype.type = pv.Dot; /** * Returns "dot". * * @returns {string} "dot". */ pv.Dot.toString = function() { return "dot"; }; /** * The size of the dot, in square pixels. Square pixels are used such that the * area of the dot is linearly proportional to the value of the size property, * facilitating representative encodings. * * @see #radius * @type number * @name pv.Dot.prototype.size */ pv.Dot.prototype.defineProperty("size"); /** * The shape name. Several shapes are supported:

These shapes can be further changed using the {@link #angle} property; * for instance, a cross can be turned into a plus by rotating. Similarly, the * tick, which is vertical by default, can be rotated horizontally. Note that * some shapes (cross and tick) do not have interior areas, and thus do not * support fill style meaningfully. * *

TODO It's probably better to use the Rule mark type rather than a * tick-shaped Dot. However, the Rule mark doesn't support the width and height * properties, so it's a bit clumsy to use. It should be possible to add support * for width and height to rule, and then remove the tick shape. * * @type string * @name pv.Dot.prototype.shape */ pv.Dot.prototype.defineProperty("shape"); /** * The rotation angle, in radians. Used to rotate shapes, such as to turn a * cross into a plus. * * @type number * @name pv.Dot.prototype.angle */ pv.Dot.prototype.defineProperty("angle"); /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the dot's shape. * * @type number * @name pv.Dot.prototype.lineWidth */ pv.Dot.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the dot's shape. The default value of this property is a categorical * color. * * @type string * @name pv.Dot.prototype.strokeStyle * @see pv.color */ pv.Dot.prototype.defineProperty("strokeStyle"); /** * The fill style; if non-null, the interior of the dot is filled with the * specified color. The default value of this property is null, meaning dots are * not filled by default. * * @type string * @name pv.Dot.prototype.fillStyle * @see pv.color */ pv.Dot.prototype.defineProperty("fillStyle"); /** * Default properties for dots. By default, there is no fill and the stroke * style is a categorical color. The default shape is "circle" with size 20. * * @type pv.Dot */ pv.Dot.defaults = new pv.Dot().extend(pv.Mark.defaults) .size(20) .shape("circle") .lineWidth(1.5) .strokeStyle(pv.Colors.category10); /** * Constructs a new dot anchor with default properties. * * @class Represents an anchor for a dot mark. Dots support five different * anchors:

In addition to positioning properties (left, right, top bottom), the * anchors support text rendering properties (text-align, text-baseline). Text is * rendered to appear outside the dot. Note that this behavior is different from * other mark anchors, which default to rendering text inside the mark. * *

For consistency with the other mark types, the anchor positions are * defined in terms of their opposite edge. For example, the top anchor defines * the bottom property, such that a bar added to the top anchor grows upward. * * @extends pv.Mark.Anchor */ pv.Dot.Anchor = function() { pv.Mark.Anchor.call(this); }; pv.Dot.Anchor.prototype = pv.extend(pv.Mark.Anchor); pv.Dot.Anchor.prototype.type = pv.Dot; /** * The left property; null for "left" anchors, non-null otherwise. * * @type number * @name pv.Dot.Anchor.prototype.left */ /** @private */ pv.Dot.Anchor.prototype.$left = function(d) { var dot = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return dot.left(); case "right": return dot.left() + dot.radius(); } return null; }; /** * The right property; null for "right" anchors, non-null otherwise. * * @type number * @name pv.Dot.Anchor.prototype.right */ /** @private */ pv.Dot.Anchor.prototype.$right = function(d) { var dot = this.anchorTarget(); switch (this.get("name")) { case "bottom": case "top": case "center": return dot.right(); case "left": return dot.right() + dot.radius(); } return null; }; /** * The top property; null for "top" anchors, non-null otherwise. * * @type number * @name pv.Dot.Anchor.prototype.top */ /** @private */ pv.Dot.Anchor.prototype.$top = function(d) { var dot = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return dot.top(); case "bottom": return dot.top() + dot.radius(); } return null; }; /** * The bottom property; null for "bottom" anchors, non-null otherwise. * * @type number * @name pv.Dot.Anchor.prototype.bottom */ /** @private */ pv.Dot.Anchor.prototype.$bottom = function(d) { var dot = this.anchorTarget(); switch (this.get("name")) { case "left": case "right": case "center": return dot.bottom(); case "top": return dot.bottom() + dot.radius(); } return null; }; /** * The text-align property, for horizontal alignment outside the dot. * * @type string * @name pv.Dot.Anchor.prototype.textAlign */ /** @private */ pv.Dot.Anchor.prototype.$textAlign = function(d) { switch (this.get("name")) { case "left": return "right"; case "bottom": case "top": case "center": return "center"; case "right": return "left"; } return null; }; /** * The text-baseline property, for vertical alignment outside the dot. * * @type string * @name pv.Dot.Anchor.prototype.textBasline */ /** @private */ pv.Dot.Anchor.prototype.$textBaseline = function(d) { switch (this.get("name")) { case "right": case "left": case "center": return "middle"; case "top": return "bottom"; case "bottom": return "top"; } return null; }; /** * Returns the radius of the dot, which is defined to be the square root of the * {@link #size} property. * * @returns {number} the radius. */ pv.Dot.prototype.radius = function() { return Math.sqrt(this.size()); }; /** * Updates the display for the specified dot instance s in the scene * graph. This implementation handles the fill and stroke style for the dot, as * well as positional properties. * * @param s a node in the scene graph; the instance of the dot to update. */ pv.Dot.prototype.updateInstance = function(s) { var v = s.svg; /* Create the element, if necessary. */ if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "path"); s.parent.svg.appendChild(v); } /* visible, cursor, title, event, etc. */ pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* left, top */ v.setAttribute("transform", "translate(" + s.left + "," + s.top +")" + (s.angle ? " rotate(" + 180 * s.angle / Math.PI + ")" : "")); /* fill, stroke TODO gradient, patterns? */ var fill = pv.color(s.fillStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); /* shape, size */ var radius = Math.sqrt(s.size); var d; switch (s.shape) { case "cross": { d = "M" + -radius + "," + -radius + "L" + radius + "," + radius + "M" + radius + "," + -radius + "L" + -radius + "," + radius; break; } case "triangle": { var h = radius, w = radius * 2 / Math.sqrt(3); d = "M0," + h + "L" + w +"," + -h + " " + -w + "," + -h + "Z"; break; } case "diamond": { radius *= Math.sqrt(2); d = "M0," + -radius + "L" + radius + ",0" + " 0," + radius + " " + -radius + ",0" + "Z"; break; } case "square": { d = "M" + -radius + "," + -radius + "L" + radius + "," + -radius + " " + radius + "," + radius + " " + -radius + "," + radius + "Z"; break; } case "tick": { d = "M0,0L0," + -s.size; break; } default: { // circle d = "M0," + radius + "A" + radius + "," + radius + " 0 1,1 0," + (-radius) + "A" + radius + "," + radius + " 0 1,1 0," + radius + "Z"; break; } } v.setAttribute("d", d); }; /** * Constructs a new dot mark with default properties. Images are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents an image. Images share the same layout and style properties as * bars, in conjunction with an external image such as PNG or JPEG. The image is * specified via the {@link #url} property. The fill, if specified, appears * beneath the image, while the optional stroke appears above the image. * *

TODO Restore support for dynamic images (such as heatmaps). These were * supported in the canvas implementation using the pixel buffer API; although * SVG does not support pixel manipulation, it is possible to embed a canvas * element in SVG using foreign objects. * *

TODO Allow different modes of image placement: "scale" -- scale and * preserve aspect ratio, "tile" -- repeat the image, "center" -- center the * image, "fill" -- scale without preserving aspect ratio. * *

See {@link pv.Bar} for details on positioning properties. * * @extends pv.Bar */ pv.Image = function() { pv.Bar.call(this); }; pv.Image.prototype = pv.extend(pv.Bar); pv.Image.prototype.type = pv.Image; /** * Returns "image". * * @returns {string} "image". */ pv.Image.toString = function() { return "image"; }; /** * The URL of the image to display. The set of supported image types is * browser-dependent; PNG and JPEG are recommended. * * @type string * @name pv.Image.prototype.url */ pv.Image.prototype.defineProperty("url"); /** * Default properties for images. By default, there is no stroke or fill style. * * @type pv.Image */ pv.Image.defaults = new pv.Image().extend(pv.Bar.defaults) .fillStyle(null); /** * Updates the display for the specified image instance s in the scene * graph. This implementation handles the fill and stroke style for the image, * as well as positional properties. * *

Image rendering is a bit more complicated than most marks because it can * entail up to four SVG elements: three for the fill, image and stroke, and the * fourth an anchor element for the title tooltip. The anchor element is placed * around the stroke rect element, if present, and otherwise the image element. * Similarly the event handlers and cursor style is placed on the stroke * element, if present, and otherwise the image element. Note that since the * stroke element is transparent, the pointer-events attribute is used * to capture events. * * @param s a node in the scene graph; the instance of the image to update. */ pv.Image.prototype.updateInstance = function(s) { var v = s.svg; /* Create the svg:image element, if necessary. */ if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "image"); v.setAttribute("preserveAspectRatio", "none"); s.parent.svg.appendChild(v); } /* * If no stroke is specified, then the event handlers and title anchor element * can be placed on the image element. However, if there was previously a * title anchor element around the stroke element, we must be careful to * remove it. This logic could likely be simplified. */ if (!s.strokeStyle) { if (v.$stroke) { v.parentNode.removeChild(v.$stroke.$title || v.$stroke); delete v.$stroke; } /* cursor, title, events, etc. */ pv.Mark.prototype.updateInstance.call(this, s); } /* visible */ function display(v) { s.visible ? v.removeAttribute("display") : v.setAttribute("display", "none"); } if (v) { display(v); if (v.$stroke) display(v.$stroke); if (v.$fill) display(v.$fill); } if (!s.visible) return; /* left, top, width, height */ function position(v) { v.setAttribute("x", s.left); v.setAttribute("y", s.top); v.setAttribute("width", s.width); v.setAttribute("height", s.height); } position(v); /* fill (via an underlaid svg:rect element) */ if (s.fillStyle) { var f = v.$fill; if (!f) { f = v.$fill = document.createElementNS(pv.ns.svg, "rect"); (v.$title || v).parentNode.insertBefore(f, (v.$title || v)); } position(f); var fill = pv.color(s.fillStyle); f.setAttribute("fill", fill.color); f.setAttribute("fill-opacity", fill.opacity); } else if (v.$fill) { v.$fill.parentNode.removeChild(v.$fill); delete v.$fill; } /* stroke (via an overlaid svg:rect element) */ if (s.strokeStyle) { var f = v.$stroke; /* * If the $title attribute is set, that means the title anchor element was * previously on the image element; now that the stroke style is set, we * must delete the old title element to make room for the new one. */ if (v.$title) { var p = v.$title.parentNode; p.insertBefore(v, v.$title); p.removeChild(v.$title); delete v.$title; } /* Create the stroke svg:rect element, if necessary. */ if (!f) { f = v.$stroke = document.createElementNS(pv.ns.svg, "rect"); f.setAttribute("fill", "none"); f.setAttribute("pointer-events", "all"); v.parentNode.insertBefore(f, v.nextElementSibling); } position(f); var stroke = pv.color(s.strokeStyle); f.setAttribute("stroke", stroke.color); f.setAttribute("stroke-opacity", stroke.opacity); f.setAttribute("stroke-width", s.lineWidth); /* cursor, title, events, etc. */ try { s.svg = f; pv.Mark.prototype.updateInstance.call(this, s); } finally { s.svg = v; } } /* url */ v.setAttributeNS(pv.ns.xlink, "href", s.url); }; /** * Constructs a new label mark with default properties. Labels are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a text label, allowing textual annotation of other marks or * arbitrary text within the visualization. The character data must be plain * text (unicode), though the text can be styled using the {@link #font} * property. If rich text is needed, external HTML elements can be overlaid on * the canvas by hand. * *

Labels are positioned using the box model, similarly to {@link Dot}. Thus, * a label has no width or height, but merely a text anchor location. The text * is positioned relative to this anchor location based on the * {@link #textAlign}, {@link #textBaseline} and {@link #textMargin} properties. * Furthermore, the text may be rotated using {@link #textAngle}. * *

Labels ignore events, so as to not interfere with event handlers on * underlying marks, such as bars. In the future, we may support event handlers * on labels. * *

See also the Label guide. * * @extends pv.Mark */ pv.Label = function() { pv.Mark.call(this); }; pv.Label.prototype = pv.extend(pv.Mark); pv.Label.prototype.type = pv.Label; /** * Returns "label". * * @returns {string} "label". */ pv.Label.toString = function() { return "label"; }; /** * The character data to render; a string. The default value of the text * property is the identity function, meaning the label's associated datum will * be rendered using its toString. * * @type string * @name pv.Label.prototype.text */ pv.Label.prototype.defineProperty("text"); /** * The font format, per the CSS Level 2 specification. The default font is "10px * sans-serif", for consistency with the HTML 5 canvas element specification. * Note that since text is not wrapped, any line-height property will be * ignored. The other font-style, font-variant, font-weight, font-size and * font-family properties are supported. * * @see CSS2 fonts. * @type string * @name pv.Label.prototype.font */ pv.Label.prototype.defineProperty("font"); /** * The rotation angle, in radians. Text is rotated clockwise relative to the * anchor location. For example, with the default left alignment, an angle of * Math.PI / 2 causes text to proceed downwards. The default angle is zero. * * @type number * @name pv.Label.prototype.textAngle */ pv.Label.prototype.defineProperty("textAngle"); /** * The text color. The name "textStyle" is used for consistency with "fillStyle" * and "strokeStyle", although it might be better to rename this property (and * perhaps use the same name as "strokeStyle"). The default color is black. * * @type string * @name pv.Label.prototype.textStyle * @see pv.color */ pv.Label.prototype.defineProperty("textStyle"); /** * The horizontal text alignment. One of:

The default horizontal alignment is left. * * @type string * @name pv.Label.prototype.textAlign */ pv.Label.prototype.defineProperty("textAlign"); /** * The vertical text alignment. One of:The default vertical alignment is bottom. * * @type string * @name pv.Label.prototype.textBaseline */ pv.Label.prototype.defineProperty("textBaseline"); /** * The text margin; may be specified in pixels, or in font-dependent units * (e.g., ".1ex"). The margin can be used to pad text away from its anchor * location, in a direction dependent on the horizontal and vertical alignment * properties. For example, if the text is left- and middle-aligned, the margin * shifts the text to the right. The default margin is 3 pixels. * * @type number * @name pv.Label.prototype.textMargin */ pv.Label.prototype.defineProperty("textMargin"); /** * A list of shadow effects to be applied to text, per the CSS Text Level 3 * text-shadow property. An example specification is "0.1em 0.1em 0.1em * rgba(0,0,0,.5)"; the first length is the horizontal offset, the second the * vertical offset, and the third the blur radius. * * @see CSS3 text. * @type string * @name pv.Label.prototype.textShadow */ pv.Label.prototype.defineProperty("textShadow"); /** * Default properties for labels. See the individual properties for the default * values. * * @type pv.Label */ pv.Label.defaults = new pv.Label().extend(pv.Mark.defaults) .text(pv.identity) .font("10px sans-serif") .textAngle(0) .textStyle("black") .textAlign("left") .textBaseline("bottom") .textMargin(3); /** * Updates the display for the specified label instance s in the scene * graph. This implementation handles the text formatting for the label, as well * as positional properties. * * @param s a node in the scene graph; the instance of the dot to update. */ pv.Label.prototype.updateInstance = function(s) { var v = s.svg; /* Create the svg:text element, if necessary. */ if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "text"); v.$text = document.createTextNode(""); v.appendChild(v.$text); s.parent.svg.appendChild(v); } /* cursor, title, events, visible, etc. */ pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* left, top, angle */ v.setAttribute("transform", "translate(" + s.left + "," + s.top + ")" + (s.textAngle ? " rotate(" + 180 * s.textAngle / Math.PI + ")" : "")); /* text-baseline */ switch (s.textBaseline) { case "middle": { v.removeAttribute("y"); v.setAttribute("dy", ".35em"); break; } case "top": { v.setAttribute("y", s.textMargin); v.setAttribute("dy", ".71em"); break; } case "bottom": { v.setAttribute("y", "-" + s.textMargin); v.removeAttribute("dy"); break; } } /* text-align */ switch (s.textAlign) { case "right": { v.setAttribute("text-anchor", "end"); v.setAttribute("x", "-" + s.textMargin); break; } case "center": { v.setAttribute("text-anchor", "middle"); v.removeAttribute("x"); break; } case "left": { v.setAttribute("text-anchor", "start"); v.setAttribute("x", s.textMargin); break; } } /* font, text-shadow TODO centralize font definition? */ v.$text.nodeValue = s.text; var style = "font:" + s.font + ";"; if (s.textShadow) { style += "text-shadow:" + s.textShadow +";"; } v.setAttribute("style", style); /* fill */ var fill = pv.color(s.textStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); /* TODO enable interaction on labels? centralize this definition? */ v.setAttribute("pointer-events", "none"); }; /** * Constructs a new line mark with default properties. Lines are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a series of connected line segments, or polyline, * that can be stroked with a configurable color and thickness. Each * articulation point in the line corresponds to a datum; for n points, * n-1 connected line segments are drawn. The point is positioned using * the box model. Arbitrary paths are also possible, allowing radar plots and * other custom visualizations. * *

Like areas, lines can be stroked and filled with arbitrary colors. In most * cases, lines are only stroked, but the fill style can be used to construct * arbitrary polygons. * *

See also the Line guide. * * @extends pv.Mark */ pv.Line = function() { pv.Mark.call(this); }; pv.Line.prototype = pv.extend(pv.Mark); pv.Line.prototype.type = pv.Line; /** * Returns "line". * * @returns {string} "line". */ pv.Line.toString = function() { return "line"; }; /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the line. * * @type number * @name pv.Line.prototype.lineWidth */ pv.Line.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the line. The default value of this property is a categorical color. * * @type string * @name pv.Line.prototype.strokeStyle * @see pv.color */ pv.Line.prototype.defineProperty("strokeStyle"); /** * The line fill style; if non-null, the interior of the line is closed and * filled with the specified color. The default value of this property is a * null, meaning that lines are not filled by default. * * @type string * @name pv.Line.prototype.fillStyle * @see pv.color */ pv.Line.prototype.defineProperty("fillStyle"); /** * Default properties for lines. By default, there is no fill and the stroke * style is a categorical color. * * @type pv.Line */ pv.Line.defaults = new pv.Line().extend(pv.Mark.defaults) .lineWidth(1.5) .strokeStyle(pv.Colors.category10); /** * Override the default update implementation, since the line mark generates a * single graphical element rather than multiple distinct elements. */ pv.Line.prototype.update = function() { if (!this.scene.length) return; /* visible */ var s = this.scene[0], v = s.svg; if (s.visible) { /* Create the svg:polyline element, if necessary. */ if (!v) { v = s.svg = document.createElementNS(pv.ns.svg, "polyline"); s.parent.svg.appendChild(v); } /* left, top TODO allow points to be changed on events? */ var p = ""; for (var i = 0; i < this.scene.length; i++) { var si = this.scene[i]; if (isNaN(si.left)) si.left = 0; if (isNaN(si.top)) si.top = 0; p += si.left + "," + si.top + " "; } v.setAttribute("points", p); /* cursor, title, events, etc. */ this.updateInstance(s); v.removeAttribute("display"); } else if (v) { v.setAttribute("display", "none"); } }; /** * Updates the display for the (singleton) line instance. The line mark * generates a single graphical element rather than multiple distinct elements. * *

TODO Recompute points? For efficiency, the points are not recomputed, and * therefore cannot be updated automatically from event handlers without an * explicit call to rebuild the line. * * @param s a node in the scene graph; the instance of the mark to update. */ pv.Line.prototype.updateInstance = function(s) { var v = s.svg; pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* fill, stroke TODO gradient, patterns */ var fill = pv.color(s.fillStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); }; /** * Constructs a new, empty panel with default properties. Panels, with the * exception of the root panel, are not typically constructed directly; instead, * they are added to an existing panel or mark via {@link pv.Mark#add}. * * @class Represents a container mark. Panels allow repeated or nested * structures, commonly used in small multiple displays where a small * visualization is tiled to facilitate comparison across one or more * dimensions. Other types of visualizations may benefit from repeated and * possibly overlapping structure as well, such as stacked area charts. Panels * can also offset the position of marks to provide padding from surrounding * content. * *

All Protovis displays have at least one panel; this is the root panel to * which marks are rendered. The box model properties (four margins, width and * height) are used to offset the positions of contained marks. The data * property determines the panel count: a panel is generated once per associated * datum. When nested panels are used, property functions can declare additional * arguments to access the data associated with enclosing panels. * *

Panels can be rendered inline, facilitating the creation of sparklines. * This allows designers to reuse browser layout features, such as text flow and * tables; designers can also overlay HTML elements such as rich text and * images. * *

All panels have a children array (possibly empty) containing the * child marks in the order they were added. Panels also have a root * field which points to the root (outermost) panel; the root panel's root field * points to itself. * *

See also the Protovis guide. * * @extends pv.Bar */ pv.Panel = function() { pv.Bar.call(this); /** * The child marks; zero or more {@link pv.Mark}s in the order they were * added. * * @see #add * @type pv.Mark[] */ this.children = []; this.root = this; /** * The internal $dom field is set by the Protovis loader; see lang/init.js. It * refers to the script element that contains the Protovis specification, so * that the panel knows where in the DOM to insert the generated SVG element. * * @private */ this.$dom = pv.Panel.$dom; }; pv.Panel.prototype = pv.extend(pv.Bar); pv.Panel.prototype.type = pv.Panel; /** * Returns "panel". * * @returns {string} "panel". */ pv.Panel.toString = function() { return "panel"; }; /** * The canvas element; either the string ID of the canvas element in the current * document, or a reference to the canvas element itself. If null, a canvas * element will be created and inserted into the document at the location of the * script element containing the current Protovis specification. This property * only applies to root panels and is ignored on nested panels. * *

Note: the "canvas" element here refers to a div (or other suitable * HTML container element), not a canvas element. The name of * this property is a historical anachronism from the first implementation that * used HTML 5 canvas, rather than SVG. * * @type string * @name pv.Panel.prototype.canvas */ pv.Panel.prototype.defineProperty("canvas"); /** * The reverse property; a boolean determining whether child marks are ordered * from front-to-back or back-to-front. SVG does not support explicit * z-ordering; shapes are rendered in the order they appear. Thus, by default, * child marks are rendered in the order they are added to the panel. Setting * the reverse property to false reverses the order in which they are added to * the SVG element; however, the properties are still evaluated (i.e., built) in * forward order. * * @type boolean * @name pv.Panel.prototype.reverse */ pv.Panel.prototype.defineProperty("reverse"); /** * Default properties for panels. By default, the margins are zero, the fill * style is transparent, and the reverse property is false. * * @type pv.Panel */ pv.Panel.defaults = new pv.Panel().extend(pv.Bar.defaults) .top(0).left(0).bottom(0).right(0) .fillStyle(null) .reverse(false); /** * Adds a new mark of the specified type to this panel. Unlike the normal * {@link Mark#add} behavior, adding a mark to a panel does not cause the mark * to inherit from the panel. Since the contained marks are offset by the panel * margins already, inheriting properties is generally undesirable; of course, * it is always possible to change this behavior by calling {@link Mark#extend} * explicitly. * * @param {function} type the type of the new mark to add. * @returns {pv.Mark} the new mark. */ pv.Panel.prototype.add = function(type) { var child = new type(); child.parent = this; child.root = this.root; child.childIndex = this.children.length; this.children.push(child); return child; }; /** * Creates a new canvas (SVG) element with the specified width and height, and * inserts it into the current document. If the $dom field is set, as * for text/javascript+protovis scripts, the SVG element is inserted into the * DOM before the script element. Otherwise, the SVG element is inserted into * the last child element of the document, as for text/javascript scripts. * * @param w the width of the canvas to create, in pixels. * @param h the height of the canvas to create, in pixels. * @return the new canvas (SVG) element. */ pv.Panel.prototype.createCanvas = function(w, h) { /** * Returns the last element in the current document's body. The canvas element * is appended to this last element if another DOM element has not already * been specified via the $dom field. */ function lastElement() { var node = document.body; while (node.lastElementChild && node.lastElementChild.tagName) { node = node.lastElementChild; } return (node == document.body) ? node : node.parentNode; } /* Create the SVG element. */ var c = document.createElementNS(pv.ns.svg, "svg"); c.setAttribute("width", w); c.setAttribute("height", h); /* Insert it into the DOM at the appropriate location. */ this.$dom // script element for text/javascript+protovis ? this.$dom.parentNode.insertBefore(c, this.$dom) : lastElement().appendChild(c); return c; }; /** * Evaluates all of the properties for this panel for the specified instance * s in the scene graph, including recursively building the scene graph * for child marks. * * @param s a node in the scene graph; the instance of the panel to build. * @see Mark#scene */ pv.Panel.prototype.buildInstance = function(s) { pv.Bar.prototype.buildInstance.call(this, s); /* * Build each child, passing in the parent (this panel) scene graph node. The * child mark's scene is initialized from the corresponding entry in the * existing scene graph, such that properties from the previous build can be * reused; this is largely to facilitate the recycling of SVG elements. */ for (var i = 0; i < this.children.length; i++) { this.children[i].scene = s.children[i] || []; this.children[i].build(s); } /* * Once the child marks have been built, the new scene graph nodes are removed * from the child marks and placed into the scene graph. The nodes cannot * remain on the child nodes because this panel (or a parent panel) may be * instantiated multiple times! */ for (var i = 0; i < this.children.length; i++) { s.children[i] = this.children[i].scene; delete this.children[i].scene; } /* Delete any expired child scenes, should child marks have been removed. */ s.children.length = this.children.length; }; /** * Computes the implied properties for this panel for the specified instance * s in the scene graph. Panels have two implied properties:

The current implementation creates the SVG element, if necessary, during * the build phase; in the future, it may be preferable to move this to the * update phase, although then the canvas property would be undefined. In * addition, DOM inspection is necessary to define the implied width and height * properties that may be inferred from the DOM. * * @param s a node in the scene graph; the instance of the panel to build. */ pv.Panel.prototype.buildImplied = function(s) { if (!s.children) s.children = []; if (!s.parent) { var c = s.canvas; if (c) { var d = (typeof c == "string") ? document.getElementById(c) : c; /* Clear the container if it's not already associated with this panel. */ if (!d.$panel || d.$panel != this) { d.$panel = this; delete d.$canvas; while (d.lastChild) { d.lastChild.remove(); } } /* Construct the canvas if not already present. */ if (!(c = d.$canvas)) { d.$canvas = c = document.createElementNS(pv.ns.svg, "svg"); d.appendChild(c); } /** Returns the computed style for the given element and property. */ let css = function(e, p) { return parseFloat(self.getComputedStyle(e, null).getPropertyValue(p)); }; /* If width and height weren't specified, inspect the container. */ var w, h; if (s.width == null) { w = css(d, "width"); s.width = w - s.left - s.right; } else { w = s.width + s.left + s.right; } if (s.height == null) { h = css(d, "height"); s.height = h - s.top - s.bottom; } else { h = s.height + s.top + s.bottom; } c.setAttribute("width", w); c.setAttribute("height", h); s.canvas = c; } else if (s.svg) { s.canvas = s.svg.parentNode; } else { s.canvas = this.createCanvas( s.width + s.left + s.right, s.height + s.top + s.bottom); } } pv.Bar.prototype.buildImplied.call(this, s); }; /** * Updates the display, propagating property values computed in the build phase * to the SVG image. In addition to the SVG element that serves as the canvas, * each panel instance has a corresponding g (container) element. The * g element uses the transform attribute to offset the location * of contained graphical elements. */ pv.Panel.prototype.update = function() { var appends = []; for (var i = 0; i < this.scene.length; i++) { var s = this.scene[i]; /* Create the element, if necessary. */ var v = s.svg; if (!v) { v = s.svg = document.createElementNS(pv.ns.svg, "g"); appends.push(s); } /* Update this instance, recursively including child marks. */ this.updateInstance(s); if (s.children) { // check visibility for (var j = 0; j < this.children.length; j++) { var c = this.children[j]; c.scene = s.children[j]; c.update(); delete c.scene; } } } /* * WebKit appears has a bug where images are not rendered if the element * is appended before it contained any elements. Creating the child elements * first and then appending them solves the problem and is likely more * efficient. Also, it means we can reverse the order easily. * * TODO It would be nice to support arbitrary z-order here, at least within * panel. Of course, the order of children may need to be updated not just on * append. */ if (appends.length) { if (appends[0].reverse) appends.reverse(); for (var i = 0; i < appends.length; i++) { var s = appends[i]; (s.parent ? s.parent.svg : s.canvas).appendChild(s.svg); } } }; /** * Updates the display for the specified panel instance s in the scene * graph. This implementation handles the fill and stroke style for the panel, * as well as any necessary transform to offset the location of contained marks. * *

TODO As a performance optimization, it may also be possible to assign * constant property values (or even the most common value for each property) as * attributes on the element so they can be inherited. * * @param s a node in the scene graph; the instance of the panel to update. */ pv.Panel.prototype.updateInstance = function(s) { var v = s.svg; /* visible */ if (!s.visible) { if (v) v.setAttribute("display", "none"); return; } v.removeAttribute("display"); /* fillStyle, strokeStyle */ var r = v.$rect; if (s.fillStyle || s.strokeStyle) { if (!r) { r = v.$rect = document.createElementNS(pv.ns.svg, "rect"); v.insertBefore(r, v.firstElementChild); } /* If width and height are exactly zero, the rect is not stroked! */ r.setAttribute("width", Math.max(1E-10, s.width)); r.setAttribute("height", Math.max(1E-10, s.height)); /* fill, stroke TODO gradient, patterns */ var fill = pv.color(s.fillStyle); r.setAttribute("fill", fill.color); r.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); r.setAttribute("stroke", stroke.color); r.setAttribute("stroke-opacity", stroke.opacity); r.setAttribute("stroke-width", s.lineWidth); } else if (r) { v.removeChild(r); delete v.$rect; r = null; } /* cursor, title, event, etc. */ if (r) { try { s.svg = r; pv.Mark.prototype.updateInstance.call(this, s); } finally { s.svg = v; } } /* left, top */ if (s.left || s.top) { v.setAttribute("transform", "translate(" + s.left + "," + s.top +")"); } else { v.removeAttribute("transform"); } }; /** * Constructs a new rule with default properties. Rules are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a horizontal or vertical rule. Rules are frequently used * for axes and grid lines. For example, specifying only the bottom property * draws horizontal rules, while specifying only the left draws vertical * rules. Rules can also be used as thin bars. The visual style is controlled in * the same manner as lines. * *

Rules are positioned exclusively using the four margins. The following * combinations of properties are supported:

TODO If rules supported width (for horizontal) and height (for vertical) * properties, it might be easier to place them. Small rules can be used as tick * marks; alternatively, a {@link Dot} with the "tick" shape can be used. * *

See also the Rule guide. * * @see pv.Line * @extends pv.Mark */ pv.Rule = function() { pv.Mark.call(this); }; pv.Rule.prototype = pv.extend(pv.Mark); pv.Rule.prototype.type = pv.Rule; /** * Returns "rule". * * @returns {string} "rule". */ pv.Rule.toString = function() { return "rule"; }; /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the rule. The default value is 1 pixel. * * @type number * @name pv.Rule.prototype.lineWidth */ pv.Rule.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the rule. The default value of this property is black. * * @type string * @name pv.Rule.prototype.strokeStyle * @see pv.color */ pv.Rule.prototype.defineProperty("strokeStyle"); /** * Default properties for rules. By default, a single-pixel black line is * stroked. * * @type pv.Rule */ pv.Rule.defaults = new pv.Rule().extend(pv.Mark.defaults) .lineWidth(1) .strokeStyle("black"); /** * Constructs a new rule anchor with default properties. * * @class Represents an anchor for a rule mark. Rules support five different * anchors:

In addition to positioning properties (left, right, top bottom), the * anchors support text rendering properties (text-align, text-baseline). Text is * rendered to appear outside the rule. Note that this behavior is different * from other mark anchors, which default to rendering text inside the * mark. * *

For consistency with the other mark types, the anchor positions are * defined in terms of their opposite edge. For example, the top anchor defines * the bottom property, such that a bar added to the top anchor grows upward. * * @extends pv.Bar.Anchor */ pv.Rule.Anchor = function() { pv.Bar.Anchor.call(this); }; pv.Rule.Anchor.prototype = pv.extend(pv.Bar.Anchor); pv.Rule.Anchor.prototype.type = pv.Rule; /** * The text-align property, for horizontal alignment outside the rule. * * @type string * @name pv.Rule.Anchor.prototype.textAlign */ /** @private */ pv.Rule.Anchor.prototype.$textAlign = function(d) { switch (this.get("name")) { case "left": return "right"; case "bottom": case "top": case "center": return "center"; case "right": return "left"; } return null; }; /** * The text-baseline property, for vertical alignment outside the rule. * * @type string * @name pv.Rule.Anchor.prototype.textBaseline */ /** @private */ pv.Rule.Anchor.prototype.$textBaseline = function(d) { switch (this.get("name")) { case "right": case "left": case "center": return "middle"; case "top": return "bottom"; case "bottom": return "top"; } return null; }; /** * Returns the pseudo-width of the rule in pixels; read-only. * * @returns {number} the pseudo-width, in pixels. */ pv.Rule.prototype.width = function() { return this.scene[this.index].width; }; /** * Returns the pseudo-height of the rule in pixels; read-only. * * @returns {number} the pseudo-height, in pixels. */ pv.Rule.prototype.height = function() { return this.scene[this.index].height; }; /** * Overrides the default behavior of {@link Mark#buildImplied} to determine the * orientation (vertical or horizontal) of the rule. * * @param s a node in the scene graph; the instance of the rule to build. */ pv.Rule.prototype.buildImplied = function(s) { s.width = s.height = 0; /* Determine horizontal or vertical orientation. */ var l = s.left, r = s.right, t = s.top, b = s.bottom; if (((l == null) && (r == null)) || ((r != null) && (l != null))) { s.width = s.parent.width - (l = l || 0) - (r = r || 0); } else { s.height = s.parent.height - (t = t || 0) - (b = b || 0); } s.left = l; s.right = r; s.top = t; s.bottom = b; pv.Mark.prototype.buildImplied.call(this, s); }; /** * Updates the display for the specified rule instance s in the scene * graph. This implementation handles the stroke style for the rule, as well as * positional properties. * * @param s a node in the scene graph; the instance of the rule to update. */ pv.Rule.prototype.updateInstance = function(s) { var v = s.svg; /* Create the svg:line element, if necessary. */ if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "line"); s.parent.svg.appendChild(v); } /* visible, cursor, title, events, etc. */ pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* left, top */ v.setAttribute("x1", s.left); v.setAttribute("y1", s.top); v.setAttribute("x2", s.left + s.width); v.setAttribute("y2", s.top + s.height); /* stroke TODO gradient, patterns, dashes */ var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); }; /** * Constructs a new wedge with default properties. Wedges are not typically * constructed directly, but by adding to a panel or an existing mark via * {@link pv.Mark#add}. * * @class Represents a wedge, or pie slice. Specified in terms of start and end * angle, inner and outer radius, wedges can be used to construct donut charts * and polar bar charts as well. If the {@link #angle} property is used, the end * angle is implied by adding this value to start angle. By default, the start * angle is the previously-generated wedge's end angle. This design allows * explicit control over the wedge placement if desired, while offering * convenient defaults for the construction of radial graphs. * *

The center point of the circle is positioned using the standard box model. * The wedge can be stroked and filled, similar to {link Bar}. * *

See also the Wedge guide. * * @extends pv.Mark */ pv.Wedge = function() { pv.Mark.call(this); }; pv.Wedge.prototype = pv.extend(pv.Mark); pv.Wedge.prototype.type = pv.Wedge; /** * Returns "wedge". * * @returns {string} "wedge". */ pv.Wedge.toString = function() { return "wedge"; }; /** * The start angle of the wedge, in radians. The start angle is measured * clockwise from the 3 o'clock position. The default value of this property is * the end angle of the previous instance (the {@link Mark#sibling}), or -PI / 2 * for the first wedge; for pie and donut charts, typically only the * {@link #angle} property needs to be specified. * * @type number * @name pv.Wedge.prototype.startAngle */ pv.Wedge.prototype.defineProperty("startAngle"); /** * The end angle of the wedge, in radians. If not specified, the end angle is * implied as the start angle plus the {@link #angle}. * * @type number * @name pv.Wedge.prototype.endAngle */ pv.Wedge.prototype.defineProperty("endAngle"); /** * The angular span of the wedge, in radians. This property is used if end angle * is not specified. * * @type number * @name pv.Wedge.prototype.angle */ pv.Wedge.prototype.defineProperty("angle"); /** * The inner radius of the wedge, in pixels. The default value of this property * is zero; a positive value will produce a donut slice rather than a pie slice. * The inner radius can vary per-wedge. * * @type number * @name pv.Wedge.prototype.innerRadius */ pv.Wedge.prototype.defineProperty("innerRadius"); /** * The outer radius of the wedge, in pixels. This property is required. For * pies, only this radius is required; for donuts, the inner radius must be * specified as well. The outer radius can vary per-wedge. * * @type number * @name pv.Wedge.prototype.outerRadius */ pv.Wedge.prototype.defineProperty("outerRadius"); /** * The width of stroked lines, in pixels; used in conjunction with * strokeStyle to stroke the wedge's border. * * @type number * @name pv.Wedge.prototype.lineWidth */ pv.Wedge.prototype.defineProperty("lineWidth"); /** * The style of stroked lines; used in conjunction with lineWidth to * stroke the wedge's border. The default value of this property is null, * meaning wedges are not stroked by default. * * @type string * @name pv.Wedge.prototype.strokeStyle * @see pv.color */ pv.Wedge.prototype.defineProperty("strokeStyle"); /** * The wedge fill style; if non-null, the interior of the wedge is filled with * the specified color. The default value of this property is a categorical * color. * * @type string * @name pv.Wedge.prototype.fillStyle * @see pv.color */ pv.Wedge.prototype.defineProperty("fillStyle"); /** * Default properties for wedges. By default, there is no stroke and the fill * style is a categorical color. * * @type pv.Wedge */ pv.Wedge.defaults = new pv.Wedge().extend(pv.Mark.defaults) .startAngle(function() { var s = this.sibling(); return s ? s.endAngle : -Math.PI / 2; }) .innerRadius(0) .lineWidth(1.5) .strokeStyle(null) .fillStyle(pv.Colors.category20.unique); /** * Returns the mid-radius of the wedge, which is defined as half-way between the * inner and outer radii. * * @see #innerRadius * @see #outerRadius * @returns {number} the mid-radius, in pixels. */ pv.Wedge.prototype.midRadius = function() { return (this.innerRadius() + this.outerRadius()) / 2; }; /** * Returns the mid-angle of the wedge, which is defined as half-way between the * start and end angles. * * @see #startAngle * @see #endAngle * @returns {number} the mid-angle, in radians. */ pv.Wedge.prototype.midAngle = function() { return (this.startAngle() + this.endAngle()) / 2; }; /** * Constructs a new wedge anchor with default properties. * * @class Represents an anchor for a wedge mark. Wedges support five different * anchors:

In addition to positioning properties (left, right, top bottom), the * anchors support text rendering properties (text-align, text-baseline, * textAngle). Text is rendered to appear inside the wedge. * * @extends pv.Mark.Anchor */ pv.Wedge.Anchor = function() { pv.Mark.Anchor.call(this); }; pv.Wedge.Anchor.prototype = pv.extend(pv.Mark.Anchor); pv.Wedge.Anchor.prototype.type = pv.Wedge; /** * The left property; non-null. * * @type number * @name pv.Wedge.Anchor.prototype.left */ /** @private */ pv.Wedge.Anchor.prototype.$left = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "outer": return w.left() + w.outerRadius() * Math.cos(w.midAngle()); case "inner": return w.left() + w.innerRadius() * Math.cos(w.midAngle()); case "start": return w.left() + w.midRadius() * Math.cos(w.startAngle()); case "center": return w.left() + w.midRadius() * Math.cos(w.midAngle()); case "end": return w.left() + w.midRadius() * Math.cos(w.endAngle()); } return null; }; /** * The right property; non-null. * * @type number * @name pv.Wedge.Anchor.prototype.right */ /** @private */ pv.Wedge.Anchor.prototype.$right = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "outer": return w.right() + w.outerRadius() * Math.cos(w.midAngle()); case "inner": return w.right() + w.innerRadius() * Math.cos(w.midAngle()); case "start": return w.right() + w.midRadius() * Math.cos(w.startAngle()); case "center": return w.right() + w.midRadius() * Math.cos(w.midAngle()); case "end": return w.right() + w.midRadius() * Math.cos(w.endAngle()); } return null; }; /** * The top property; non-null. * * @type number * @name pv.Wedge.Anchor.prototype.top */ /** @private */ pv.Wedge.Anchor.prototype.$top = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "outer": return w.top() + w.outerRadius() * Math.sin(w.midAngle()); case "inner": return w.top() + w.innerRadius() * Math.sin(w.midAngle()); case "start": return w.top() + w.midRadius() * Math.sin(w.startAngle()); case "center": return w.top() + w.midRadius() * Math.sin(w.midAngle()); case "end": return w.top() + w.midRadius() * Math.sin(w.endAngle()); } return null; }; /** * The bottom property; non-null. * * @type number * @name pv.Wedge.Anchor.prototype.bottom */ /** @private */ pv.Wedge.Anchor.prototype.$bottom = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "outer": return w.bottom() + w.outerRadius() * Math.sin(w.midAngle()); case "inner": return w.bottom() + w.innerRadius() * Math.sin(w.midAngle()); case "start": return w.bottom() + w.midRadius() * Math.sin(w.startAngle()); case "center": return w.bottom() + w.midRadius() * Math.sin(w.midAngle()); case "end": return w.bottom() + w.midRadius() * Math.sin(w.endAngle()); } return null; }; /** * The text-align property, for horizontal alignment inside the wedge. * * @type string * @name pv.Wedge.Anchor.prototype.textAlign */ /** @private */ pv.Wedge.Anchor.prototype.$textAlign = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "outer": return pv.Wedge.upright(w.midAngle()) ? "right" : "left"; case "inner": return pv.Wedge.upright(w.midAngle()) ? "left" : "right"; default: return "center"; } }; /** * The text-baseline property, for vertical alignment inside the wedge. * * @type string * @name pv.Wedge.Anchor.prototype.textBaseline */ /** @private */ pv.Wedge.Anchor.prototype.$textBaseline = function() { var w = this.anchorTarget(); switch (this.get("name")) { case "start": return pv.Wedge.upright(w.startAngle()) ? "top" : "bottom"; case "end": return pv.Wedge.upright(w.endAngle()) ? "bottom" : "top"; default: return "middle"; } }; /** * The text-angle property, for text rotation inside the wedge. * * @type number * @name pv.Wedge.Anchor.prototype.textAngle */ /** @private */ pv.Wedge.Anchor.prototype.$textAngle = function() { var w = this.anchorTarget(); var a = 0; switch (this.get("name")) { case "center": case "inner": case "outer": a = w.midAngle(); break; case "start": a = w.startAngle(); break; case "end": a = w.endAngle(); break; } return pv.Wedge.upright(a) ? a : (a + Math.PI); }; /** * Returns true if the specified angle is considered "upright", as in, text * rendered at that angle would appear upright. If the angle is not upright, * text is rotated 180 degrees to be upright, and the text alignment properties * are correspondingly changed. * * @param {number} angle an angle, in radius. * @returns {boolean} true if the specified angle is upright. */ pv.Wedge.upright = function(angle) { angle = angle % (2 * Math.PI); angle = (angle < 0) ? (2 * Math.PI + angle) : angle; return (angle < Math.PI / 2) || (angle > 3 * Math.PI / 2); }; /** * Overrides the default behavior of {@link Mark#buildImplied} such that the end * angle is computed from the start angle and angle (angular span) if not * specified. * * @param s a node in the scene graph; the instance of the wedge to build. */ pv.Wedge.prototype.buildImplied = function(s) { pv.Mark.prototype.buildImplied.call(this, s); if (s.endAngle == null) { s.endAngle = s.startAngle + s.angle; } }; /** * Updates the display for the specified wedge instance s in the scene * graph. This implementation handles the fill and stroke style for the wedge, * as well as positional properties. * * @param s a node in the scene graph; the instance of the bar to update. */ pv.Wedge.prototype.updateInstance = function(s) { var v = s.svg; /* Create the element, if necessary. */ if (s.visible && !v) { v = s.svg = document.createElementNS(pv.ns.svg, "path"); v.setAttribute("fill-rule", "evenodd"); s.parent.svg.appendChild(v); } /* visible, cursor, title, events, etc. */ pv.Mark.prototype.updateInstance.call(this, s); if (!s.visible) return; /* left, top */ v.setAttribute("transform", "translate(" + s.left + "," + s.top +")"); /* * TODO If the angle or endAngle is updated by an event handler, the implied * properties won't recompute correctly, so this will lead to potentially * buggy redraw. How to re-evaluate implied properties on update? */ /* innerRadius, outerRadius, startAngle, endAngle */ var r1 = s.innerRadius, r2 = s.outerRadius; if (s.angle >= 2 * Math.PI) { if (r1) { v.setAttribute("d", "M0," + r2 + "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2) + "A" + r2 + "," + r2 + " 0 1,1 0," + r2 + "M0," + r1 + "A" + r1 + "," + r1 + " 0 1,1 0," + (-r1) + "A" + r1 + "," + r1 + " 0 1,1 0," + r1 + "Z"); } else { v.setAttribute("d", "M0," + r2 + "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2) + "A" + r2 + "," + r2 + " 0 1,1 0," + r2 + "Z"); } } else { var c1 = Math.cos(s.startAngle), c2 = Math.cos(s.endAngle), s1 = Math.sin(s.startAngle), s2 = Math.sin(s.endAngle); if (r1) { v.setAttribute("d", "M" + r2 * c1 + "," + r2 * s1 + "A" + r2 + "," + r2 + " 0 " + ((s.angle < Math.PI) ? "0" : "1") + ",1 " + r2 * c2 + "," + r2 * s2 + "L" + r1 * c2 + "," + r1 * s2 + "A" + r1 + "," + r1 + " 0 " + ((s.angle < Math.PI) ? "0" : "1") + ",0 " + r1 * c1 + "," + r1 * s1 + "Z"); } else { v.setAttribute("d", "M" + r2 * c1 + "," + r2 * s1 + "A" + r2 + "," + r2 + " 0 " + ((s.angle < Math.PI) ? "0" : "1") + ",1 " + r2 * c2 + "," + r2 * s2 + "L0,0Z"); } } /* fill, stroke TODO gradient, patterns */ var fill = pv.color(s.fillStyle); v.setAttribute("fill", fill.color); v.setAttribute("fill-opacity", fill.opacity); var stroke = pv.color(s.strokeStyle); v.setAttribute("stroke", stroke.color); v.setAttribute("stroke-opacity", stroke.opacity); v.setAttribute("stroke-width", s.lineWidth); }; pv.Scales = {}; pv.Scales.epsilon = 1e-30; pv.Scales.defaultBase = 10; /** * Scale is a base class for scale objects. Scale objects are used to scale the * data to a given range. The Scale object initially scales the value to the * interval [0, 1]. The values are then mapped to a given range by the range() * method. */ pv.Scales.Scale = function() { // Pixel coordinate minimum this._rMin = 0; // Pixel coordinate maximum this._rMax = 100; // Round value? this._round = true; }; /** * Sets the range to map the data to. */ pv.Scales.Scale.prototype.range = function(a, b) { if (a == undefined) { // use default values // TODO: [0, 100] may not be the best default values. // Find better default values, which may be different for each scale type. } else if (b == undefined) { this._rMin = 0; this._rMax = a; } else { this._rMin = a; this._rMax = b; } return this; }; // Accessor method for range min pv.Scales.Scale.prototype.rangeMin = function(x) { if (x == undefined) { return this._rMin; } else { this._rMin = x; return this; } }; // Accessor method for range max pv.Scales.Scale.prototype.rangeMax = function(x) { if (x == undefined) { return this._rMax; } else { this._rMax = x; return this; } }; // Accessor method for round pv.Scales.Scale.prototype.round = function(x) { if (x == undefined) { return this._round; } else { this._round = x; return this; } }; //Scales the input to the set range pv.Scales.Scale.prototype.scale = function(x) { var v = this._rMin + (this._rMax-this._rMin) * this.normalize(x); return this._round ? Math.round(v) : v; }; // Returns the inverse scaled value. pv.Scales.Scale.prototype.invert = function(y) { var n = (y - this._rMin) / (this._rMax - this._rMin); return this.unnormalize(n); }; pv.Scale = {}; pv.Scale.linear = function() { var min, max, nice = false, s, f = pv.identity; /* Property function. */ function scale() { if (s == undefined) { if (min == undefined) min = pv.min(this.$$data, f); if (max == undefined) max = pv.max(this.$$data, f); if (nice) { // TODO Only "nice" bounds set automatically. var step = Math.pow(10, Math.round(Math.log(max - min) / Math.log(10)) - 1); min = Math.floor(min / step) * step; max = Math.ceil(max / step) * step; } s = range.call(this) / (max - min); } return (f.apply(this, arguments) - min) * s; } function range() { switch (property) { case "height": case "top": case "bottom": return this.parent.height(); case "width": case "left": case "right": return this.parent.width(); default: return 1; } } scale.by = function(v) { f = v; return this; }; scale.min = function(v) { min = v; return this; }; scale.max = function(v) { max = v; return this; }; scale.nice = function(v) { nice = (arguments.length == 0) ? true : v; return this; }; scale.range = function() { if (arguments.length == 1) { o = 0; s = arguments[0]; } else { o = arguments[0]; s = arguments[1] - arguments[0]; } return this; }; return scale; }; /** * QuantitativeScale is a base class for representing quantitative numerical data * scales. */ pv.Scales.QuantitativeScale = function(min, max, base) { pv.Scales.Scale.call(this); this._min = min; this._max = max; this._base = base==undefined ? pv.Scales.defaultBase : base; }; pv.Scales.QuantitativeScale.prototype = pv.extend(pv.Scales.Scale); // Accessor method for min pv.Scales.QuantitativeScale.prototype.min = function(x) { if (x == undefined) { return this._min; } else { this._min = x; return this; } }; // Accessor method for max pv.Scales.QuantitativeScale.prototype.max = function(x) { if (x == undefined) { return this._max; } else { this._max = x; return this; } }; // Accessor method for base pv.Scales.QuantitativeScale.prototype.base = function(x) { if (x == undefined) { return this._base; } else { this._base = x; return this; } }; // Checks if the mapped interval contains x pv.Scales.QuantitativeScale.prototype.contains = function(x) { return (x >= this._min && x <= this._max); }; // Returns the step for the scale pv.Scales.QuantitativeScale.prototype.step = function(min, max, base) { if (!base) base = pv.Scales.defaultBase; var exp = Math.round(Math.log(max-min)/Math.log(base)) - 1; return Math.pow(base, exp); }; pv.Scales.dateTime = function(min, max) { return new pv.Scales.DateTimeScale(min, max); } /** * DateTimeScale DateTimeScale scales time data. */ pv.Scales.DateTimeScale = function(min, max) { pv.Scales.Scale.call(this); this._min = min; this._max = max; }; pv.Scales.DateTimeScale.prototype = pv.extend(pv.Scales.Scale); // Accessor method for min pv.Scales.DateTimeScale.prototype.min = function(x) { if (x == undefined) { return this._min; } else { this._min = x; return this; } }; // Accessor method for max pv.Scales.DateTimeScale.prototype.max = function(x) { if (x == undefined) { return this._max; } else { this._max = x; return this; } }; // Normalizes DateTimeScale value pv.Scales.DateTimeScale.prototype.normalize = function(x) { var eps = pv.Scales.epsilon; var range = this._max - this._min; return (range < eps && range > -eps) ? 0 : (x - this._min) / range; }; // Un-normalizes the value pv.Scales.DateTimeScale.prototype.unnormalize = function(n) { return n * (this._max - this._min) + this._min; }; // Checks if the mapped interval contains x pv.Scales.DateTimeScale.prototype.contains = function(x) { var t = x.valueOf(); return (t >= this._min.valueOf() && t <= this._max.valueOf()); }; // Sets min/max values to "nice" values pv.Scales.DateTimeScale.prototype.nice = function() { var span = this.span(this._min, this._max); this._min = this.round(this._min, span, false); this._max = this.round(this._max, span, true); }; /** * Calculate a list of rule values covering the time range spaced at a * configurable span. * * @param [forceSpan] If you want to force rule-generation from a span other * than the default calculated by span, pass the value here. * @param [beNice] Round the min and max values based on the span in use. If * you are passing a value for forceSpan, you may also want to pass true * for this argument. * * @return a list of rule values */ pv.Scales.DateTimeScale.prototype.ruleValues = function(forceSpan, beNice) { var min = this._min.valueOf(), max = this._max.valueOf(); var span = (forceSpan == null) ? this.span(this._min, this._max) : forceSpan; // We need to boost the step in order to avoid an infinite loop in the first // case where we round. DST can cause a case where just one step is not // enough to push round far enough. var step = Math.floor(this.step(this._min, this._max, span) * 1.5); var list = []; var d = this._min; if (beNice) { d = this.round(d, span, false); max = this.round(this._max, span, true).valueOf(); } if (span < pv.Scales.DateTimeScale.Span.MONTHS) { while (d.valueOf() <= max) { list.push(d); // we need to round to compensate for daylight savings time... d = this.round(new Date(d.valueOf()+step), span, false); } } else if (span == pv.Scales.DateTimeScale.Span.MONTHS) { // TODO: Handle quarters step = 1; while (d.valueOf() <= max) { list.push(d); d = new Date(d); d.setMonth(d.getMonth() + step); } } else { // Span.YEARS step = 1; while (d.valueOf() <= max) { list.push(d); d = new Date(d); d.setFullYear(d.getFullYear() + step); } } return list; }; // Time Span Constants pv.Scales.DateTimeScale.Span = {}; pv.Scales.DateTimeScale.Span.YEARS = 0; pv.Scales.DateTimeScale.Span.MONTHS = -1; pv.Scales.DateTimeScale.Span.DAYS = -2; pv.Scales.DateTimeScale.Span.HOURS = -3; pv.Scales.DateTimeScale.Span.MINUTES = -4; pv.Scales.DateTimeScale.Span.SECONDS = -5; pv.Scales.DateTimeScale.Span.MILLISECONDS = -6; pv.Scales.DateTimeScale.Span.WEEKS = -10; pv.Scales.DateTimeScale.Span.QUARTERS = -11; // Rounds the date pv.Scales.DateTimeScale.prototype.round = function(t, span, roundUp) { var Span = pv.Scales.DateTimeScale.Span; var d = t, bias = roundUp ? 1 : 0; if (span >= Span.YEARS) { d = new Date(t.getFullYear() + bias, 0); } else if (span == Span.MONTHS) { d = new Date(t.getFullYear(), t.getMonth() + bias); } else if (span == Span.DAYS) { d = new Date(t.getFullYear(), t.getMonth(), t.getDate() + bias); } else if (span == Span.HOURS) { d = new Date(t.getFullYear(), t.getMonth(), t.getDate(), t.getHours() + bias); } else if (span == Span.MINUTES) { d = new Date(t.getFullYear(), t.getMonth(), t.getDate(), t.getHours(), t.getMinutes() + bias); } else if (span == Span.SECONDS) { d = new Date(t.getFullYear(), t.getMonth(), t.getDate(), t.getHours(), t.getMinutes(), t.getSeconds() + bias); } else if (span == Span.MILLISECONDS) { d = new Date(d.time + (roundUp ? 1 : -1)); } else if (span == Span.WEEKS) { bias = roundUp ? 7 - d.getDay() : -d.getDay(); d = new Date(t.getFullYear(), t.getMonth(), t.getDate() + bias); } return d; }; // Returns the span of the given min/max values pv.Scales.DateTimeScale.prototype.span = function(min, max) { var MS_MIN = 60*1000, MS_HOUR = 60*MS_MIN, MS_DAY = 24*MS_HOUR, MS_WEEK = 7*MS_DAY; var Span = pv.Scales.DateTimeScale.Span; var span = max.valueOf() - min.valueOf(); var days = span / MS_DAY; // TODO: handle Weeks/Quarters if (days >= 365*2) return (1 + max.getFullYear()-min.getFullYear()); else if (days >= 60) return Span.MONTHS; else if (span/MS_WEEK > 1) return Span.WEEKS; else if (span/MS_DAY > 1) return Span.DAYS; else if (span/MS_HOUR > 1) return Span.HOURS; else if (span/MS_MIN > 1) return Span.MINUTES; else if (span/1000.0 > 1) return Span.SECONDS; else return Span.MILLISECONDS; } // Returns the step for the scale pv.Scales.DateTimeScale.prototype.step = function(min, max, span) { var Span = pv.Scales.DateTimeScale.Span; if (span > Span.YEARS) { var exp = Math.round(Math.log(Math.max(1,span-1)/Math.log(10))) - 1; return Math.pow(10, exp); } else if (span == Span.MONTHS) { return 0; } else if (span == Span.WEEKS) { return 7*24*60*60*1000; } else if (span == Span.DAYS) { return 24*60*60*1000; } else if (span == Span.HOURS) { return 60*60*1000; } else if (span == Span.MINUTES) { return 60*1000; } else if (span == Span.SECONDS) { return 1000; } else { return 1; } }; pv.Scales.linear = function(min, max, base) { return new pv.Scales.LinearScale(min, max, base); }; pv.Scales.linear.fromData = function(data, f, base) { return new pv.Scales.LinearScale(pv.min(data, f), pv.max(data, f), base); } /** * LinearScale is a QuantativeScale that spaces values linearly along the scale * range. This is the default scale for numeric types. */ pv.Scales.LinearScale = function(min, max, base) { pv.Scales.QuantitativeScale.call(this, min, max, base); }; pv.Scales.LinearScale.prototype = pv.extend(pv.Scales.QuantitativeScale); // Normalizes the value pv.Scales.LinearScale.prototype.normalize = function(x) { var eps = pv.Scales.epsilon; var range = this._max - this._min; return (range < eps && range > -eps) ? 0 : (x - this._min) / range; }; // Un-normalizes the value pv.Scales.LinearScale.prototype.unnormalize = function(n) { return n * (this._max - this._min) + this._min; }; // Sets min/max values to "nice numbers" pv.Scales.LinearScale.prototype.nice = function() { var step = this.step(this._min, this._max, this._base); this._min = Math.floor(this._min / step) * step; this._max = Math.ceil(this._max / step) * step; return this; }; // Returns a list of rule values pv.Scales.LinearScale.prototype.ruleValues = function() { var step = this.step(this._min, this._max, this._base); var start = Math.floor(this._min / step) * step; var end = Math.ceil(this._max / step) * step; var list = pv.range(start, end+step, step); // Remove precision problems // TODO move to tick rendering, not scales if (step < 1) { var exp = Math.round(Math.log(step)/Math.log(this._base)); for (var i = 0; i < list.length; i++) { list[i] = list[i].toFixed(-exp); } } // check end points if (list[0] < this._min) list.splice(0, 1); if (list[list.length-1] > this._max) list.splice(list.length-1, 1); return list; }; pv.Scales.log = function(min, max, base) { return new pv.Scales.LogScale(min, max, base); }; pv.Scales.log.fromData = function(data, f, base) { return new pv.Scales.LogScale(pv.min(data, f), pv.max(data, f), base); } /* * LogScale is a QuantativeScale that performs a log transformation of the * data. The base of the logarithm is determined by the base property. */ pv.Scales.LogScale = function(min, max, base) { pv.Scales.QuantitativeScale.call(this, min, max, base); this.update(); }; // Zero-symmetric log function pv.Scales.LogScale.log = function(x, b) { return x==0 ? 0 : x>0 ? Math.log(x)/Math.log(b) : -Math.log(-x)/Math.log(b); }; // Adjusted zero-symmetric log function pv.Scales.LogScale.zlog = function(x, b) { var s = (x < 0) ? -1 : 1; x = s*x; if (x < b) x += (b-x)/b; return s * Math.log(x) / Math.log(b); }; pv.Scales.LogScale.prototype = pv.extend(pv.Scales.QuantitativeScale); // Accessor method for min pv.Scales.LogScale.prototype.min = function(x) { var value = pv.Scales.QuantitativeScale.prototype.min.call(this, x); if (x != undefined) this.update(); return value; }; // Accessor method for max pv.Scales.LogScale.prototype.max = function(x) { var value = pv.Scales.QuantitativeScale.prototype.max.call(this, x); if (x != undefined) this.update(); return value; }; // Accessor method for base pv.Scales.LogScale.prototype.base = function(x) { var value = pv.Scales.QuantitativeScale.prototype.base.call(this, x); if (x != undefined) this.update(); return value; }; // Normalizes the value pv.Scales.LogScale.prototype.normalize = function(x) { var eps = pv.Scales.epsilon; var range = this._lmax - this._lmin; return (range < eps && range > -eps) ? 0 : (this._log(x, this._base) - this._lmin) / range; }; // Un-normalizes the value pv.Scales.LogScale.prototype.unnormalize = function(n) { // TODO: handle case where _log = zlog return Math.pow(this._base, n * (this._lmax - this._lmin) + this._lmin); }; /** * Sets min/max values to "nice numbers" For LogScale, we compute "nice" min/max * values for the log scale(_lmin, _lmax) first, then calculate the data min/max * values from the log min/max values. */ pv.Scales.LogScale.prototype.nice = function() { var step = 1; //this.step(this._lmin, this._lmax); this._lmin = Math.floor(this._lmin / step) * step; this._lmax = Math.ceil(this._lmax / step) * step; // TODO: handle case where _log = zlog this._min = Math.pow(this._base, this._lmin); this._max = Math.pow(this._base, this._lmax); return this; }; // Returns a list of rule values pv.Scales.LogScale.prototype.ruleValues = function() { var step = this.step(this._lmin, this._lmax); if (step < 1) step = 1; // bound to 1 var start = Math.floor(this._lmin); var end = Math.ceil(this._lmax); var list =[]; var i, j, b; for (i = start; i < end; i++) { // for each step // add each rule value // TODO: handle case where _log = zlog b = Math.pow(this._base, i); for (j = 1; j < this._base; j++) { if (i >= 0) list.push(b*j); else list.push((b*j).toFixed(-i)); } } list.push(b*this._base); // add max value // check end points if (list[0] < this._min) list.splice(0, 1); if (list[list.length-1] > this._max) list.splice(list.length-1, 1); return list; }; // Update log scale values pv.Scales.LogScale.prototype.update = function() { this._log = (this._min < 0 && this._max > 0) ? pv.Scales.LogScale.zlog : pv.Scales.LogScale.log; this._lmin = this._log(this._min, this._base); this._lmax = this._log(this._max, this._base); }; /** * Returns a {@link pv.Nest} operator for the specified array. This is a * convenience factory method, equivalent to new pv.Nest(array). * * @see pv.Nest * @param {array} array an array of elements to nest. * @returns {pv.Nest} a nest operator for the specified array. */ pv.nest = function(array) { return new pv.Nest(array); }; /** * Constructs a nest operator for the specified array. * * @class Represents a {@link Nest} operator for the specified array. Nesting * allows elements in an array to be grouped into a hierarchical tree * structure. The levels in the tree are specified by key functions. The * leaf nodes of the tree can be sorted by value, while the internal nodes can * be sorted by key. Finally, the tree can be returned either has a * multidimensional array via {@link #entries}, or as a hierarchical map via * {@link #map}. The {@link #rollup} routine similarly returns a map, collapsing * the elements in each leaf node using a summary function. * *

For example, consider the following tabular data structure of Barley * yields, from various sites in Minnesota during 1931-2: * *

{ yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
 * { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
 * { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" }, ...
* * To facilitate visualization, it may be useful to nest the elements first by * year, and then by variety, as follows: * *
var nest = pv.nest(yields)
 *     .key(function(d) d.year)
 *     .key(function(d) d.variety)
 *     .entries();
* * This returns a nested array. Each element of the outer array is a key-values * pair, listing the values for each distinct key: * *
{ key: 1931, values: [
 *   { key: "Manchuria", values: [
 *       { yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
 *       { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
 *       { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" },
 *       ...
 *     ]},
 *   { key: "Glabron", values: [
 *       { yield: 43.07, variety: "Glabron", year: 1931, site: "University Farm" },
 *       { yield: 55.20, variety: "Glabron", year: 1931, site: "Waseca" },
 *       ...
 *     ]},
 *   ]},
 * { key: 1932, values: ... }
* * Further details, including sorting and rollup, is provided below on the * corresponding methods. * * @param {array} array an array of elements to nest. */ pv.Nest = function(array) { this.array = array; this.keys = []; }; /** * Nests using the specified key function. Multiple keys may be added to the * nest; the array elements will be nested in the order keys are specified. * * @param {function} key a key function; must return a string or suitable map * key. * @return {pv.Nest} this. */ pv.Nest.prototype.key = function(key) { this.keys.push(key); return this; }; /** * Sorts the previously-added keys. The natural sort order is used by default * (see {@link pv.naturalOrder}); if an alternative order is desired, * order should be a comparator function. If this method is not called * (i.e., keys are unsorted), keys will appear in the order they appear * in the underlying elements array. For example, * *
pv.nest(yields)
 *     .key(function(d) d.year)
 *     .key(function(d) d.variety)
 *     .sortKeys()
 *     .entries()
* * groups yield data by year, then variety, and sorts the variety groups * lexicographically (since the variety attribute is a string). * *

Key sort order is only used in conjunction with {@link #entries}, which * returns an array of key-values pairs. If the nest is used to construct a * {@link #map} instead, keys are unsorted. * * @param {function} [order] an optional comparator function. * @returns {pv.Nest} this. */ pv.Nest.prototype.sortKeys = function(order) { this.keys[this.keys.length - 1].order = order || pv.naturalOrder; return this; }; /** * Sorts the leaf values. The natural sort order is used by default (see * {@link pv.naturalOrder}); if an alternative order is desired, order * should be a comparator function. If this method is not called (i.e., values * are unsorted), values will appear in the order they appear in the * underlying elements array. For example, * *

pv.nest(yields)
 *     .key(function(d) d.year)
 *     .key(function(d) d.variety)
 *     .sortValues(function(a, b) a.yield - b.yield)
 *     .entries()
* * groups yield data by year, then variety, and sorts the values for each * variety group by yield. * *

Value sort order, unlike keys, applies to both {@link #entries} and * {@link #map}. It has no effect on {@link #rollup}. * * @param {function} [order] an optional comparator function. * @return {pv.Nest} this. */ pv.Nest.prototype.sortValues = function(order) { this.order = order || pv.naturalOrder; return this; }; /** * Returns a hierarchical map of values. Each key adds one level to the * hierarchy. With only a single key, the returned map will have a key for each * distinct value of the key function; the correspond value with be an array of * elements with that key value. If a second key is added, this will be a nested * map. For example: * *

pv.nest(yields)
 *     .key(function(d) d.variety)
 *     .key(function(d) d.site)
 *     .map()
* * returns a map m such that m[variety][site] is an array, a subset of * yields, with each element having the given variety and site. * * @returns a hierarchical map of values. */ pv.Nest.prototype.map = function() { var map = {}, values = []; /* Build the map. */ for (var i, j = 0; j < this.array.length; j++) { var x = this.array[j]; var m = map; for (i = 0; i < this.keys.length - 1; i++) { var k = this.keys[i](x); if (!m[k]) m[k] = {}; m = m[k]; } k = this.keys[i](x); if (!m[k]) { var a = []; values.push(a); m[k] = a; } m[k].push(x); } /* Sort each leaf array. */ if (this.order) { for (var i = 0; i < values.length; i++) { values[i].sort(this.order); } } return map; }; /** * Returns a hierarchical nested array. This method is similar to * {@link pv#entries}, but works recursively on the entire hierarchy. Rather * than returning a map like {@link #map}, this method returns a nested * array. Each element of the array has a key and values * field. For leaf nodes, the values array will be a subset of the * underlying elements array; for non-leaf nodes, the values array will * contain more key-values pairs. * *

For an example usage, see the {@link Nest} constructor. * * @returns a hierarchical nested array. */ pv.Nest.prototype.entries = function() { /** Recursively extracts the entries for the given map. */ function entries(map) { var array = []; for (var k in map) { var v = map[k]; array.push({ key: k, values: (v instanceof Array) ? v : entries(v) }); }; return array; } /** Recursively sorts the values for the given key-values array. */ function sort(array, i) { var o = this.keys[i].order; if (o) array.sort(function(a, b) { return o(a.key, b.key); }); if (++i < this.keys.length) { for (var j = 0; j < array.length; j++) { sort.call(this, array[j].values, i); } } return array; } return sort.call(this, entries(this.map()), 0); }; /** * Returns a rollup map. The behavior of this method is the same as * {@link #map}, except that the leaf values are replaced with the return value * of the specified rollup function f. For example, * *

pv.nest(yields)
 *      .key(function(d) d.site)
 *      .rollup(function(v) pv.median(v, function(d) d.yield))
* * first groups yield data by site, and then returns a map from site to median * yield for the given site. * * @see #map * @param {function} f a rollup function. * @returns a hierarhical map, with the leaf values computed by f. */ pv.Nest.prototype.rollup = function(f) { /** Recursively descends to the leaf nodes (arrays) and does rollup. */ function rollup(map) { for (var key in map) { var value = map[key]; if (value instanceof Array) { map[key] = f(value); } else { rollup(value); } } return map; } return rollup(this.map()); }; pv.Scales.ordinal = function(ordinals) { return new pv.Scales.OrdinalScale(ordinals); }; /** * OrdinalScale is a Scale for ordered sequential data. This supports both * numeric and non-numeric data, and simply places each element in sequence * using the ordering found in the input data array. */ pv.Scales.OrdinalScale = function(ordinals) { pv.Scales.Scale.call(this); /* Filter the specified ordinals to their unique values. */ var seen = {}; this._ordinals = []; for (var i = 0; i < ordinals.length; i++) { var o = ordinals[i]; if (seen[o] == undefined) { seen[o] = true; this._ordinals.push(o); } } this._map = pv.numerate(this._ordinals); }; pv.Scales.OrdinalScale.prototype = pv.extend(pv.Scales.Scale); // Accessor method for ordinals pv.Scales.OrdinalScale.prototype.ordinals = function(ordinals) { if (ordinals == undefined) { return this._ordinals; } else { this._ordinals = ordinals; this._map = pv.numerate(ordinals); return this; } }; // Normalizes the value pv.Scales.OrdinalScale.prototype.normalize = function(x) { var i = this._map[x]; // if x not an ordinal value(assume x is an index value) if (i == undefined) i = x; // Not sure if the value should be shifted return (i == undefined) ? -1 : (i + 0.5) / this._ordinals.length; }; // Returns the ordinal values for i pv.Scales.OrdinalScale.prototype.unnormalize = function(n) { var i = Math.floor(n * this._ordinals.length - 0.5); return this._ordinals[i]; }; // Returns a list of rule values pv.Scales.OrdinalScale.prototype.ruleValues = function() { return pv.range(0.5, this._ordinals.length-0.5); }; // Returns the width between rules pv.Scales.OrdinalScale.prototype.ruleWidth = function() { return this.scale(1/this._ordinals.length); }; pv.Scales.root = function(min, max, base) { return new pv.Scales.RootScale(min, max, base); }; pv.Scales.root.fromData = function(data, f, base) { return new pv.Scales.RootScale(pv.min(data, f), pv.max(data, f), base); } /** * RootScale is a QuantativeScale that performs a root transformation of the * data. This could be a square root or any arbitrary power. A root scale may * be a many-to-one mapping where the reverse mapping will not be correct. */ pv.Scales.RootScale = function(min, max, base) { if (min instanceof Array) { if (max == undefined) max = 2; // default base for root is 2. } else { if (base == undefined) base = 2; // default base for root is 2. } pv.Scales.QuantitativeScale.call(this, min, max, base); this.update(); }; // Returns the root value with base b pv.Scales.RootScale.root = function (x, b) { var s = (x < 0) ? -1 : 1; return s * Math.pow(s * x, 1 / b); }; pv.Scales.RootScale.prototype = pv.extend(pv.Scales.QuantitativeScale); // Accessor method for min pv.Scales.RootScale.prototype.min = function(x) { var value = pv.Scales.QuantitativeScale.prototype.min.call(this, x); if (x != undefined) this.update(); return value; }; // Accessor method for max pv.Scales.RootScale.prototype.max = function(x) { var value = pv.Scales.QuantitativeScale.prototype.max.call(this, x); if (x != undefined) this.update(); return value; }; // Accessor method for base pv.Scales.RootScale.prototype.base = function(x) { var value = pv.Scales.QuantitativeScale.prototype.base.call(this, x); if (x != undefined) this.update(); return value; }; // Normalizes the value pv.Scales.RootScale.prototype.normalize = function(x) { var eps = pv.Scales.epsilon; var range = this._rmax - this._rmin; return (range < eps && range > -eps) ? 0 : (pv.Scales.RootScale.root(x, this._base) - this._rmin) / (this._rmax - this._rmin); }; // Un-normalizes the value pv.Scales.RootScale.prototype.unnormalize = function(n) { return Math.pow(n * (this._rmax - this._rmin) + this._rmin, this._base); }; // Sets min/max values to "nice numbers" pv.Scales.RootScale.prototype.nice = function() { var step = this.step(this._rmin, this._rmax); this._rmin = Math.floor(this._rmin / step) * step; this._rmax = Math.ceil(this._rmax / step) * step; this._min = Math.pow(this._rmin, this._base); this._max = Math.pow(this._rmax, this._base); return this; }; // Returns a list of rule values // The rule values of a root scale should be the powers // of integers, e.g. 1, 4, 9, ... for base = 2 // TODO: This function needs further testing pv.Scales.RootScale.prototype.ruleValues = function() { var step = this.step(this._rmin, this._rmax); // if (step < 1) step = 1; // bound to 1 // TODO: handle decimal values var s; var list = pv.range(Math.floor(this._rmin), Math.ceil(this._rmax), step); for (var i = 0; i < list.length; i++) { s = (list[i] < 0) ? -1 : 1; list[i] = s*Math.pow(list[i], this._base); } // check end points if (list[0] < this._min) list.splice(0, 1); if (list[list.length-1] > this._max) list.splice(list.length-1, 1); return list; }; // Update root scale values pv.Scales.RootScale.prototype.update = function() { var rt = pv.Scales.RootScale.root; this._rmin = rt(this._min, this._base); this._rmax = rt(this._max, this._base); }; return pv; }();