/* sha1.c - SHA1 hash function * Copyright (C) 1998, 2001, 2002, 2003, 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors: * * "abc" * A999 3E36 4706 816A BA3E 2571 7850 C26C 9CD0 D89D * * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 8498 3E44 1C3B D26E BAAE 4AA1 F951 29E5 E546 70F1 */ #include #include #include #include #ifdef HAVE_STDINT_H # include #endif #include "g10lib.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher.h" #include "sha1.h" /* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */ #undef USE_SSSE3 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_SSSE3 1 #endif /* USE_AVX indicates whether to compile with Intel AVX code. */ #undef USE_AVX #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX 1 #endif /* USE_BMI2 indicates whether to compile with Intel AVX/BMI2 code. */ #undef USE_BMI2 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ defined(HAVE_GCC_INLINE_ASM_BMI2) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_BMI2 1 #endif /* USE_AVX2 indicates whether to compile with Intel AVX2/BMI2 code. */ #undef USE_AVX2 #if defined(USE_BMI2) && defined(HAVE_GCC_INLINE_ASM_AVX2) # define USE_AVX2 1 #endif /* USE_SHAEXT indicates whether to compile with Intel SHA Extension code. */ #undef USE_SHAEXT #if defined(HAVE_GCC_INLINE_ASM_SHAEXT) && \ defined(HAVE_GCC_INLINE_ASM_SSE41) && \ defined(ENABLE_SHAEXT_SUPPORT) # define USE_SHAEXT 1 #endif /* USE_NEON indicates whether to enable ARM NEON assembly code. */ #undef USE_NEON #ifdef ENABLE_NEON_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_NEON) # define USE_NEON 1 # endif #endif /* USE_ARM_CE indicates whether to enable ARMv8 Crypto Extension assembly * code. */ #undef USE_ARM_CE #ifdef ENABLE_ARM_CRYPTO_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO) # define USE_ARM_CE 1 # elif defined(__AARCH64EL__) \ && defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO) # define USE_ARM_CE 1 # endif #endif /* A macro to test whether P is properly aligned for an u32 type. Note that config.h provides a suitable replacement for uintptr_t if it does not exist in stdint.h. */ /* #if __GNUC__ >= 2 */ /* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % __alignof__ (u32))) */ /* #else */ /* # define U32_ALIGNED_P(p) (!(((uintptr_t)p) % sizeof (u32))) */ /* #endif */ /* Assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #undef ASM_EXTRA_STACK #if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_BMI2) || \ defined(USE_SHAEXT) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # define ASM_EXTRA_STACK (10 * 16 + sizeof(void *) * 4) # else # define ASM_FUNC_ABI # define ASM_EXTRA_STACK 0 # endif #endif #ifdef USE_SSSE3 unsigned int _gcry_sha1_transform_amd64_ssse3 (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; static unsigned int do_sha1_transform_amd64_ssse3 (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_amd64_ssse3 (&hd->h0, data, nblks) + ASM_EXTRA_STACK; } #endif #ifdef USE_AVX unsigned int _gcry_sha1_transform_amd64_avx (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; static unsigned int do_sha1_transform_amd64_avx (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_amd64_avx (&hd->h0, data, nblks) + ASM_EXTRA_STACK; } #endif #ifdef USE_BMI2 unsigned int _gcry_sha1_transform_amd64_avx_bmi2 (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; static unsigned int do_sha1_transform_amd64_avx_bmi2 (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_amd64_avx_bmi2 (&hd->h0, data, nblks) + ASM_EXTRA_STACK; } #ifdef USE_AVX2 unsigned int _gcry_sha1_transform_amd64_avx2_bmi2 (void *state, const unsigned char *data, size_t nblks) ASM_FUNC_ABI; static unsigned int do_sha1_transform_amd64_avx2_bmi2 (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; /* AVX2/BMI2 function only handles pair of blocks so nblks needs to be * multiple of 2 and function does not handle zero nblks. Use AVX/BMI2 * code to handle these cases. */ if (nblks <= 1) return do_sha1_transform_amd64_avx_bmi2 (ctx, data, nblks); if (nblks & 1) { (void)_gcry_sha1_transform_amd64_avx_bmi2 (&hd->h0, data, 1); nblks--; data += 64; } return _gcry_sha1_transform_amd64_avx2_bmi2 (&hd->h0, data, nblks) + ASM_EXTRA_STACK; } #endif /* USE_AVX2 */ #endif /* USE_BMI2 */ #ifdef USE_SHAEXT /* Does not need ASM_FUNC_ABI */ unsigned int _gcry_sha1_transform_intel_shaext (void *state, const unsigned char *data, size_t nblks); static unsigned int do_sha1_transform_intel_shaext (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_intel_shaext (&hd->h0, data, nblks); } #endif #ifdef USE_NEON unsigned int _gcry_sha1_transform_armv7_neon (void *state, const unsigned char *data, size_t nblks); static unsigned int do_sha1_transform_armv7_neon (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_armv7_neon (&hd->h0, data, nblks); } #endif #ifdef USE_ARM_CE unsigned int _gcry_sha1_transform_armv8_ce (void *state, const unsigned char *data, size_t nblks); static unsigned int do_sha1_transform_armv8_ce (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; return _gcry_sha1_transform_armv8_ce (&hd->h0, data, nblks); } #endif #ifdef SHA1_USE_S390X_CRYPTO #include "asm-inline-s390x.h" static unsigned int do_sha1_transform_s390x (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; kimd_execute (KMID_FUNCTION_SHA1, &hd->h0, data, nblks * 64); return 0; } static unsigned int do_sha1_final_s390x (void *ctx, const unsigned char *data, size_t datalen, u32 len_msb, u32 len_lsb) { SHA1_CONTEXT *hd = ctx; /* Make sure that 'final_len' is positioned at correct offset relative * to 'h0'. This is because we are passing 'h0' pointer as start of * parameter block to 'klmd' instruction. */ gcry_assert (offsetof (SHA1_CONTEXT, final_len_msb) - offsetof (SHA1_CONTEXT, h0) == 5 * sizeof(u32)); gcry_assert (offsetof (SHA1_CONTEXT, final_len_lsb) - offsetof (SHA1_CONTEXT, final_len_msb) == 1 * sizeof(u32)); hd->final_len_msb = len_msb; hd->final_len_lsb = len_lsb; klmd_execute (KMID_FUNCTION_SHA1, &hd->h0, data, datalen); return 0; } #endif static unsigned int do_transform_generic (void *c, const unsigned char *data, size_t nblks); static void sha1_init (void *context, unsigned int flags) { SHA1_CONTEXT *hd = context; unsigned int features = _gcry_get_hw_features (); (void)flags; hd->h0 = 0x67452301; hd->h1 = 0xefcdab89; hd->h2 = 0x98badcfe; hd->h3 = 0x10325476; hd->h4 = 0xc3d2e1f0; hd->bctx.nblocks = 0; hd->bctx.nblocks_high = 0; hd->bctx.count = 0; hd->bctx.blocksize_shift = _gcry_ctz(64); /* Order of feature checks is important here; last match will be * selected. Keep slower implementations at the top and faster at * the bottom. */ hd->bctx.bwrite = do_transform_generic; #ifdef USE_SSSE3 if ((features & HWF_INTEL_SSSE3) != 0) hd->bctx.bwrite = do_sha1_transform_amd64_ssse3; #endif #ifdef USE_AVX /* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs. * Therefore use this implementation on Intel CPUs only. */ if ((features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD)) hd->bctx.bwrite = do_sha1_transform_amd64_avx; #endif #ifdef USE_BMI2 if ((features & HWF_INTEL_AVX) && (features & HWF_INTEL_BMI2)) hd->bctx.bwrite = do_sha1_transform_amd64_avx_bmi2; #endif #ifdef USE_AVX2 if ((features & HWF_INTEL_AVX2) && (features & HWF_INTEL_AVX) && (features & HWF_INTEL_BMI2)) hd->bctx.bwrite = do_sha1_transform_amd64_avx2_bmi2; #endif #ifdef USE_SHAEXT if ((features & HWF_INTEL_SHAEXT) && (features & HWF_INTEL_SSE4_1)) hd->bctx.bwrite = do_sha1_transform_intel_shaext; #endif #ifdef USE_NEON if ((features & HWF_ARM_NEON) != 0) hd->bctx.bwrite = do_sha1_transform_armv7_neon; #endif #ifdef USE_ARM_CE if ((features & HWF_ARM_SHA1) != 0) hd->bctx.bwrite = do_sha1_transform_armv8_ce; #endif #ifdef SHA1_USE_S390X_CRYPTO hd->use_s390x_crypto = 0; if ((features & HWF_S390X_MSA) != 0) { if ((kimd_query () & km_function_to_mask (KMID_FUNCTION_SHA1)) && (klmd_query () & km_function_to_mask (KMID_FUNCTION_SHA1))) { hd->bctx.bwrite = do_sha1_transform_s390x; hd->use_s390x_crypto = 1; } } #endif (void)features; } /* * Initialize the context HD. This is used to prepare the use of * _gcry_sha1_mixblock. WARNING: This is a special purpose function * for exclusive use by random-csprng.c. */ void _gcry_sha1_mixblock_init (SHA1_CONTEXT *hd) { sha1_init (hd, 0); } /* Round function macros. */ #define K1 0x5A827999L #define K2 0x6ED9EBA1L #define K3 0x8F1BBCDCL #define K4 0xCA62C1D6L #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) #define F2(x,y,z) ( x ^ y ^ z ) #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) #define F4(x,y,z) ( x ^ y ^ z ) #define M(i) ( tm = x[ i &0x0f] \ ^ x[(i-14)&0x0f] \ ^ x[(i-8) &0x0f] \ ^ x[(i-3) &0x0f], \ (x[i&0x0f] = rol(tm, 1))) #define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \ + f( b, c, d ) \ + k \ + m; \ b = rol( b, 30 ); \ } while(0) /* * Transform NBLOCKS of each 64 bytes (16 32-bit words) at DATA. */ static unsigned int do_transform_generic (void *ctx, const unsigned char *data, size_t nblks) { SHA1_CONTEXT *hd = ctx; do { const u32 *idata = (const void *)data; u32 a, b, c, d, e; /* Local copies of the chaining variables. */ u32 tm; /* Helper. */ u32 x[16]; /* The array we work on. */ #define I(i) (x[i] = buf_get_be32(idata + i)) /* Get the values of the chaining variables. */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; /* Transform. */ R( a, b, c, d, e, F1, K1, I( 0) ); R( e, a, b, c, d, F1, K1, I( 1) ); R( d, e, a, b, c, F1, K1, I( 2) ); R( c, d, e, a, b, F1, K1, I( 3) ); R( b, c, d, e, a, F1, K1, I( 4) ); R( a, b, c, d, e, F1, K1, I( 5) ); R( e, a, b, c, d, F1, K1, I( 6) ); R( d, e, a, b, c, F1, K1, I( 7) ); R( c, d, e, a, b, F1, K1, I( 8) ); R( b, c, d, e, a, F1, K1, I( 9) ); R( a, b, c, d, e, F1, K1, I(10) ); R( e, a, b, c, d, F1, K1, I(11) ); R( d, e, a, b, c, F1, K1, I(12) ); R( c, d, e, a, b, F1, K1, I(13) ); R( b, c, d, e, a, F1, K1, I(14) ); R( a, b, c, d, e, F1, K1, I(15) ); R( e, a, b, c, d, F1, K1, M(16) ); R( d, e, a, b, c, F1, K1, M(17) ); R( c, d, e, a, b, F1, K1, M(18) ); R( b, c, d, e, a, F1, K1, M(19) ); R( a, b, c, d, e, F2, K2, M(20) ); R( e, a, b, c, d, F2, K2, M(21) ); R( d, e, a, b, c, F2, K2, M(22) ); R( c, d, e, a, b, F2, K2, M(23) ); R( b, c, d, e, a, F2, K2, M(24) ); R( a, b, c, d, e, F2, K2, M(25) ); R( e, a, b, c, d, F2, K2, M(26) ); R( d, e, a, b, c, F2, K2, M(27) ); R( c, d, e, a, b, F2, K2, M(28) ); R( b, c, d, e, a, F2, K2, M(29) ); R( a, b, c, d, e, F2, K2, M(30) ); R( e, a, b, c, d, F2, K2, M(31) ); R( d, e, a, b, c, F2, K2, M(32) ); R( c, d, e, a, b, F2, K2, M(33) ); R( b, c, d, e, a, F2, K2, M(34) ); R( a, b, c, d, e, F2, K2, M(35) ); R( e, a, b, c, d, F2, K2, M(36) ); R( d, e, a, b, c, F2, K2, M(37) ); R( c, d, e, a, b, F2, K2, M(38) ); R( b, c, d, e, a, F2, K2, M(39) ); R( a, b, c, d, e, F3, K3, M(40) ); R( e, a, b, c, d, F3, K3, M(41) ); R( d, e, a, b, c, F3, K3, M(42) ); R( c, d, e, a, b, F3, K3, M(43) ); R( b, c, d, e, a, F3, K3, M(44) ); R( a, b, c, d, e, F3, K3, M(45) ); R( e, a, b, c, d, F3, K3, M(46) ); R( d, e, a, b, c, F3, K3, M(47) ); R( c, d, e, a, b, F3, K3, M(48) ); R( b, c, d, e, a, F3, K3, M(49) ); R( a, b, c, d, e, F3, K3, M(50) ); R( e, a, b, c, d, F3, K3, M(51) ); R( d, e, a, b, c, F3, K3, M(52) ); R( c, d, e, a, b, F3, K3, M(53) ); R( b, c, d, e, a, F3, K3, M(54) ); R( a, b, c, d, e, F3, K3, M(55) ); R( e, a, b, c, d, F3, K3, M(56) ); R( d, e, a, b, c, F3, K3, M(57) ); R( c, d, e, a, b, F3, K3, M(58) ); R( b, c, d, e, a, F3, K3, M(59) ); R( a, b, c, d, e, F4, K4, M(60) ); R( e, a, b, c, d, F4, K4, M(61) ); R( d, e, a, b, c, F4, K4, M(62) ); R( c, d, e, a, b, F4, K4, M(63) ); R( b, c, d, e, a, F4, K4, M(64) ); R( a, b, c, d, e, F4, K4, M(65) ); R( e, a, b, c, d, F4, K4, M(66) ); R( d, e, a, b, c, F4, K4, M(67) ); R( c, d, e, a, b, F4, K4, M(68) ); R( b, c, d, e, a, F4, K4, M(69) ); R( a, b, c, d, e, F4, K4, M(70) ); R( e, a, b, c, d, F4, K4, M(71) ); R( d, e, a, b, c, F4, K4, M(72) ); R( c, d, e, a, b, F4, K4, M(73) ); R( b, c, d, e, a, F4, K4, M(74) ); R( a, b, c, d, e, F4, K4, M(75) ); R( e, a, b, c, d, F4, K4, M(76) ); R( d, e, a, b, c, F4, K4, M(77) ); R( c, d, e, a, b, F4, K4, M(78) ); R( b, c, d, e, a, F4, K4, M(79) ); /* Update the chaining variables. */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; data += 64; } while (--nblks); return 88+4*sizeof(void*); } /* * Apply the SHA-1 transform function on the buffer BLOCKOF64BYTE * which must have a length 64 bytes. BLOCKOF64BYTE must be 32-bit * aligned. Updates the 20 bytes in BLOCKOF64BYTE with its mixed * content. Returns the number of bytes which should be burned on the * stack. You need to use _gcry_sha1_mixblock_init to initialize the * context. * WARNING: This is a special purpose function for exclusive use by * random-csprng.c. */ unsigned int _gcry_sha1_mixblock (SHA1_CONTEXT *hd, void *blockof64byte) { u32 *p = blockof64byte; unsigned int nburn; nburn = (*hd->bctx.bwrite) (hd, blockof64byte, 1); p[0] = hd->h0; p[1] = hd->h1; p[2] = hd->h2; p[3] = hd->h3; p[4] = hd->h4; return nburn; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 20 bytes representing the digest. */ static void sha1_final(void *context) { SHA1_CONTEXT *hd = context; u32 t, th, msb, lsb; unsigned char *p; unsigned int burn; t = hd->bctx.nblocks; if (sizeof t == sizeof hd->bctx.nblocks) th = hd->bctx.nblocks_high; else th = hd->bctx.nblocks >> 32; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = (th << 6) | (t >> 26); /* add the count */ t = lsb; if( (lsb += hd->bctx.count) < t ) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (0) { } #ifdef SHA1_USE_S390X_CRYPTO else if (hd->use_s390x_crypto) { burn = do_sha1_final_s390x (hd, hd->bctx.buf, hd->bctx.count, msb, lsb); } #endif else if (hd->bctx.count < 56) /* enough room */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */ if (hd->bctx.count < 56) memset (&hd->bctx.buf[hd->bctx.count], 0, 56 - hd->bctx.count); /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 56, msb); buf_put_be32(hd->bctx.buf + 60, lsb); burn = (*hd->bctx.bwrite) ( hd, hd->bctx.buf, 1 ); } else /* need one extra block */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */ /* fill pad and next block with zeroes */ memset (&hd->bctx.buf[hd->bctx.count], 0, 64 - hd->bctx.count + 56); /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 64 + 56, msb); buf_put_be32(hd->bctx.buf + 64 + 60, lsb); burn = (*hd->bctx.bwrite) ( hd, hd->bctx.buf, 2 ); } p = hd->bctx.buf; #define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); #undef X hd->bctx.count = 0; _gcry_burn_stack (burn); } static unsigned char * sha1_read( void *context ) { SHA1_CONTEXT *hd = context; return hd->bctx.buf; } /**************** * Shortcut functions which puts the hash value of the supplied buffer * into outbuf which must have a size of 20 bytes. */ void _gcry_sha1_hash_buffer (void *outbuf, const void *buffer, size_t length) { SHA1_CONTEXT hd; sha1_init (&hd, 0); _gcry_md_block_write (&hd, buffer, length); sha1_final (&hd); memcpy (outbuf, hd.bctx.buf, 20); } /* Variant of the above shortcut function using a multiple buffers. */ void _gcry_sha1_hash_buffers (void *outbuf, const gcry_buffer_t *iov, int iovcnt) { SHA1_CONTEXT hd; sha1_init (&hd, 0); for (;iovcnt > 0; iov++, iovcnt--) _gcry_md_block_write (&hd, (const char*)iov[0].data + iov[0].off, iov[0].len); sha1_final (&hd); memcpy (outbuf, hd.bctx.buf, 20); } /* Self-test section. */ static gpg_err_code_t selftests_sha1 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 0, "abc", 3, "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E" "\x25\x71\x78\x50\xC2\x6C\x9C\xD0\xD8\x9D", 20); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x84\x98\x3E\x44\x1C\x3B\xD2\x6E\xBA\xAE" "\x4A\xA1\xF9\x51\x29\xE5\xE5\x46\x70\xF1", 20); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA1, 1, NULL, 0, "\x34\xAA\x97\x3C\xD4\xC4\xDA\xA4\xF6\x1E" "\xEB\x2B\xDB\xAD\x27\x31\x65\x34\x01\x6F", 20); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA1, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; switch (algo) { case GCRY_MD_SHA1: ec = selftests_sha1 (extended, report); break; default: ec = GPG_ERR_DIGEST_ALGO; break; } return ec; } static unsigned char asn[15] = /* Object ID is 1.3.14.3.2.26 */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static gcry_md_oid_spec_t oid_spec_sha1[] = { /* iso.member-body.us.rsadsi.pkcs.pkcs-1.5 (sha1WithRSAEncryption) */ { "1.2.840.113549.1.1.5" }, /* iso.member-body.us.x9-57.x9cm.3 (dsaWithSha1)*/ { "1.2.840.10040.4.3" }, /* from NIST's OIW (sha1) */ { "1.3.14.3.2.26" }, /* from NIST OIW (sha-1WithRSAEncryption) */ { "1.3.14.3.2.29" }, /* iso.member-body.us.ansi-x9-62.signatures.ecdsa-with-sha1 */ { "1.2.840.10045.4.1" }, { NULL }, }; gcry_md_spec_t _gcry_digest_spec_sha1 = { GCRY_MD_SHA1, {0, 1}, "SHA1", asn, DIM (asn), oid_spec_sha1, 20, sha1_init, _gcry_md_block_write, sha1_final, sha1_read, NULL, _gcry_sha1_hash_buffer, _gcry_sha1_hash_buffers, sizeof (SHA1_CONTEXT), run_selftests };