/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "MediaCache.h" #include "ChannelMediaResource.h" #include "FileBlockCache.h" #include "MediaBlockCacheBase.h" #include "MediaResource.h" #include "MemoryBlockCache.h" #include "mozilla/Attributes.h" #include "mozilla/ClearOnShutdown.h" #include "mozilla/ErrorNames.h" #include "mozilla/Logging.h" #include "mozilla/Monitor.h" #include "mozilla/Preferences.h" #include "mozilla/Services.h" #include "mozilla/StaticPtr.h" #include "mozilla/StaticPrefs_browser.h" #include "mozilla/StaticPrefs_media.h" #include "mozilla/Telemetry.h" #include "nsContentUtils.h" #include "nsINetworkLinkService.h" #include "nsIObserverService.h" #include "nsPrintfCString.h" #include "nsProxyRelease.h" #include "nsTHashSet.h" #include "nsThreadUtils.h" #include "prio.h" #include "VideoUtils.h" #include namespace mozilla { #undef LOG #undef LOGI #undef LOGE LazyLogModule gMediaCacheLog("MediaCache"); #define LOG(...) MOZ_LOG(gMediaCacheLog, LogLevel::Debug, (__VA_ARGS__)) #define LOGI(...) MOZ_LOG(gMediaCacheLog, LogLevel::Info, (__VA_ARGS__)) #define LOGE(...) \ NS_DebugBreak(NS_DEBUG_WARNING, nsPrintfCString(__VA_ARGS__).get(), nullptr, \ __FILE__, __LINE__) // For HTTP seeking, if number of bytes needing to be // seeked forward is less than this value then a read is // done rather than a byte range request. // // If we assume a 100Mbit connection, and assume reissuing an HTTP seek causes // a delay of 200ms, then in that 200ms we could have simply read ahead 2MB. So // setting SEEK_VS_READ_THRESHOLD to 1MB sounds reasonable. static const int64_t SEEK_VS_READ_THRESHOLD = 1 * 1024 * 1024; // Readahead blocks for non-seekable streams will be limited to this // fraction of the cache space. We don't normally evict such blocks // because replacing them requires a seek, but we need to make sure // they don't monopolize the cache. static const double NONSEEKABLE_READAHEAD_MAX = 0.5; // Data N seconds before the current playback position is given the same // priority as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current // playback position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that // data in the past is less likely to be played again than data in the future. // We want to give data just behind the current playback position reasonably // high priority in case codecs need to retrieve that data (e.g. because // tracks haven't been muxed well or are being decoded at uneven rates). // 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the // current playback position as will be kept ahead of the current playback // position. static const uint32_t REPLAY_PENALTY_FACTOR = 3; // When looking for a reusable block, scan forward this many blocks // from the desired "best" block location to look for free blocks, // before we resort to scanning the whole cache. The idea is to try to // store runs of stream blocks close-to-consecutively in the cache if we // can. static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16; #ifdef DEBUG // Turn this on to do very expensive cache state validation // #define DEBUG_VERIFY_CACHE #endif class MediaCacheFlusher final : public nsIObserver, public nsSupportsWeakReference { public: NS_DECL_ISUPPORTS NS_DECL_NSIOBSERVER static void RegisterMediaCache(MediaCache* aMediaCache); static void UnregisterMediaCache(MediaCache* aMediaCache); private: MediaCacheFlusher() = default; ~MediaCacheFlusher() = default; // Singleton instance created when a first MediaCache is registered, and // released when the last MediaCache is unregistered. // The observer service will keep a weak reference to it, for notifications. static StaticRefPtr gMediaCacheFlusher; nsTArray mMediaCaches; }; /* static */ StaticRefPtr MediaCacheFlusher::gMediaCacheFlusher; NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference) /* static */ void MediaCacheFlusher::RegisterMediaCache(MediaCache* aMediaCache) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (!gMediaCacheFlusher) { gMediaCacheFlusher = new MediaCacheFlusher(); nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited", true); observerService->AddObserver(gMediaCacheFlusher, "cacheservice:empty-cache", true); observerService->AddObserver( gMediaCacheFlusher, "contentchild:network-link-type-changed", true); observerService->AddObserver(gMediaCacheFlusher, NS_NETWORK_LINK_TYPE_TOPIC, true); } } gMediaCacheFlusher->mMediaCaches.AppendElement(aMediaCache); } /* static */ void MediaCacheFlusher::UnregisterMediaCache(MediaCache* aMediaCache) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); gMediaCacheFlusher->mMediaCaches.RemoveElement(aMediaCache); if (gMediaCacheFlusher->mMediaCaches.Length() == 0) { gMediaCacheFlusher = nullptr; } } class MediaCache { using AutoLock = MonitorAutoLock; public: NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaCache) friend class MediaCacheStream::BlockList; typedef MediaCacheStream::BlockList BlockList; static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE; // Get an instance of a MediaCache (or nullptr if initialization failed). // aContentLength is the content length if known already, otherwise -1. // If the length is known and considered small enough, a discrete MediaCache // with memory backing will be given. Otherwise the one MediaCache with // file backing will be provided. // If aIsPrivateBrowsing is true, only initialization of a memory backed // MediaCache will be attempted, returning nullptr if that fails. static RefPtr GetMediaCache(int64_t aContentLength, bool aIsPrivateBrowsing); nsISerialEventTarget* OwnerThread() const { return sThread; } // Brutally flush the cache contents. Main thread only. void Flush(); // Close all streams associated with private browsing windows. This will // also remove the blocks from the cache since we don't want to leave any // traces when PB is done. void CloseStreamsForPrivateBrowsing(); // Cache-file access methods. These are the lowest-level cache methods. // mMonitor must be held; these can be called on any thread. // This can return partial reads. // Note mMonitor will be dropped while doing IO. The caller need // to handle changes happening when the monitor is not held. nsresult ReadCacheFile(AutoLock&, int64_t aOffset, void* aData, int32_t aLength, int32_t* aBytes); // The generated IDs are always positive. int64_t AllocateResourceID(AutoLock&) { return ++mNextResourceID; } // mMonitor must be held, called on main thread. // These methods are used by the stream to set up and tear down streams, // and to handle reads and writes. // Add aStream to the list of streams. void OpenStream(AutoLock&, MediaCacheStream* aStream, bool aIsClone = false); // Remove aStream from the list of streams. void ReleaseStream(AutoLock&, MediaCacheStream* aStream); // Free all blocks belonging to aStream. void ReleaseStreamBlocks(AutoLock&, MediaCacheStream* aStream); // Find a cache entry for this data, and write the data into it void AllocateAndWriteBlock( AutoLock&, MediaCacheStream* aStream, int32_t aStreamBlockIndex, Span aData1, Span aData2 = Span()); // mMonitor must be held; can be called on any thread // Notify the cache that a seek has been requested. Some blocks may // need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK. // This does not trigger channel seeks directly, the next Update() // will do that if necessary. The caller will call QueueUpdate(). void NoteSeek(AutoLock&, MediaCacheStream* aStream, int64_t aOldOffset); // Notify the cache that a block has been read from. This is used // to update last-use times. The block may not actually have a // cache entry yet since Read can read data from a stream's // in-memory mPartialBlockBuffer while the block is only partly full, // and thus hasn't yet been committed to the cache. The caller will // call QueueUpdate(). void NoteBlockUsage(AutoLock&, MediaCacheStream* aStream, int32_t aBlockIndex, int64_t aStreamOffset, MediaCacheStream::ReadMode aMode, TimeStamp aNow); // Mark aStream as having the block, adding it as an owner. void AddBlockOwnerAsReadahead(AutoLock&, int32_t aBlockIndex, MediaCacheStream* aStream, int32_t aStreamBlockIndex); // This queues a call to Update() on the media cache thread. void QueueUpdate(AutoLock&); // Notify all streams for the resource ID that the suspended status changed // at the end of MediaCache::Update. void QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID); // Updates the cache state asynchronously on the media cache thread: // -- try to trim the cache back to its desired size, if necessary // -- suspend channels that are going to read data that's lower priority // than anything currently cached // -- resume channels that are going to read data that's higher priority // than something currently cached // -- seek channels that need to seek to a new location void Update(); #ifdef DEBUG_VERIFY_CACHE // Verify invariants, especially block list invariants void Verify(AutoLock&); #else void Verify(AutoLock&) {} #endif mozilla::Monitor& Monitor() { // This method should only be called outside the main thread. // The MOZ_DIAGNOSTIC_ASSERT(!NS_IsMainThread()) assertion should be // re-added as part of bug 1464045 return mMonitor; } // Polls whether we're on a cellular network connection, and posts a task // to the MediaCache thread to set the value of MediaCache::sOnCellular. // Call on main thread only. static void UpdateOnCellular(); /** * An iterator that makes it easy to iterate through all streams that * have a given resource ID and are not closed. * Must be used while holding the media cache lock. */ class ResourceStreamIterator { public: ResourceStreamIterator(MediaCache* aMediaCache, int64_t aResourceID) : mMediaCache(aMediaCache), mResourceID(aResourceID), mNext(0) { aMediaCache->mMonitor.AssertCurrentThreadOwns(); } MediaCacheStream* Next(AutoLock& aLock) { while (mNext < mMediaCache->mStreams.Length()) { MediaCacheStream* stream = mMediaCache->mStreams[mNext]; ++mNext; if (stream->GetResourceID() == mResourceID && !stream->IsClosed(aLock)) return stream; } return nullptr; } private: MediaCache* mMediaCache; int64_t mResourceID; uint32_t mNext; }; protected: explicit MediaCache(MediaBlockCacheBase* aCache) : mMonitor("MediaCache.mMonitor"), mBlockCache(aCache), mUpdateQueued(false) #ifdef DEBUG , mInUpdate(false) #endif { NS_ASSERTION(NS_IsMainThread(), "Only construct MediaCache on main thread"); MOZ_COUNT_CTOR(MediaCache); MediaCacheFlusher::RegisterMediaCache(this); UpdateOnCellular(); } ~MediaCache() { NS_ASSERTION(NS_IsMainThread(), "Only destroy MediaCache on main thread"); if (this == gMediaCache) { LOG("~MediaCache(Global file-backed MediaCache)"); // This is the file-backed MediaCache, reset the global pointer. gMediaCache = nullptr; } else { LOG("~MediaCache(Memory-backed MediaCache %p)", this); } MediaCacheFlusher::UnregisterMediaCache(this); NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!"); Truncate(); NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?"); MOZ_COUNT_DTOR(MediaCache); } static size_t CacheSize() { MOZ_ASSERT(sThread->IsOnCurrentThread()); return sOnCellular ? StaticPrefs::media_cache_size_cellular() : StaticPrefs::media_cache_size(); } static size_t ReadaheadLimit() { MOZ_ASSERT(sThread->IsOnCurrentThread()); return sOnCellular ? StaticPrefs::media_cache_readahead_limit_cellular() : StaticPrefs::media_cache_readahead_limit(); } static size_t ResumeThreshold() { return sOnCellular ? StaticPrefs::media_cache_resume_threshold_cellular() : StaticPrefs::media_cache_resume_threshold(); } // Find a free or reusable block and return its index. If there are no // free blocks and no reusable blocks, add a new block to the cache // and return it. Can return -1 on OOM. int32_t FindBlockForIncomingData(AutoLock&, TimeStamp aNow, MediaCacheStream* aStream, int32_t aStreamBlockIndex); // Find a reusable block --- a free block, if there is one, otherwise // the reusable block with the latest predicted-next-use, or -1 if // there aren't any freeable blocks. Only block indices less than // aMaxSearchBlockIndex are considered. If aForStream is non-null, // then aForStream and aForStreamBlock indicate what media data will // be placed; FindReusableBlock will favour returning free blocks // near other blocks for that point in the stream. int32_t FindReusableBlock(AutoLock&, TimeStamp aNow, MediaCacheStream* aForStream, int32_t aForStreamBlock, int32_t aMaxSearchBlockIndex); bool BlockIsReusable(AutoLock&, int32_t aBlockIndex); // Given a list of blocks sorted with the most reusable blocks at the // end, find the last block whose stream is not pinned (if any) // and whose cache entry index is less than aBlockIndexLimit // and append it to aResult. void AppendMostReusableBlock(AutoLock&, BlockList* aBlockList, nsTArray* aResult, int32_t aBlockIndexLimit); enum BlockClass { // block belongs to mMetadataBlockList because data has been consumed // from it in "metadata mode" --- in particular blocks read during // Ogg seeks go into this class. These blocks may have played data // in them too. METADATA_BLOCK, // block belongs to mPlayedBlockList because its offset is // less than the stream's current reader position PLAYED_BLOCK, // block belongs to the stream's mReadaheadBlockList because its // offset is greater than or equal to the stream's current // reader position READAHEAD_BLOCK }; struct BlockOwner { constexpr BlockOwner() = default; // The stream that owns this block, or null if the block is free. MediaCacheStream* mStream = nullptr; // The block index in the stream. Valid only if mStream is non-null. // Initialized to an insane value to highlight misuse. uint32_t mStreamBlock = UINT32_MAX; // Time at which this block was last used. Valid only if // mClass is METADATA_BLOCK or PLAYED_BLOCK. TimeStamp mLastUseTime; BlockClass mClass = READAHEAD_BLOCK; }; struct Block { // Free blocks have an empty mOwners array nsTArray mOwners; }; // Get the BlockList that the block should belong to given its // current owner BlockList* GetListForBlock(AutoLock&, BlockOwner* aBlock); // Get the BlockOwner for the given block index and owning stream // (returns null if the stream does not own the block) BlockOwner* GetBlockOwner(AutoLock&, int32_t aBlockIndex, MediaCacheStream* aStream); // Returns true iff the block is free bool IsBlockFree(int32_t aBlockIndex) { return mIndex[aBlockIndex].mOwners.IsEmpty(); } // Add the block to the free list and mark its streams as not having // the block in cache void FreeBlock(AutoLock&, int32_t aBlock); // Mark aStream as not having the block, removing it as an owner. If // the block has no more owners it's added to the free list. void RemoveBlockOwner(AutoLock&, int32_t aBlockIndex, MediaCacheStream* aStream); // Swap all metadata associated with the two blocks. The caller // is responsible for swapping up any cache file state. void SwapBlocks(AutoLock&, int32_t aBlockIndex1, int32_t aBlockIndex2); // Insert the block into the readahead block list for the stream // at the right point in the list. void InsertReadaheadBlock(AutoLock&, BlockOwner* aBlockOwner, int32_t aBlockIndex); // Guess the duration until block aBlock will be next used TimeDuration PredictNextUse(AutoLock&, TimeStamp aNow, int32_t aBlock); // Guess the duration until the next incoming data on aStream will be used TimeDuration PredictNextUseForIncomingData(AutoLock&, MediaCacheStream* aStream); // Truncate the file and index array if there are free blocks at the // end void Truncate(); void FlushInternal(AutoLock&); // There is at most one file-backed media cache. // It is owned by all MediaCacheStreams that use it. // This is a raw pointer set by GetMediaCache(), and reset by ~MediaCache(), // both on the main thread; and is not accessed anywhere else. static inline MediaCache* gMediaCache = nullptr; // This member is main-thread only. It's used to allocate unique // resource IDs to streams. int64_t mNextResourceID = 0; // The monitor protects all the data members here. Also, off-main-thread // readers that need to block will Wait() on this monitor. When new // data becomes available in the cache, we NotifyAll() on this monitor. mozilla::Monitor mMonitor MOZ_UNANNOTATED; // This must always be accessed when the monitor is held. nsTArray mStreams; // The Blocks describing the cache entries. nsTArray mIndex; RefPtr mBlockCache; // The list of free blocks; they are not ordered. BlockList mFreeBlocks; // True if an event to run Update() has been queued but not processed bool mUpdateQueued; #ifdef DEBUG bool mInUpdate; #endif // A list of resource IDs to notify about the change in suspended status. nsTArray mSuspendedStatusToNotify; // The thread on which we will run data callbacks from the channels. // Note this thread is shared among all MediaCache instances. static inline StaticRefPtr sThread; // True if we've tried to init sThread. Note we try once only so it is safe // to access sThread on all threads. static inline bool sThreadInit = false; private: // MediaCache thread only. True if we're on a cellular network connection. static inline bool sOnCellular = false; // Try to trim the cache back to its desired size, if necessary. Return the // amount of free block counts after trimming. int32_t TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow); struct StreamAction { enum { NONE, SEEK, RESUME, SUSPEND } mTag = NONE; // Members for 'SEEK' only. bool mResume = false; int64_t mSeekTarget = -1; }; // In each update, media cache would determine an action for each stream, // possible actions are: keeping the stream unchanged, seeking to the new // position, resuming its channel or suspending its channel. The action would // be determined by considering a lot of different factors, eg. stream's data // offset and length, how many free or reusable blocks are avaliable, the // predicted time for the next block...e.t.c. This function will write the // corresponding action for each stream in `mStreams` into `aActions`. void DetermineActionsForStreams(AutoLock& aLock, const TimeStamp& aNow, nsTArray& aActions, int32_t aFreeBlockCount); // Used by MediaCacheStream::GetDebugInfo() only for debugging. // Don't add new callers to this function. friend void MediaCacheStream::GetDebugInfo( dom::MediaCacheStreamDebugInfo& aInfo); mozilla::Monitor& GetMonitorOnTheMainThread() { MOZ_DIAGNOSTIC_ASSERT(NS_IsMainThread()); return mMonitor; } }; void MediaCache::UpdateOnCellular() { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); // JNI required on Android... bool onCellular = OnCellularConnection(); LOG("MediaCache::UpdateOnCellular() onCellular=%d", onCellular); nsCOMPtr r = NS_NewRunnableFunction( "MediaCache::UpdateOnCellular", [=]() { sOnCellular = onCellular; }); sThread->Dispatch(r.forget()); } NS_IMETHODIMP MediaCacheFlusher::Observe(nsISupports* aSubject, char const* aTopic, char16_t const* aData) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (strcmp(aTopic, "last-pb-context-exited") == 0) { for (MediaCache* mc : mMediaCaches) { mc->CloseStreamsForPrivateBrowsing(); } return NS_OK; } if (strcmp(aTopic, "cacheservice:empty-cache") == 0) { for (MediaCache* mc : mMediaCaches) { mc->Flush(); } return NS_OK; } if (strcmp(aTopic, "contentchild:network-link-type-changed") == 0 || strcmp(aTopic, NS_NETWORK_LINK_TYPE_TOPIC) == 0) { MediaCache::UpdateOnCellular(); } return NS_OK; } MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient, bool aIsPrivateBrowsing) : mMediaCache(nullptr), mClient(aClient), mIsTransportSeekable(false), mCacheSuspended(false), mChannelEnded(false), mStreamOffset(0), mPlaybackBytesPerSecond(10000), mPinCount(0), mNotifyDataEndedStatus(NS_ERROR_NOT_INITIALIZED), mIsPrivateBrowsing(aIsPrivateBrowsing) {} size_t MediaCacheStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { AutoLock lock(mMediaCache->Monitor()); // Looks like these are not owned: // - mClient size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf); size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf); size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf); size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf); size += aMallocSizeOf(mPartialBlockBuffer.get()); return size; } size_t MediaCacheStream::BlockList::SizeOfExcludingThis( MallocSizeOf aMallocSizeOf) const { return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf); } void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock) { NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list"); Entry* entry = mEntries.PutEntry(aBlock); if (mFirstBlock < 0) { entry->mNextBlock = entry->mPrevBlock = aBlock; } else { entry->mNextBlock = mFirstBlock; entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock; mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock; } mFirstBlock = aBlock; ++mCount; } void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore) { NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list"); Entry* entry = mEntries.PutEntry(aBlock); Entry* addAfter = mEntries.GetEntry(aBefore); NS_ASSERTION(addAfter, "aBefore not in list"); entry->mNextBlock = addAfter->mNextBlock; entry->mPrevBlock = aBefore; mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock; ++mCount; } void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock) { Entry* entry = mEntries.GetEntry(aBlock); MOZ_DIAGNOSTIC_ASSERT(entry, "Block not in list"); if (entry->mNextBlock == aBlock) { MOZ_DIAGNOSTIC_ASSERT(entry->mPrevBlock == aBlock, "Linked list inconsistency"); MOZ_DIAGNOSTIC_ASSERT(mFirstBlock == aBlock, "Linked list inconsistency"); mFirstBlock = -1; } else { if (mFirstBlock == aBlock) { mFirstBlock = entry->mNextBlock; } mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock; mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock; } mEntries.RemoveEntry(entry); --mCount; } int32_t MediaCacheStream::BlockList::GetLastBlock() const { if (mFirstBlock < 0) return -1; return mEntries.GetEntry(mFirstBlock)->mPrevBlock; } int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const { int32_t block = mEntries.GetEntry(aBlock)->mNextBlock; if (block == mFirstBlock) return -1; return block; } int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const { if (aBlock == mFirstBlock) return -1; return mEntries.GetEntry(aBlock)->mPrevBlock; } #ifdef DEBUG void MediaCacheStream::BlockList::Verify() { int32_t count = 0; if (mFirstBlock >= 0) { int32_t block = mFirstBlock; do { Entry* entry = mEntries.GetEntry(block); NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block, "Bad prev link"); NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block, "Bad next link"); block = entry->mNextBlock; ++count; } while (block != mFirstBlock); } NS_ASSERTION(count == mCount, "Bad count"); } #endif static void UpdateSwappedBlockIndex(int32_t* aBlockIndex, int32_t aBlock1Index, int32_t aBlock2Index) { int32_t index = *aBlockIndex; if (index == aBlock1Index) { *aBlockIndex = aBlock2Index; } else if (index == aBlock2Index) { *aBlockIndex = aBlock1Index; } } void MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1, int32_t aBlockIndex2) { Entry* e1 = mEntries.GetEntry(aBlockIndex1); Entry* e2 = mEntries.GetEntry(aBlockIndex2); int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1; // Fix mFirstBlock UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2); // Fix mNextBlock/mPrevBlock links. First capture previous/next links // so we don't get confused due to aliasing. if (e1) { e1Prev = e1->mPrevBlock; e1Next = e1->mNextBlock; } if (e2) { e2Prev = e2->mPrevBlock; e2Next = e2->mNextBlock; } // Update the entries. if (e1) { mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2; mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2; } if (e2) { mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1; mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1; } // Fix hashtable keys. First remove stale entries. if (e1) { e1Prev = e1->mPrevBlock; e1Next = e1->mNextBlock; mEntries.RemoveEntry(e1); // Refresh pointer after hashtable mutation. e2 = mEntries.GetEntry(aBlockIndex2); } if (e2) { e2Prev = e2->mPrevBlock; e2Next = e2->mNextBlock; mEntries.RemoveEntry(e2); } // Put new entries back. if (e1) { e1 = mEntries.PutEntry(aBlockIndex2); e1->mNextBlock = e1Next; e1->mPrevBlock = e1Prev; } if (e2) { e2 = mEntries.PutEntry(aBlockIndex1); e2->mNextBlock = e2Next; e2->mPrevBlock = e2Prev; } } void MediaCache::FlushInternal(AutoLock& aLock) { for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) { FreeBlock(aLock, blockIndex); } // Truncate index array. Truncate(); NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?"); // Reset block cache to its pristine state. mBlockCache->Flush(); } void MediaCache::Flush() { MOZ_ASSERT(NS_IsMainThread()); nsCOMPtr r = NS_NewRunnableFunction( "MediaCache::Flush", [self = RefPtr(this)]() mutable { AutoLock lock(self->mMonitor); self->FlushInternal(lock); // Ensure MediaCache is deleted on the main thread. NS_ReleaseOnMainThread("MediaCache::Flush", self.forget()); }); sThread->Dispatch(r.forget()); } void MediaCache::CloseStreamsForPrivateBrowsing() { MOZ_ASSERT(NS_IsMainThread()); sThread->Dispatch(NS_NewRunnableFunction( "MediaCache::CloseStreamsForPrivateBrowsing", [self = RefPtr(this)]() mutable { AutoLock lock(self->mMonitor); // Copy mStreams since CloseInternal() will change the array. for (MediaCacheStream* s : self->mStreams.Clone()) { if (s->mIsPrivateBrowsing) { s->CloseInternal(lock); } } // Ensure MediaCache is deleted on the main thread. NS_ReleaseOnMainThread("MediaCache::CloseStreamsForPrivateBrowsing", self.forget()); })); } /* static */ RefPtr MediaCache::GetMediaCache(int64_t aContentLength, bool aIsPrivateBrowsing) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); if (!sThreadInit) { sThreadInit = true; nsCOMPtr thread; nsresult rv = NS_NewNamedThread("MediaCache", getter_AddRefs(thread)); if (NS_FAILED(rv)) { NS_WARNING("Failed to create a thread for MediaCache."); return nullptr; } sThread = ToRefPtr(std::move(thread)); static struct ClearThread { // Called during shutdown to clear sThread. void operator=(std::nullptr_t) { MOZ_ASSERT(sThread, "We should only clear sThread once."); sThread->Shutdown(); sThread = nullptr; } } sClearThread; ClearOnShutdown(&sClearThread, ShutdownPhase::XPCOMShutdownThreads); } if (!sThread) { return nullptr; } const int64_t mediaMemoryCacheMaxSize = static_cast(StaticPrefs::media_memory_cache_max_size()) * 1024; // Force usage of in-memory cache if we are in private browsing mode // and the forceMediaMemoryCache pref is set // We will not attempt to create an on-disk cache if this is the case const bool forceMediaMemoryCache = aIsPrivateBrowsing && StaticPrefs::browser_privatebrowsing_forceMediaMemoryCache(); // Alternatively, use an in-memory cache if the media will fit entirely // in memory // aContentLength < 0 indicates we do not know content's actual size const bool contentFitsInMediaMemoryCache = (aContentLength > 0) && (aContentLength <= mediaMemoryCacheMaxSize); // Try to allocate a memory cache for our content if (contentFitsInMediaMemoryCache || forceMediaMemoryCache) { // Figure out how large our cache should be int64_t cacheSize = 0; if (contentFitsInMediaMemoryCache) { cacheSize = aContentLength; } else if (forceMediaMemoryCache) { // Unknown content length, we'll give the maximum allowed cache size // just to be sure. if (aContentLength < 0) { cacheSize = mediaMemoryCacheMaxSize; } else { // If the content length is less than the maximum allowed cache size, // use that, otherwise we cap it to max size. cacheSize = std::min(aContentLength, mediaMemoryCacheMaxSize); } } RefPtr bc = new MemoryBlockCache(cacheSize); nsresult rv = bc->Init(); if (NS_SUCCEEDED(rv)) { RefPtr mc = new MediaCache(bc); LOG("GetMediaCache(%" PRIi64 ") -> Memory MediaCache %p", aContentLength, mc.get()); return mc; } // MemoryBlockCache initialization failed. // If we require use of a memory media cache, we will bail here. // Otherwise use a file-backed MediaCache below. if (forceMediaMemoryCache) { return nullptr; } } if (gMediaCache) { LOG("GetMediaCache(%" PRIi64 ") -> Existing file-backed MediaCache", aContentLength); return gMediaCache; } RefPtr bc = new FileBlockCache(); nsresult rv = bc->Init(); if (NS_SUCCEEDED(rv)) { gMediaCache = new MediaCache(bc); LOG("GetMediaCache(%" PRIi64 ") -> Created file-backed MediaCache", aContentLength); } else { LOG("GetMediaCache(%" PRIi64 ") -> Failed to create file-backed MediaCache", aContentLength); } return gMediaCache; } nsresult MediaCache::ReadCacheFile(AutoLock&, int64_t aOffset, void* aData, int32_t aLength, int32_t* aBytes) { if (!mBlockCache) { return NS_ERROR_FAILURE; } return mBlockCache->Read(aOffset, reinterpret_cast(aData), aLength, aBytes); } // Allowed range is whatever can be accessed with an int32_t block index. static bool IsOffsetAllowed(int64_t aOffset) { return aOffset < (int64_t(INT32_MAX) + 1) * MediaCache::BLOCK_SIZE && aOffset >= 0; } // Convert 64-bit offset to 32-bit block index. // Assumes offset range-check was already done. static int32_t OffsetToBlockIndexUnchecked(int64_t aOffset) { // Still check for allowed range in debug builds, to catch out-of-range // issues early during development. MOZ_ASSERT(IsOffsetAllowed(aOffset)); return int32_t(aOffset / MediaCache::BLOCK_SIZE); } // Convert 64-bit offset to 32-bit block index. -1 if out of allowed range. static int32_t OffsetToBlockIndex(int64_t aOffset) { return IsOffsetAllowed(aOffset) ? OffsetToBlockIndexUnchecked(aOffset) : -1; } // Convert 64-bit offset to 32-bit offset inside a block. // Will not fail (even if offset is outside allowed range), so there is no // need to check for errors. static int32_t OffsetInBlock(int64_t aOffset) { // Still check for allowed range in debug builds, to catch out-of-range // issues early during development. MOZ_ASSERT(IsOffsetAllowed(aOffset)); return int32_t(aOffset % MediaCache::BLOCK_SIZE); } int32_t MediaCache::FindBlockForIncomingData(AutoLock& aLock, TimeStamp aNow, MediaCacheStream* aStream, int32_t aStreamBlockIndex) { MOZ_ASSERT(sThread->IsOnCurrentThread()); int32_t blockIndex = FindReusableBlock(aLock, aNow, aStream, aStreamBlockIndex, INT32_MAX); if (blockIndex < 0 || !IsBlockFree(blockIndex)) { // The block returned is already allocated. // Don't reuse it if a) there's room to expand the cache or // b) the data we're going to store in the free block is not higher // priority than the data already stored in the free block. // The latter can lead us to go over the cache limit a bit. if ((mIndex.Length() < uint32_t(mBlockCache->GetMaxBlocks(MediaCache::CacheSize())) || blockIndex < 0 || PredictNextUseForIncomingData(aLock, aStream) >= PredictNextUse(aLock, aNow, blockIndex))) { blockIndex = mIndex.Length(); // XXX(Bug 1631371) Check if this should use a fallible operation as it // pretended earlier. mIndex.AppendElement(); mFreeBlocks.AddFirstBlock(blockIndex); return blockIndex; } } return blockIndex; } bool MediaCache::BlockIsReusable(AutoLock&, int32_t aBlockIndex) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { MediaCacheStream* stream = block->mOwners[i].mStream; if (stream->mPinCount > 0 || uint32_t(OffsetToBlockIndex(stream->mStreamOffset)) == block->mOwners[i].mStreamBlock) { return false; } } return true; } void MediaCache::AppendMostReusableBlock(AutoLock& aLock, BlockList* aBlockList, nsTArray* aResult, int32_t aBlockIndexLimit) { int32_t blockIndex = aBlockList->GetLastBlock(); if (blockIndex < 0) return; do { // Don't consider blocks for pinned streams, or blocks that are // beyond the specified limit, or a block that contains a stream's // current read position (such a block contains both played data // and readahead data) if (blockIndex < aBlockIndexLimit && BlockIsReusable(aLock, blockIndex)) { aResult->AppendElement(blockIndex); return; } blockIndex = aBlockList->GetPrevBlock(blockIndex); } while (blockIndex >= 0); } int32_t MediaCache::FindReusableBlock(AutoLock& aLock, TimeStamp aNow, MediaCacheStream* aForStream, int32_t aForStreamBlock, int32_t aMaxSearchBlockIndex) { MOZ_ASSERT(sThread->IsOnCurrentThread()); uint32_t length = std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length())); if (aForStream && aForStreamBlock > 0 && uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) { int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1]; if (prevCacheBlock >= 0) { uint32_t freeBlockScanEnd = std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT); for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) { if (IsBlockFree(i)) return i; } } } if (!mFreeBlocks.IsEmpty()) { int32_t blockIndex = mFreeBlocks.GetFirstBlock(); do { if (blockIndex < aMaxSearchBlockIndex) return blockIndex; blockIndex = mFreeBlocks.GetNextBlock(blockIndex); } while (blockIndex >= 0); } // Build a list of the blocks we should consider for the "latest // predicted time of next use". We can exploit the fact that the block // linked lists are ordered by increasing time of next use. This is // actually the whole point of having the linked lists. AutoTArray candidates; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; if (stream->mPinCount > 0) { // No point in even looking at this stream's blocks continue; } AppendMostReusableBlock(aLock, &stream->mMetadataBlocks, &candidates, length); AppendMostReusableBlock(aLock, &stream->mPlayedBlocks, &candidates, length); // Don't consider readahead blocks in non-seekable streams. If we // remove the block we won't be able to seek back to read it later. if (stream->mIsTransportSeekable) { AppendMostReusableBlock(aLock, &stream->mReadaheadBlocks, &candidates, length); } } TimeDuration latestUse; int32_t latestUseBlock = -1; for (uint32_t i = 0; i < candidates.Length(); ++i) { TimeDuration nextUse = PredictNextUse(aLock, aNow, candidates[i]); if (nextUse > latestUse) { latestUse = nextUse; latestUseBlock = candidates[i]; } } return latestUseBlock; } MediaCache::BlockList* MediaCache::GetListForBlock(AutoLock&, BlockOwner* aBlock) { switch (aBlock->mClass) { case METADATA_BLOCK: NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?"); return &aBlock->mStream->mMetadataBlocks; case PLAYED_BLOCK: NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?"); return &aBlock->mStream->mPlayedBlocks; case READAHEAD_BLOCK: NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?"); return &aBlock->mStream->mReadaheadBlocks; default: NS_ERROR("Invalid block class"); return nullptr; } } MediaCache::BlockOwner* MediaCache::GetBlockOwner(AutoLock&, int32_t aBlockIndex, MediaCacheStream* aStream) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { if (block->mOwners[i].mStream == aStream) return &block->mOwners[i]; } return nullptr; } void MediaCache::SwapBlocks(AutoLock& aLock, int32_t aBlockIndex1, int32_t aBlockIndex2) { Block* block1 = &mIndex[aBlockIndex1]; Block* block2 = &mIndex[aBlockIndex2]; block1->mOwners.SwapElements(block2->mOwners); // Now all references to block1 have to be replaced with block2 and // vice versa. // First update stream references to blocks via mBlocks. const Block* blocks[] = {block1, block2}; int32_t blockIndices[] = {aBlockIndex1, aBlockIndex2}; for (int32_t i = 0; i < 2; ++i) { for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) { const BlockOwner* b = &blocks[i]->mOwners[j]; b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i]; } } // Now update references to blocks in block lists. mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); nsTHashSet visitedStreams; for (int32_t i = 0; i < 2; ++i) { for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) { MediaCacheStream* stream = blocks[i]->mOwners[j].mStream; // Make sure that we don't update the same stream twice --- that // would result in swapping the block references back again! if (!visitedStreams.EnsureInserted(stream)) continue; stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2); } } Verify(aLock); } void MediaCache::RemoveBlockOwner(AutoLock& aLock, int32_t aBlockIndex, MediaCacheStream* aStream) { Block* block = &mIndex[aBlockIndex]; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; if (bo->mStream == aStream) { GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex); bo->mStream->mBlocks[bo->mStreamBlock] = -1; block->mOwners.RemoveElementAt(i); if (block->mOwners.IsEmpty()) { mFreeBlocks.AddFirstBlock(aBlockIndex); } return; } } } void MediaCache::AddBlockOwnerAsReadahead(AutoLock& aLock, int32_t aBlockIndex, MediaCacheStream* aStream, int32_t aStreamBlockIndex) { Block* block = &mIndex[aBlockIndex]; if (block->mOwners.IsEmpty()) { mFreeBlocks.RemoveBlock(aBlockIndex); } BlockOwner* bo = block->mOwners.AppendElement(); bo->mStream = aStream; bo->mStreamBlock = aStreamBlockIndex; aStream->mBlocks[aStreamBlockIndex] = aBlockIndex; bo->mClass = READAHEAD_BLOCK; InsertReadaheadBlock(aLock, bo, aBlockIndex); } void MediaCache::FreeBlock(AutoLock& aLock, int32_t aBlock) { Block* block = &mIndex[aBlock]; if (block->mOwners.IsEmpty()) { // already free return; } LOG("Released block %d", aBlock); for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; GetListForBlock(aLock, bo)->RemoveBlock(aBlock); bo->mStream->mBlocks[bo->mStreamBlock] = -1; } block->mOwners.Clear(); mFreeBlocks.AddFirstBlock(aBlock); Verify(aLock); } TimeDuration MediaCache::PredictNextUse(AutoLock&, TimeStamp aNow, int32_t aBlock) { MOZ_ASSERT(sThread->IsOnCurrentThread()); NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free"); Block* block = &mIndex[aBlock]; // Blocks can be belong to multiple streams. The predicted next use // time is the earliest time predicted by any of the streams. TimeDuration result; for (uint32_t i = 0; i < block->mOwners.Length(); ++i) { BlockOwner* bo = &block->mOwners[i]; TimeDuration prediction; switch (bo->mClass) { case METADATA_BLOCK: // This block should be managed in LRU mode. For metadata we predict // that the time until the next use is the time since the last use. prediction = aNow - bo->mLastUseTime; break; case PLAYED_BLOCK: { // This block should be managed in LRU mode, and we should impose // a "replay delay" to reflect the likelihood of replay happening NS_ASSERTION(static_cast(bo->mStreamBlock) * BLOCK_SIZE < bo->mStream->mStreamOffset, "Played block after the current stream position?"); int64_t bytesBehind = bo->mStream->mStreamOffset - static_cast(bo->mStreamBlock) * BLOCK_SIZE; int64_t millisecondsBehind = bytesBehind * 1000 / bo->mStream->mPlaybackBytesPerSecond; prediction = TimeDuration::FromMilliseconds(std::min( millisecondsBehind * REPLAY_PENALTY_FACTOR, INT32_MAX)); break; } case READAHEAD_BLOCK: { int64_t bytesAhead = static_cast(bo->mStreamBlock) * BLOCK_SIZE - bo->mStream->mStreamOffset; NS_ASSERTION(bytesAhead >= 0, "Readahead block before the current stream position?"); int64_t millisecondsAhead = bytesAhead * 1000 / bo->mStream->mPlaybackBytesPerSecond; prediction = TimeDuration::FromMilliseconds( std::min(millisecondsAhead, INT32_MAX)); break; } default: NS_ERROR("Invalid class for predicting next use"); return TimeDuration(0); } if (i == 0 || prediction < result) { result = prediction; } } return result; } TimeDuration MediaCache::PredictNextUseForIncomingData( AutoLock&, MediaCacheStream* aStream) { MOZ_ASSERT(sThread->IsOnCurrentThread()); int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset; if (bytesAhead <= -BLOCK_SIZE) { // Hmm, no idea when data behind us will be used. Guess 24 hours. return TimeDuration::FromSeconds(24 * 60 * 60); } if (bytesAhead <= 0) return TimeDuration(0); int64_t millisecondsAhead = bytesAhead * 1000 / aStream->mPlaybackBytesPerSecond; return TimeDuration::FromMilliseconds( std::min(millisecondsAhead, INT32_MAX)); } void MediaCache::Update() { MOZ_ASSERT(sThread->IsOnCurrentThread()); AutoLock lock(mMonitor); mUpdateQueued = false; #ifdef DEBUG mInUpdate = true; #endif const TimeStamp now = TimeStamp::Now(); const int32_t freeBlockCount = TrimCacheIfNeeded(lock, now); // The action to use for each stream. We store these so we can make // decisions while holding the cache lock but implement those decisions // without holding the cache lock, since we need to call out to // stream, decoder and element code. AutoTArray actions; DetermineActionsForStreams(lock, now, actions, freeBlockCount); #ifdef DEBUG mInUpdate = false; #endif // First, update the mCacheSuspended/mCacheEnded flags so that they're all // correct when we fire our CacheClient commands below. Those commands can // rely on these flags being set correctly for all streams. for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; switch (actions[i].mTag) { case StreamAction::SEEK: stream->mCacheSuspended = false; stream->mChannelEnded = false; break; case StreamAction::RESUME: stream->mCacheSuspended = false; break; case StreamAction::SUSPEND: stream->mCacheSuspended = true; break; default: break; } } for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; switch (actions[i].mTag) { case StreamAction::SEEK: LOG("Stream %p CacheSeek to %" PRId64 " (resume=%d)", stream, actions[i].mSeekTarget, actions[i].mResume); stream->mClient->CacheClientSeek(actions[i].mSeekTarget, actions[i].mResume); break; case StreamAction::RESUME: LOG("Stream %p Resumed", stream); stream->mClient->CacheClientResume(); QueueSuspendedStatusUpdate(lock, stream->mResourceID); break; case StreamAction::SUSPEND: LOG("Stream %p Suspended", stream); stream->mClient->CacheClientSuspend(); QueueSuspendedStatusUpdate(lock, stream->mResourceID); break; default: break; } } // Notify streams about the suspended status changes. for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) { MediaCache::ResourceStreamIterator iter(this, mSuspendedStatusToNotify[i]); while (MediaCacheStream* stream = iter.Next(lock)) { stream->mClient->CacheClientNotifySuspendedStatusChanged( stream->AreAllStreamsForResourceSuspended(lock)); } } mSuspendedStatusToNotify.Clear(); } int32_t MediaCache::TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow) { MOZ_ASSERT(sThread->IsOnCurrentThread()); const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize()); int32_t freeBlockCount = mFreeBlocks.GetCount(); TimeDuration latestPredictedUseForOverflow = 0; if (mIndex.Length() > uint32_t(maxBlocks)) { // Try to trim back the cache to its desired maximum size. The cache may // have overflowed simply due to data being received when we have // no blocks in the main part of the cache that are free or lower // priority than the new data. The cache can also be overflowing because // the media.cache_size preference was reduced. // First, figure out what the least valuable block in the cache overflow // is. We don't want to replace any blocks in the main part of the // cache whose expected time of next use is earlier or equal to that. // If we allow that, we can effectively end up discarding overflowing // blocks (by moving an overflowing block to the main part of the cache, // and then overwriting it with another overflowing block), and we try // to avoid that since it requires HTTP seeks. // We also use this loop to eliminate overflowing blocks from // freeBlockCount. for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks; --blockIndex) { if (IsBlockFree(blockIndex)) { // Don't count overflowing free blocks in our free block count --freeBlockCount; continue; } TimeDuration predictedUse = PredictNextUse(aLock, aNow, blockIndex); latestPredictedUseForOverflow = std::max(latestPredictedUseForOverflow, predictedUse); } } else { freeBlockCount += maxBlocks - mIndex.Length(); } // Now try to move overflowing blocks to the main part of the cache. for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks; --blockIndex) { if (IsBlockFree(blockIndex)) continue; Block* block = &mIndex[blockIndex]; // Try to relocate the block close to other blocks for the first stream. // There is no point in trying to make it close to other blocks in // *all* the streams it might belong to. int32_t destinationBlockIndex = FindReusableBlock(aLock, aNow, block->mOwners[0].mStream, block->mOwners[0].mStreamBlock, maxBlocks); if (destinationBlockIndex < 0) { // Nowhere to place this overflow block. We won't be able to // place any more overflow blocks. break; } // Don't evict |destinationBlockIndex| if it is within [cur, end) otherwise // a new channel will be opened to download this block again which is bad. bool inCurrentCachedRange = false; for (BlockOwner& owner : mIndex[destinationBlockIndex].mOwners) { MediaCacheStream* stream = owner.mStream; int64_t end = OffsetToBlockIndexUnchecked( stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset)); int64_t cur = OffsetToBlockIndexUnchecked(stream->mStreamOffset); if (cur <= owner.mStreamBlock && owner.mStreamBlock < end) { inCurrentCachedRange = true; break; } } if (inCurrentCachedRange) { continue; } if (IsBlockFree(destinationBlockIndex) || PredictNextUse(aLock, aNow, destinationBlockIndex) > latestPredictedUseForOverflow) { // Reuse blocks in the main part of the cache that are less useful than // the least useful overflow blocks nsresult rv = mBlockCache->MoveBlock(blockIndex, destinationBlockIndex); if (NS_SUCCEEDED(rv)) { // We successfully copied the file data. LOG("Swapping blocks %d and %d (trimming cache)", blockIndex, destinationBlockIndex); // Swapping the block metadata here lets us maintain the // correct positions in the linked lists SwapBlocks(aLock, blockIndex, destinationBlockIndex); // Free the overflowing block even if the copy failed. LOG("Released block %d (trimming cache)", blockIndex); FreeBlock(aLock, blockIndex); } } else { LOG("Could not trim cache block %d (destination %d, " "predicted next use %f, latest predicted use for overflow %f", blockIndex, destinationBlockIndex, PredictNextUse(aLock, aNow, destinationBlockIndex).ToSeconds(), latestPredictedUseForOverflow.ToSeconds()); } } // Try chopping back the array of cache entries and the cache file. Truncate(); return freeBlockCount; } void MediaCache::DetermineActionsForStreams(AutoLock& aLock, const TimeStamp& aNow, nsTArray& aActions, int32_t aFreeBlockCount) { MOZ_ASSERT(sThread->IsOnCurrentThread()); // Count the blocks allocated for readahead of non-seekable streams // (these blocks can't be freed but we don't want them to monopolize the // cache) int32_t nonSeekableReadaheadBlockCount = 0; for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; if (!stream->mIsTransportSeekable) { nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount(); } } // If freeBlockCount is zero, then compute the latest of // the predicted next-uses for all blocks TimeDuration latestNextUse; const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize()); if (aFreeBlockCount == 0) { const int32_t reusableBlock = FindReusableBlock(aLock, aNow, nullptr, 0, maxBlocks); if (reusableBlock >= 0) { latestNextUse = PredictNextUse(aLock, aNow, reusableBlock); } } for (uint32_t i = 0; i < mStreams.Length(); ++i) { aActions.AppendElement(StreamAction{}); MediaCacheStream* stream = mStreams[i]; if (stream->mClosed) { LOG("Stream %p closed", stream); continue; } // We make decisions based on mSeekTarget when there is a pending seek. // Otherwise we will keep issuing seek requests until mChannelOffset // is changed by NotifyDataStarted() which is bad. const int64_t channelOffset = stream->mSeekTarget != -1 ? stream->mSeekTarget : stream->mChannelOffset; // Figure out where we should be reading from. It's the first // uncached byte after the current mStreamOffset. const int64_t dataOffset = stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset); MOZ_ASSERT(dataOffset >= 0); // Compute where we'd actually seek to to read at readOffset int64_t desiredOffset = dataOffset; if (stream->mIsTransportSeekable) { if (desiredOffset > channelOffset && desiredOffset <= channelOffset + SEEK_VS_READ_THRESHOLD) { // Assume it's more efficient to just keep reading up to the // desired position instead of trying to seek desiredOffset = channelOffset; } } else { // We can't seek directly to the desired offset... if (channelOffset > desiredOffset) { // Reading forward won't get us anywhere, we need to go backwards. // Seek back to 0 (the client will reopen the stream) and then // read forward. NS_WARNING("Can't seek backwards, so seeking to 0"); desiredOffset = 0; // Flush cached blocks out, since if this is a live stream // the cached data may be completely different next time we // read it. We have to assume that live streams don't // advertise themselves as being seekable... ReleaseStreamBlocks(aLock, stream); } else { // otherwise reading forward is looking good, so just stay where we // are and don't trigger a channel seek! desiredOffset = channelOffset; } } // Figure out if we should be reading data now or not. It's amazing // how complex this is, but each decision is simple enough. bool enableReading; if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) { // We want data at the end of the stream, where there's nothing to // read. We don't want to try to read if we're suspended, because that // might create a new channel and seek unnecessarily (and incorrectly, // since HTTP doesn't allow seeking to the actual EOF), and we don't want // to suspend if we're not suspended and already reading at the end of // the stream, since there just might be more data than the server // advertised with Content-Length, and we may as well keep reading. // But we don't want to seek to the end of the stream if we're not // already there. LOG("Stream %p at end of stream", stream); enableReading = !stream->mCacheSuspended && stream->mStreamLength == channelOffset; } else if (desiredOffset < stream->mStreamOffset) { // We're reading to try to catch up to where the current stream // reader wants to be. Better not stop. LOG("Stream %p catching up", stream); enableReading = true; } else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) { // The stream reader is waiting for us, or nearly so. Better feed it. LOG("Stream %p feeding reader", stream); enableReading = true; } else if (!stream->mIsTransportSeekable && nonSeekableReadaheadBlockCount >= maxBlocks * NONSEEKABLE_READAHEAD_MAX) { // This stream is not seekable and there are already too many blocks // being cached for readahead for nonseekable streams (which we can't // free). So stop reading ahead now. LOG("Stream %p throttling non-seekable readahead", stream); enableReading = false; } else if (mIndex.Length() > uint32_t(maxBlocks)) { // We're in the process of bringing the cache size back to the // desired limit, so don't bring in more data yet LOG("Stream %p throttling to reduce cache size", stream); enableReading = false; } else { TimeDuration predictedNewDataUse = PredictNextUseForIncomingData(aLock, stream); if (stream->mThrottleReadahead && stream->mCacheSuspended && predictedNewDataUse.ToSeconds() > MediaCache::ResumeThreshold()) { // Don't need data for a while, so don't bother waking up the stream LOG("Stream %p avoiding wakeup since more data is not needed", stream); enableReading = false; } else if (stream->mThrottleReadahead && predictedNewDataUse.ToSeconds() > MediaCache::ReadaheadLimit()) { // Don't read ahead more than this much LOG("Stream %p throttling to avoid reading ahead too far", stream); enableReading = false; } else if (aFreeBlockCount > 0) { // Free blocks in the cache, so keep reading LOG("Stream %p reading since there are free blocks", stream); enableReading = true; } else if (latestNextUse <= TimeDuration(0)) { // No reusable blocks, so can't read anything LOG("Stream %p throttling due to no reusable blocks", stream); enableReading = false; } else { // Read ahead if the data we expect to read is more valuable than // the least valuable block in the main part of the cache LOG("Stream %p predict next data in %f, current worst block is %f", stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds()); enableReading = predictedNewDataUse < latestNextUse; } } if (enableReading) { for (uint32_t j = 0; j < i; ++j) { MediaCacheStream* other = mStreams[j]; if (other->mResourceID == stream->mResourceID && !other->mClosed && !other->mClientSuspended && !other->mChannelEnded && OffsetToBlockIndexUnchecked(other->mSeekTarget != -1 ? other->mSeekTarget : other->mChannelOffset) == OffsetToBlockIndexUnchecked(desiredOffset)) { // This block is already going to be read by the other stream. // So don't try to read it from this stream as well. enableReading = false; LOG("Stream %p waiting on same block (%" PRId32 ") from stream %p", stream, OffsetToBlockIndexUnchecked(desiredOffset), other); break; } } } if (channelOffset != desiredOffset && enableReading) { // We need to seek now. NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0, "Trying to seek in a non-seekable stream!"); // Round seek offset down to the start of the block. This is essential // because we don't want to think we have part of a block already // in mPartialBlockBuffer. stream->mSeekTarget = OffsetToBlockIndexUnchecked(desiredOffset) * BLOCK_SIZE; aActions[i].mTag = StreamAction::SEEK; aActions[i].mResume = stream->mCacheSuspended; aActions[i].mSeekTarget = stream->mSeekTarget; } else if (enableReading && stream->mCacheSuspended) { aActions[i].mTag = StreamAction::RESUME; } else if (!enableReading && !stream->mCacheSuspended) { aActions[i].mTag = StreamAction::SUSPEND; } LOG("Stream %p, mCacheSuspended=%d, enableReading=%d, action=%s", stream, stream->mCacheSuspended, enableReading, aActions[i].mTag == StreamAction::SEEK ? "SEEK" : aActions[i].mTag == StreamAction::RESUME ? "RESUME" : aActions[i].mTag == StreamAction::SUSPEND ? "SUSPEND" : "NONE"); } } void MediaCache::QueueUpdate(AutoLock&) { // Queuing an update while we're in an update raises a high risk of // triggering endless events NS_ASSERTION(!mInUpdate, "Queuing an update while we're in an update"); if (mUpdateQueued) { return; } mUpdateQueued = true; sThread->Dispatch(NS_NewRunnableFunction( "MediaCache::QueueUpdate", [self = RefPtr(this)]() mutable { self->Update(); // Ensure MediaCache is deleted on the main thread. NS_ReleaseOnMainThread("UpdateEvent::mMediaCache", self.forget()); })); } void MediaCache::QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID) { if (!mSuspendedStatusToNotify.Contains(aResourceID)) { mSuspendedStatusToNotify.AppendElement(aResourceID); } } #ifdef DEBUG_VERIFY_CACHE void MediaCache::Verify(AutoLock&) { mFreeBlocks.Verify(); for (uint32_t i = 0; i < mStreams.Length(); ++i) { MediaCacheStream* stream = mStreams[i]; stream->mReadaheadBlocks.Verify(); stream->mPlayedBlocks.Verify(); stream->mMetadataBlocks.Verify(); // Verify that the readahead blocks are listed in stream block order int32_t block = stream->mReadaheadBlocks.GetFirstBlock(); int32_t lastStreamBlock = -1; while (block >= 0) { uint32_t j = 0; while (mIndex[block].mOwners[j].mStream != stream) { ++j; } int32_t nextStreamBlock = int32_t(mIndex[block].mOwners[j].mStreamBlock); NS_ASSERTION(lastStreamBlock < nextStreamBlock, "Blocks not increasing in readahead stream"); lastStreamBlock = nextStreamBlock; block = stream->mReadaheadBlocks.GetNextBlock(block); } } } #endif void MediaCache::InsertReadaheadBlock(AutoLock& aLock, BlockOwner* aBlockOwner, int32_t aBlockIndex) { // Find the last block whose stream block is before aBlockIndex's // stream block, and insert after it MediaCacheStream* stream = aBlockOwner->mStream; int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock(); while (readaheadIndex >= 0) { BlockOwner* bo = GetBlockOwner(aLock, readaheadIndex, stream); NS_ASSERTION(bo, "stream must own its blocks"); if (bo->mStreamBlock < aBlockOwner->mStreamBlock) { stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex); return; } NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock, "Duplicated blocks??"); readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex); } stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex); Verify(aLock); } void MediaCache::AllocateAndWriteBlock(AutoLock& aLock, MediaCacheStream* aStream, int32_t aStreamBlockIndex, Span aData1, Span aData2) { MOZ_ASSERT(sThread->IsOnCurrentThread()); // Remove all cached copies of this block ResourceStreamIterator iter(this, aStream->mResourceID); while (MediaCacheStream* stream = iter.Next(aLock)) { while (aStreamBlockIndex >= int32_t(stream->mBlocks.Length())) { stream->mBlocks.AppendElement(-1); } if (stream->mBlocks[aStreamBlockIndex] >= 0) { // We no longer want to own this block int32_t globalBlockIndex = stream->mBlocks[aStreamBlockIndex]; LOG("Released block %d from stream %p block %d(%" PRId64 ")", globalBlockIndex, stream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE); RemoveBlockOwner(aLock, globalBlockIndex, stream); } } // Extend the mBlocks array as necessary TimeStamp now = TimeStamp::Now(); int32_t blockIndex = FindBlockForIncomingData(aLock, now, aStream, aStreamBlockIndex); if (blockIndex >= 0) { FreeBlock(aLock, blockIndex); Block* block = &mIndex[blockIndex]; LOG("Allocated block %d to stream %p block %d(%" PRId64 ")", blockIndex, aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE); ResourceStreamIterator iter(this, aStream->mResourceID); while (MediaCacheStream* stream = iter.Next(aLock)) { BlockOwner* bo = block->mOwners.AppendElement(); if (!bo) { // Roll back mOwners if any allocation fails. block->mOwners.Clear(); return; } bo->mStream = stream; } if (block->mOwners.IsEmpty()) { // This happens when all streams with the resource id are closed. We can // just return here now and discard the data. return; } // Tell each stream using this resource about the new block. for (auto& bo : block->mOwners) { bo.mStreamBlock = aStreamBlockIndex; bo.mLastUseTime = now; bo.mStream->mBlocks[aStreamBlockIndex] = blockIndex; if (aStreamBlockIndex * BLOCK_SIZE < bo.mStream->mStreamOffset) { bo.mClass = PLAYED_BLOCK; // This must be the most-recently-used block, since we // marked it as used now (which may be slightly bogus, but we'll // treat it as used for simplicity). GetListForBlock(aLock, &bo)->AddFirstBlock(blockIndex); Verify(aLock); } else { // This may not be the latest readahead block, although it usually // will be. We may have to scan for the right place to insert // the block in the list. bo.mClass = READAHEAD_BLOCK; InsertReadaheadBlock(aLock, &bo, blockIndex); } } // Invariant: block->mOwners.IsEmpty() iff we can find an entry // in mFreeBlocks for a given blockIndex. MOZ_DIAGNOSTIC_ASSERT(!block->mOwners.IsEmpty()); mFreeBlocks.RemoveBlock(blockIndex); nsresult rv = mBlockCache->WriteBlock(blockIndex, aData1, aData2); if (NS_FAILED(rv)) { LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex, aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE); FreeBlock(aLock, blockIndex); } } // Queue an Update since the cache state has changed (for example // we might want to stop loading because the cache is full) QueueUpdate(aLock); } void MediaCache::OpenStream(AutoLock& aLock, MediaCacheStream* aStream, bool aIsClone) { LOG("Stream %p opened, aIsClone=%d, mCacheSuspended=%d, " "mDidNotifyDataEnded=%d", aStream, aIsClone, aStream->mCacheSuspended, aStream->mDidNotifyDataEnded); mStreams.AppendElement(aStream); // A cloned stream should've got the ID from its original. if (!aIsClone) { MOZ_ASSERT(aStream->mResourceID == 0, "mResourceID has been initialized."); aStream->mResourceID = AllocateResourceID(aLock); } // We should have a valid ID now no matter it is cloned or not. MOZ_ASSERT(aStream->mResourceID > 0, "mResourceID is invalid"); // Queue an update since a new stream has been opened. QueueUpdate(aLock); } void MediaCache::ReleaseStream(AutoLock&, MediaCacheStream* aStream) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); LOG("Stream %p closed", aStream); mStreams.RemoveElement(aStream); // The caller needs to call QueueUpdate() to re-run Update(). } void MediaCache::ReleaseStreamBlocks(AutoLock& aLock, MediaCacheStream* aStream) { // XXX scanning the entire stream doesn't seem great, if not much of it // is cached, but the only easy alternative is to scan the entire cache // which isn't better uint32_t length = aStream->mBlocks.Length(); for (uint32_t i = 0; i < length; ++i) { int32_t blockIndex = aStream->mBlocks[i]; if (blockIndex >= 0) { LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex, aStream, i, i * BLOCK_SIZE); RemoveBlockOwner(aLock, blockIndex, aStream); } } } void MediaCache::Truncate() { uint32_t end; for (end = mIndex.Length(); end > 0; --end) { if (!IsBlockFree(end - 1)) break; mFreeBlocks.RemoveBlock(end - 1); } if (end < mIndex.Length()) { mIndex.TruncateLength(end); // XXX We could truncate the cache file here, but we don't seem // to have a cross-platform API for doing that. At least when all // streams are closed we shut down the cache, which erases the // file at that point. } } void MediaCache::NoteBlockUsage(AutoLock& aLock, MediaCacheStream* aStream, int32_t aBlockIndex, int64_t aStreamOffset, MediaCacheStream::ReadMode aMode, TimeStamp aNow) { if (aBlockIndex < 0) { // this block is not in the cache yet return; } BlockOwner* bo = GetBlockOwner(aLock, aBlockIndex, aStream); if (!bo) { // this block is not in the cache yet return; } // The following check has to be <= because the stream offset has // not yet been updated for the data read from this block NS_ASSERTION(bo->mStreamBlock * BLOCK_SIZE <= aStreamOffset, "Using a block that's behind the read position?"); GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex); bo->mClass = (aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK) ? METADATA_BLOCK : PLAYED_BLOCK; // Since this is just being used now, it can definitely be at the front // of mMetadataBlocks or mPlayedBlocks GetListForBlock(aLock, bo)->AddFirstBlock(aBlockIndex); bo->mLastUseTime = aNow; Verify(aLock); } void MediaCache::NoteSeek(AutoLock& aLock, MediaCacheStream* aStream, int64_t aOldOffset) { if (aOldOffset < aStream->mStreamOffset) { // We seeked forward. Convert blocks from readahead to played. // Any readahead block that intersects the seeked-over range must // be converted. int32_t blockIndex = OffsetToBlockIndex(aOldOffset); if (blockIndex < 0) { return; } int32_t endIndex = std::min(OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1)), int32_t(aStream->mBlocks.Length())); if (endIndex < 0) { return; } TimeStamp now = TimeStamp::Now(); while (blockIndex < endIndex) { int32_t cacheBlockIndex = aStream->mBlocks[blockIndex]; if (cacheBlockIndex >= 0) { // Marking the block used may not be exactly what we want but // it's simple NoteBlockUsage(aLock, aStream, cacheBlockIndex, aStream->mStreamOffset, MediaCacheStream::MODE_PLAYBACK, now); } ++blockIndex; } } else { // We seeked backward. Convert from played to readahead. // Any played block that is entirely after the start of the seeked-over // range must be converted. int32_t blockIndex = OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1)); if (blockIndex < 0) { return; } int32_t endIndex = std::min(OffsetToBlockIndex(aOldOffset + (BLOCK_SIZE - 1)), int32_t(aStream->mBlocks.Length())); if (endIndex < 0) { return; } while (blockIndex < endIndex) { MOZ_ASSERT(endIndex > 0); int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1]; if (cacheBlockIndex >= 0) { BlockOwner* bo = GetBlockOwner(aLock, cacheBlockIndex, aStream); NS_ASSERTION(bo, "Stream doesn't own its blocks?"); if (bo->mClass == PLAYED_BLOCK) { aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex); bo->mClass = READAHEAD_BLOCK; // Adding this as the first block is sure to be OK since // this must currently be the earliest readahead block // (that's why we're proceeding backwards from the end of // the seeked range to the start) aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex); Verify(aLock); } } --endIndex; } } } void MediaCacheStream::NotifyLoadID(uint32_t aLoadID) { MOZ_ASSERT(aLoadID > 0); nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::NotifyLoadID", [client = RefPtr(mClient), this, aLoadID]() { AutoLock lock(mMediaCache->Monitor()); mLoadID = aLoadID; }); OwnerThread()->Dispatch(r.forget()); } void MediaCacheStream::NotifyDataStartedInternal(uint32_t aLoadID, int64_t aOffset, bool aSeekable, int64_t aLength) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); MOZ_ASSERT(aLoadID > 0); LOG("Stream %p DataStarted: %" PRId64 " aLoadID=%u aLength=%" PRId64, this, aOffset, aLoadID, aLength); AutoLock lock(mMediaCache->Monitor()); NS_WARNING_ASSERTION(aOffset == mSeekTarget || aOffset == mChannelOffset, "Server is giving us unexpected offset"); MOZ_ASSERT(aOffset >= 0); if (aLength >= 0) { mStreamLength = aLength; } mChannelOffset = aOffset; if (mStreamLength >= 0) { // If we started reading at a certain offset, then for sure // the stream is at least that long. mStreamLength = std::max(mStreamLength, mChannelOffset); } mLoadID = aLoadID; MOZ_ASSERT(aOffset == 0 || aSeekable, "channel offset must be zero when we become non-seekable"); mIsTransportSeekable = aSeekable; // Queue an Update since we may change our strategy for dealing // with this stream mMediaCache->QueueUpdate(lock); // Reset mSeekTarget since the seek is completed so MediaCache::Update() will // make decisions based on mChannelOffset instead of mSeekTarget. mSeekTarget = -1; // Reset these flags since a new load has begun. mChannelEnded = false; mDidNotifyDataEnded = false; UpdateDownloadStatistics(lock); } void MediaCacheStream::NotifyDataStarted(uint32_t aLoadID, int64_t aOffset, bool aSeekable, int64_t aLength) { MOZ_ASSERT(NS_IsMainThread()); MOZ_ASSERT(aLoadID > 0); nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::NotifyDataStarted", [=, client = RefPtr(mClient)]() { NotifyDataStartedInternal(aLoadID, aOffset, aSeekable, aLength); }); OwnerThread()->Dispatch(r.forget()); } void MediaCacheStream::NotifyDataReceived(uint32_t aLoadID, uint32_t aCount, const uint8_t* aData) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); MOZ_ASSERT(aLoadID > 0); AutoLock lock(mMediaCache->Monitor()); if (mClosed) { // Nothing to do if the stream is closed. return; } LOG("Stream %p DataReceived at %" PRId64 " count=%u aLoadID=%u", this, mChannelOffset, aCount, aLoadID); if (mLoadID != aLoadID) { // mChannelOffset is updated to a new position when loading a new channel. // We should discard the data coming from the old channel so it won't be // stored to the wrong positoin. return; } mDownloadStatistics.AddBytes(aCount); // True if we commit any blocks to the cache. bool cacheUpdated = false; auto source = Span(aData, aCount); // We process the data one block (or part of a block) at a time while (!source.IsEmpty()) { // The data we've collected so far in the partial block. auto partial = Span(mPartialBlockBuffer.get(), OffsetInBlock(mChannelOffset)); // The number of bytes needed to complete the partial block. size_t remaining = BLOCK_SIZE - partial.Length(); if (source.Length() >= remaining) { // We have a whole block now to write it out. mMediaCache->AllocateAndWriteBlock( lock, this, OffsetToBlockIndexUnchecked(mChannelOffset), partial, source.First(remaining)); source = source.From(remaining); mChannelOffset += remaining; cacheUpdated = true; } else { // The buffer to be filled in the partial block. auto buf = Span(mPartialBlockBuffer.get() + partial.Length(), remaining); memcpy(buf.Elements(), source.Elements(), source.Length()); mChannelOffset += source.Length(); break; } } MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID); while (MediaCacheStream* stream = iter.Next(lock)) { if (stream->mStreamLength >= 0) { // The stream is at least as long as what we've read stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset); } stream->mClient->CacheClientNotifyDataReceived(); } // XXX it would be fairly easy to optimize things a lot more to // avoid waking up reader threads unnecessarily if (cacheUpdated) { // Wake up the reader who is waiting for the committed blocks. lock.NotifyAll(); } } void MediaCacheStream::FlushPartialBlockInternal(AutoLock& aLock, bool aNotifyAll) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); int32_t blockIndex = OffsetToBlockIndexUnchecked(mChannelOffset); int32_t blockOffset = OffsetInBlock(mChannelOffset); if (blockOffset > 0) { LOG("Stream %p writing partial block: [%d] bytes; " "mStreamOffset [%" PRId64 "] mChannelOffset[%" PRId64 "] mStreamLength [%" PRId64 "] notifying: [%s]", this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength, aNotifyAll ? "yes" : "no"); // Write back the partial block memset(mPartialBlockBuffer.get() + blockOffset, 0, BLOCK_SIZE - blockOffset); auto data = Span(mPartialBlockBuffer.get(), BLOCK_SIZE); mMediaCache->AllocateAndWriteBlock(aLock, this, blockIndex, data); } // |mChannelOffset == 0| means download ends with no bytes received. // We should also wake up those readers who are waiting for data // that will never come. if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) { // Wake up readers who may be waiting for this data aLock.NotifyAll(); } } void MediaCacheStream::UpdateDownloadStatistics(AutoLock&) { if (mChannelEnded || mClientSuspended) { mDownloadStatistics.Stop(); } else { mDownloadStatistics.Start(); } } void MediaCacheStream::NotifyDataEndedInternal(uint32_t aLoadID, nsresult aStatus) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); AutoLock lock(mMediaCache->Monitor()); if (mClosed || aLoadID != mLoadID) { // Nothing to do if the stream is closed or a new load has begun. return; } // It is prudent to update channel/cache status before calling // CacheClientNotifyDataEnded() which will read |mChannelEnded|. mChannelEnded = true; mMediaCache->QueueUpdate(lock); UpdateDownloadStatistics(lock); if (NS_FAILED(aStatus)) { // Notify the client about this network error. mDidNotifyDataEnded = true; mNotifyDataEndedStatus = aStatus; mClient->CacheClientNotifyDataEnded(aStatus); // Wake up the readers so they can fail gracefully. lock.NotifyAll(); return; } // Note we don't flush the partial block when download ends abnormally for // the padding zeros will give wrong data to other streams. FlushPartialBlockInternal(lock, true); MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID); while (MediaCacheStream* stream = iter.Next(lock)) { // We read the whole stream, so remember the true length stream->mStreamLength = mChannelOffset; if (!stream->mDidNotifyDataEnded) { stream->mDidNotifyDataEnded = true; stream->mNotifyDataEndedStatus = aStatus; stream->mClient->CacheClientNotifyDataEnded(aStatus); } } } void MediaCacheStream::NotifyDataEnded(uint32_t aLoadID, nsresult aStatus) { MOZ_ASSERT(NS_IsMainThread()); MOZ_ASSERT(aLoadID > 0); RefPtr client = mClient; nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::NotifyDataEnded", [client, this, aLoadID, aStatus]() { NotifyDataEndedInternal(aLoadID, aStatus); }); OwnerThread()->Dispatch(r.forget()); } void MediaCacheStream::NotifyClientSuspended(bool aSuspended) { MOZ_ASSERT(NS_IsMainThread()); RefPtr client = mClient; nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::NotifyClientSuspended", [client, this, aSuspended]() { AutoLock lock(mMediaCache->Monitor()); if (!mClosed && mClientSuspended != aSuspended) { mClientSuspended = aSuspended; // mClientSuspended changes the decision of reading streams. mMediaCache->QueueUpdate(lock); UpdateDownloadStatistics(lock); if (mClientSuspended) { // Download is suspended. Wake up the readers that might be able to // get data from the partial block. lock.NotifyAll(); } } }); OwnerThread()->Dispatch(r.forget()); } void MediaCacheStream::NotifyResume() { MOZ_ASSERT(NS_IsMainThread()); nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::NotifyResume", [this, client = RefPtr(mClient)]() { AutoLock lock(mMediaCache->Monitor()); if (mClosed) { return; } // Don't resume download if we are already at the end of the stream for // seek will fail and be wasted anyway. int64_t offset = mSeekTarget != -1 ? mSeekTarget : mChannelOffset; if (mStreamLength < 0 || offset < mStreamLength) { mClient->CacheClientSeek(offset, false); // DownloadResumed() will be notified when a new channel is opened. } // The channel remains dead. If we want to read some other data in the // future, CacheClientSeek() will be called to reopen the channel. }); OwnerThread()->Dispatch(r.forget()); } MediaCacheStream::~MediaCacheStream() { MOZ_ASSERT(NS_IsMainThread(), "Only call on main thread"); MOZ_ASSERT(!mPinCount, "Unbalanced Pin"); MOZ_ASSERT(!mMediaCache || mClosed); uint32_t lengthKb = uint32_t(std::min( std::max(mStreamLength, int64_t(0)) / 1024, int64_t(UINT32_MAX))); LOG("MediaCacheStream::~MediaCacheStream(this=%p) " "MEDIACACHESTREAM_LENGTH_KB=%" PRIu32, this, lengthKb); } bool MediaCacheStream::AreAllStreamsForResourceSuspended(AutoLock& aLock) { MOZ_ASSERT(!NS_IsMainThread()); MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID); // Look for a stream that's able to read the data we need int64_t dataOffset = -1; while (MediaCacheStream* stream = iter.Next(aLock)) { if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) { continue; } if (dataOffset < 0) { dataOffset = GetCachedDataEndInternal(aLock, mStreamOffset); } // Ignore streams that are reading beyond the data we need if (stream->mChannelOffset > dataOffset) { continue; } return false; } return true; } RefPtr MediaCacheStream::Close() { MOZ_ASSERT(NS_IsMainThread()); if (!mMediaCache) { return GenericPromise::CreateAndResolve(true, __func__); } return InvokeAsync(OwnerThread(), "MediaCacheStream::Close", [this, client = RefPtr(mClient)] { AutoLock lock(mMediaCache->Monitor()); CloseInternal(lock); return GenericPromise::CreateAndResolve(true, __func__); }); } void MediaCacheStream::CloseInternal(AutoLock& aLock) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); if (mClosed) { return; } // Closing a stream will change the return value of // MediaCacheStream::AreAllStreamsForResourceSuspended as well as // ChannelMediaResource::IsSuspendedByCache. Let's notify it. mMediaCache->QueueSuspendedStatusUpdate(aLock, mResourceID); mClosed = true; mMediaCache->ReleaseStreamBlocks(aLock, this); mMediaCache->ReleaseStream(aLock, this); // Wake up any blocked readers aLock.NotifyAll(); // Queue an Update since we may have created more free space. mMediaCache->QueueUpdate(aLock); } void MediaCacheStream::Pin() { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); ++mPinCount; // Queue an Update since we may no longer want to read more into the // cache, if this stream's block have become non-evictable mMediaCache->QueueUpdate(lock); } void MediaCacheStream::Unpin() { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin"); --mPinCount; // Queue an Update since we may be able to read more into the // cache, if this stream's block have become evictable mMediaCache->QueueUpdate(lock); } int64_t MediaCacheStream::GetLength() const { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); return mStreamLength; } MediaCacheStream::LengthAndOffset MediaCacheStream::GetLengthAndOffset() const { MOZ_ASSERT(NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); return {mStreamLength, mChannelOffset}; } int64_t MediaCacheStream::GetNextCachedData(int64_t aOffset) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); return GetNextCachedDataInternal(lock, aOffset); } int64_t MediaCacheStream::GetCachedDataEnd(int64_t aOffset) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); return GetCachedDataEndInternal(lock, aOffset); } bool MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); if (mStreamLength < 0) return false; return GetCachedDataEndInternal(lock, aOffset) >= mStreamLength; } int64_t MediaCacheStream::GetCachedDataEndInternal(AutoLock&, int64_t aOffset) { int32_t blockIndex = OffsetToBlockIndex(aOffset); if (blockIndex < 0) { return aOffset; } while (size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1) { ++blockIndex; } int64_t result = blockIndex * BLOCK_SIZE; if (blockIndex == OffsetToBlockIndexUnchecked(mChannelOffset)) { // The block containing mChannelOffset may be partially read but not // yet committed to the main cache result = mChannelOffset; } if (mStreamLength >= 0) { // The last block in the cache may only be partially valid, so limit // the cached range to the stream length result = std::min(result, mStreamLength); } return std::max(result, aOffset); } int64_t MediaCacheStream::GetNextCachedDataInternal(AutoLock&, int64_t aOffset) { if (aOffset == mStreamLength) return -1; int32_t startBlockIndex = OffsetToBlockIndex(aOffset); if (startBlockIndex < 0) { return -1; } int32_t channelBlockIndex = OffsetToBlockIndexUnchecked(mChannelOffset); if (startBlockIndex == channelBlockIndex && aOffset < mChannelOffset) { // The block containing mChannelOffset is partially read, but not // yet committed to the main cache. aOffset lies in the partially // read portion, thus it is effectively cached. return aOffset; } if (size_t(startBlockIndex) >= mBlocks.Length()) return -1; // Is the current block cached? if (mBlocks[startBlockIndex] != -1) return aOffset; // Count the number of uncached blocks bool hasPartialBlock = OffsetInBlock(mChannelOffset) != 0; int32_t blockIndex = startBlockIndex + 1; while (true) { if ((hasPartialBlock && blockIndex == channelBlockIndex) || (size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1)) { // We at the incoming channel block, which has has data in it, // or are we at a cached block. Return index of block start. return blockIndex * BLOCK_SIZE; } // No more cached blocks? if (size_t(blockIndex) >= mBlocks.Length()) return -1; ++blockIndex; } MOZ_ASSERT_UNREACHABLE("Should return in loop"); return -1; } void MediaCacheStream::SetReadMode(ReadMode aMode) { nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::SetReadMode", [this, client = RefPtr(mClient), aMode]() { AutoLock lock(mMediaCache->Monitor()); if (!mClosed && mCurrentMode != aMode) { mCurrentMode = aMode; mMediaCache->QueueUpdate(lock); } }); OwnerThread()->Dispatch(r.forget()); } void MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond) { MOZ_ASSERT(!NS_IsMainThread()); MOZ_ASSERT(aBytesPerSecond > 0, "Zero playback rate not allowed"); AutoLock lock(mMediaCache->Monitor()); if (!mClosed && mPlaybackBytesPerSecond != aBytesPerSecond) { mPlaybackBytesPerSecond = aBytesPerSecond; mMediaCache->QueueUpdate(lock); } } nsresult MediaCacheStream::Seek(AutoLock& aLock, int64_t aOffset) { MOZ_ASSERT(!NS_IsMainThread()); if (!IsOffsetAllowed(aOffset)) { return NS_ERROR_ILLEGAL_VALUE; } if (mClosed) { return NS_ERROR_ABORT; } int64_t oldOffset = mStreamOffset; mStreamOffset = aOffset; LOG("Stream %p Seek to %" PRId64, this, mStreamOffset); mMediaCache->NoteSeek(aLock, this, oldOffset); mMediaCache->QueueUpdate(aLock); return NS_OK; } void MediaCacheStream::ThrottleReadahead(bool bThrottle) { MOZ_ASSERT(NS_IsMainThread()); nsCOMPtr r = NS_NewRunnableFunction( "MediaCacheStream::ThrottleReadahead", [client = RefPtr(mClient), this, bThrottle]() { AutoLock lock(mMediaCache->Monitor()); if (!mClosed && mThrottleReadahead != bThrottle) { LOGI("Stream %p ThrottleReadahead %d", this, bThrottle); mThrottleReadahead = bThrottle; mMediaCache->QueueUpdate(lock); } }); OwnerThread()->Dispatch(r.forget()); } uint32_t MediaCacheStream::ReadPartialBlock(AutoLock&, int64_t aOffset, Span aBuffer) { MOZ_ASSERT(IsOffsetAllowed(aOffset)); if (OffsetToBlockIndexUnchecked(mChannelOffset) != OffsetToBlockIndexUnchecked(aOffset) || aOffset >= mChannelOffset) { // Not in the partial block or no data to read. return 0; } auto source = Span( mPartialBlockBuffer.get() + OffsetInBlock(aOffset), OffsetInBlock(mChannelOffset) - OffsetInBlock(aOffset)); // We have |source.Length() <= BLOCK_SIZE < INT32_MAX| to guarantee // that |bytesToRead| can fit into a uint32_t. uint32_t bytesToRead = std::min(aBuffer.Length(), source.Length()); memcpy(aBuffer.Elements(), source.Elements(), bytesToRead); return bytesToRead; } Result MediaCacheStream::ReadBlockFromCache( AutoLock& aLock, int64_t aOffset, Span aBuffer, bool aNoteBlockUsage) { MOZ_ASSERT(IsOffsetAllowed(aOffset)); // OffsetToBlockIndexUnchecked() is always non-negative. uint32_t index = OffsetToBlockIndexUnchecked(aOffset); int32_t cacheBlock = index < mBlocks.Length() ? mBlocks[index] : -1; if (cacheBlock < 0 || (mStreamLength >= 0 && aOffset >= mStreamLength)) { // Not in the cache. return 0; } if (aBuffer.Length() > size_t(BLOCK_SIZE)) { // Clamp the buffer to avoid overflow below since we will read at most // BLOCK_SIZE bytes. aBuffer = aBuffer.First(BLOCK_SIZE); } if (mStreamLength >= 0 && int64_t(aBuffer.Length()) > mStreamLength - aOffset) { // Clamp reads to stream's length aBuffer = aBuffer.First(mStreamLength - aOffset); } // |BLOCK_SIZE - OffsetInBlock(aOffset)| <= BLOCK_SIZE int32_t bytesToRead = std::min(BLOCK_SIZE - OffsetInBlock(aOffset), aBuffer.Length()); int32_t bytesRead = 0; nsresult rv = mMediaCache->ReadCacheFile( aLock, cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset), aBuffer.Elements(), bytesToRead, &bytesRead); // Ensure |cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset)| won't overflow. static_assert(INT64_MAX >= BLOCK_SIZE * (uint32_t(INT32_MAX) + 1), "BLOCK_SIZE too large!"); if (NS_FAILED(rv)) { nsCString name; GetErrorName(rv, name); LOGE("Stream %p ReadCacheFile failed, rv=%s", this, name.Data()); return mozilla::Err(rv); } if (aNoteBlockUsage) { mMediaCache->NoteBlockUsage(aLock, this, cacheBlock, aOffset, mCurrentMode, TimeStamp::Now()); } return bytesRead; } nsresult MediaCacheStream::Read(AutoLock& aLock, char* aBuffer, uint32_t aCount, uint32_t* aBytes) { MOZ_ASSERT(!NS_IsMainThread()); // Cache the offset in case it is changed again when we are waiting for the // monitor to be notified to avoid reading at the wrong position. auto streamOffset = mStreamOffset; // The buffer we are about to fill. auto buffer = Span(aBuffer, aCount); // Read one block (or part of a block) at a time while (!buffer.IsEmpty()) { if (mClosed) { return NS_ERROR_ABORT; } if (!IsOffsetAllowed(streamOffset)) { LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset); return NS_ERROR_ILLEGAL_VALUE; } if (mStreamLength >= 0 && streamOffset >= mStreamLength) { // Don't try to read beyond the end of the stream break; } Result rv = ReadBlockFromCache( aLock, streamOffset, buffer, true /* aNoteBlockUsage */); if (rv.isErr()) { return rv.unwrapErr(); } uint32_t bytes = rv.unwrap(); if (bytes > 0) { // Got data from the cache successfully. Read next block. streamOffset += bytes; buffer = buffer.From(bytes); continue; } // See if we can use the data in the partial block of any stream reading // this resource. Note we use the partial block only when it is completed, // that is reaching EOS. bool foundDataInPartialBlock = false; MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID); while (MediaCacheStream* stream = iter.Next(aLock)) { if (OffsetToBlockIndexUnchecked(stream->mChannelOffset) == OffsetToBlockIndexUnchecked(streamOffset) && stream->mChannelOffset == stream->mStreamLength) { uint32_t bytes = stream->ReadPartialBlock(aLock, streamOffset, buffer); streamOffset += bytes; buffer = buffer.From(bytes); foundDataInPartialBlock = true; break; } } if (foundDataInPartialBlock) { // Break for we've reached EOS. break; } if (mDidNotifyDataEnded && NS_FAILED(mNotifyDataEndedStatus)) { // Since download ends abnormally, there is no point in waiting for new // data to come. We will check the partial block to read as many bytes as // possible before exiting this function. bytes = ReadPartialBlock(aLock, streamOffset, buffer); streamOffset += bytes; buffer = buffer.From(bytes); break; } if (mStreamOffset != streamOffset) { // Update mStreamOffset before we drop the lock. We need to run // Update() again since stream reading strategy might have changed. mStreamOffset = streamOffset; mMediaCache->QueueUpdate(aLock); } // No data to read, so block aLock.Wait(); } uint32_t count = buffer.Elements() - aBuffer; *aBytes = count; if (count == 0) { return NS_OK; } // Some data was read, so queue an update since block priorities may // have changed mMediaCache->QueueUpdate(aLock); LOG("Stream %p Read at %" PRId64 " count=%d", this, streamOffset - count, count); mStreamOffset = streamOffset; return NS_OK; } nsresult MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer, uint32_t aCount, uint32_t* aBytes) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); nsresult rv = Seek(lock, aOffset); if (NS_FAILED(rv)) return rv; return Read(lock, aBuffer, aCount, aBytes); } nsresult MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset, uint32_t aCount) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); // The buffer we are about to fill. auto buffer = Span(aBuffer, aCount); // Read one block (or part of a block) at a time int64_t streamOffset = aOffset; while (!buffer.IsEmpty()) { if (mClosed) { // We need to check |mClosed| in each iteration which might be changed // after calling |mMediaCache->ReadCacheFile|. return NS_ERROR_FAILURE; } if (!IsOffsetAllowed(streamOffset)) { LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset); return NS_ERROR_ILLEGAL_VALUE; } Result rv = ReadBlockFromCache(lock, streamOffset, buffer); if (rv.isErr()) { return rv.unwrapErr(); } uint32_t bytes = rv.unwrap(); if (bytes > 0) { // Read data from the cache successfully. Let's try next block. streamOffset += bytes; buffer = buffer.From(bytes); continue; } // The partial block is our last chance to get data. bytes = ReadPartialBlock(lock, streamOffset, buffer); if (bytes < buffer.Length()) { // Not enough data to read. return NS_ERROR_FAILURE; } // Return for we've got all the requested bytes. return NS_OK; } return NS_OK; } nsresult MediaCacheStream::Init(int64_t aContentLength) { NS_ASSERTION(NS_IsMainThread(), "Only call on main thread"); MOZ_ASSERT(!mMediaCache, "Has been initialized."); if (aContentLength > 0) { uint32_t length = uint32_t(std::min(aContentLength, int64_t(UINT32_MAX))); LOG("MediaCacheStream::Init(this=%p) " "MEDIACACHESTREAM_NOTIFIED_LENGTH=%" PRIu32, this, length); mStreamLength = aContentLength; } mMediaCache = MediaCache::GetMediaCache(aContentLength, mIsPrivateBrowsing); if (!mMediaCache) { return NS_ERROR_FAILURE; } OwnerThread()->Dispatch(NS_NewRunnableFunction( "MediaCacheStream::Init", [this, res = RefPtr(mClient)]() { AutoLock lock(mMediaCache->Monitor()); mMediaCache->OpenStream(lock, this); })); return NS_OK; } void MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal) { MOZ_ASSERT(!mMediaCache, "Has been initialized."); MOZ_ASSERT(aOriginal->mMediaCache, "Don't clone an uninitialized stream."); // Use the same MediaCache as our clone. mMediaCache = aOriginal->mMediaCache; OwnerThread()->Dispatch(NS_NewRunnableFunction( "MediaCacheStream::InitAsClone", [this, aOriginal, r1 = RefPtr(mClient), r2 = RefPtr(aOriginal->mClient)]() { InitAsCloneInternal(aOriginal); })); } void MediaCacheStream::InitAsCloneInternal(MediaCacheStream* aOriginal) { MOZ_ASSERT(OwnerThread()->IsOnCurrentThread()); AutoLock lock(mMediaCache->Monitor()); LOG("MediaCacheStream::InitAsCloneInternal(this=%p, original=%p)", this, aOriginal); // Download data and notify events if necessary. Note the order is important // in order to mimic the behavior of data being downloaded from the channel. // Step 1: copy/download data from the original stream. mResourceID = aOriginal->mResourceID; mStreamLength = aOriginal->mStreamLength; mIsTransportSeekable = aOriginal->mIsTransportSeekable; mDownloadStatistics = aOriginal->mDownloadStatistics; mDownloadStatistics.Stop(); // Grab cache blocks from aOriginal as readahead blocks for our stream for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) { int32_t cacheBlockIndex = aOriginal->mBlocks[i]; if (cacheBlockIndex < 0) continue; while (i >= mBlocks.Length()) { mBlocks.AppendElement(-1); } // Every block is a readahead block for the clone because the clone's // initial stream offset is zero mMediaCache->AddBlockOwnerAsReadahead(lock, cacheBlockIndex, this, i); } // Copy the partial block. mChannelOffset = aOriginal->mChannelOffset; memcpy(mPartialBlockBuffer.get(), aOriginal->mPartialBlockBuffer.get(), BLOCK_SIZE); // Step 2: notify the client that we have new data so the decoder has a chance // to compute 'canplaythrough' and buffer ranges. mClient->CacheClientNotifyDataReceived(); // Step 3: notify download ended if necessary. if (aOriginal->mDidNotifyDataEnded && NS_SUCCEEDED(aOriginal->mNotifyDataEndedStatus)) { mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus; mDidNotifyDataEnded = true; mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus); } // Step 4: notify download is suspended by the cache. mClientSuspended = true; mCacheSuspended = true; mChannelEnded = true; mClient->CacheClientSuspend(); mMediaCache->QueueSuspendedStatusUpdate(lock, mResourceID); // Step 5: add the stream to be managed by the cache. mMediaCache->OpenStream(lock, this, true /* aIsClone */); // Wake up the reader which is waiting for the cloned data. lock.NotifyAll(); } nsISerialEventTarget* MediaCacheStream::OwnerThread() const { return mMediaCache->OwnerThread(); } nsresult MediaCacheStream::GetCachedRanges(MediaByteRangeSet& aRanges) { MOZ_ASSERT(!NS_IsMainThread()); // Take the monitor, so that the cached data ranges can't grow while we're // trying to loop over them. AutoLock lock(mMediaCache->Monitor()); // We must be pinned while running this, otherwise the cached data ranges may // shrink while we're trying to loop over them. NS_ASSERTION(mPinCount > 0, "Must be pinned"); int64_t startOffset = GetNextCachedDataInternal(lock, 0); while (startOffset >= 0) { int64_t endOffset = GetCachedDataEndInternal(lock, startOffset); NS_ASSERTION(startOffset < endOffset, "Buffered range must end after its start"); // Bytes [startOffset..endOffset] are cached. aRanges += MediaByteRange(startOffset, endOffset); startOffset = GetNextCachedDataInternal(lock, endOffset); NS_ASSERTION( startOffset == -1 || startOffset > endOffset, "Must have advanced to start of next range, or hit end of stream"); } return NS_OK; } double MediaCacheStream::GetDownloadRate(bool* aIsReliable) { MOZ_ASSERT(!NS_IsMainThread()); AutoLock lock(mMediaCache->Monitor()); return mDownloadStatistics.GetRate(aIsReliable); } void MediaCacheStream::GetDebugInfo(dom::MediaCacheStreamDebugInfo& aInfo) { AutoLock lock(mMediaCache->GetMonitorOnTheMainThread()); aInfo.mStreamLength = mStreamLength; aInfo.mChannelOffset = mChannelOffset; aInfo.mCacheSuspended = mCacheSuspended; aInfo.mChannelEnded = mChannelEnded; aInfo.mLoadID = mLoadID; } } // namespace mozilla // avoid redefined macro in unified build #undef LOG #undef LOGI