/* * Copyright (C) 2010 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "HRTFElevation.h" #include #include "mozilla/PodOperations.h" #include "AudioSampleFormat.h" #include "IRC_Composite_C_R0195-incl.cpp" using namespace mozilla; namespace WebCore { const int elevationSpacing = irc_composite_c_r0195_elevation_interval; const int firstElevation = irc_composite_c_r0195_first_elevation; const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195); const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8; const int rawSampleRate = irc_composite_c_r0195_sample_rate; // Number of frames in an individual impulse response. const size_t ResponseFrameSize = 256; size_t HRTFElevation::sizeOfIncludingThis( mozilla::MallocSizeOf aMallocSizeOf) const { size_t amount = aMallocSizeOf(this); amount += m_kernelListL.ShallowSizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < m_kernelListL.Length(); i++) { amount += m_kernelListL[i]->sizeOfIncludingThis(aMallocSizeOf); } return amount; } size_t HRTFElevation::fftSizeForSampleRate(float sampleRate) { // The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz, // but these have been truncated to 256 samples. // An FFT-size of twice impulse response size is used (for convolution). // So for sample rates of 44.1KHz an FFT size of 512 is good. // We double the FFT-size only for sample rates at least double this. // If the FFT size is too large then the impulse response will be padded // with zeros without the fade-out provided by HRTFKernel. MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0); // This is the size if we were to use all raw response samples. unsigned resampledLength = floorf(ResponseFrameSize * sampleRate / rawSampleRate); // Keep things semi-sane, with max FFT size of 1024. unsigned size = std::min(resampledLength, 1023U); // Ensure a minimum of 2 * WEBAUDIO_BLOCK_SIZE (with the size++ below) for // FFTConvolver and set the 8 least significant bits for rounding up to // the next power of 2 below. size |= 2 * WEBAUDIO_BLOCK_SIZE - 1; // Round up to the next power of 2, making the FFT size no more than twice // the impulse response length. This doubles size for values that are // already powers of 2. This works by filling in alls bit to right of the // most significant bit. The most significant bit is no greater than // 1 << 9, and the least significant 8 bits were already set above, so // there is at most one bit to add. size |= (size >> 1); size++; MOZ_ASSERT((size & (size - 1)) == 0); return size; } nsReturnRef HRTFElevation::calculateKernelForAzimuthElevation( int azimuth, int elevation, SpeexResamplerState* resampler, float sampleRate) { int elevationIndex = (elevation - firstElevation) / elevationSpacing; MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations); int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count; int azimuthSpacing = 360 / numberOfAzimuths; MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360); int azimuthIndex = azimuth / azimuthSpacing; MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth); const int16_t(&impulse_response_data)[ResponseFrameSize] = irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex]; // When libspeex_resampler is compiled with FIXED_POINT, samples in // speex_resampler_process_float are rounded directly to int16_t, which // only works well if the floats are in the range +/-32767. On such // platforms it's better to resample before converting to float anyway. #ifdef MOZ_SAMPLE_TYPE_S16 # define RESAMPLER_PROCESS speex_resampler_process_int const int16_t* response = impulse_response_data; const int16_t* resampledResponse; #else # define RESAMPLER_PROCESS speex_resampler_process_float float response[ResponseFrameSize]; ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize); float* resampledResponse; #endif // Note that depending on the fftSize returned by the panner, we may be // truncating the impulse response. const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2; AutoTArray resampled; if (sampleRate == rawSampleRate) { resampledResponse = response; MOZ_ASSERT(resampledResponseLength == ResponseFrameSize); } else { resampled.SetLength(resampledResponseLength); resampledResponse = resampled.Elements(); speex_resampler_skip_zeros(resampler); // Feed the input buffer into the resampler. spx_uint32_t in_len = ResponseFrameSize; spx_uint32_t out_len = resampled.Length(); RESAMPLER_PROCESS(resampler, 0, response, &in_len, resampled.Elements(), &out_len); if (out_len < resampled.Length()) { // The input should have all been processed. MOZ_ASSERT(in_len == ResponseFrameSize); // Feed in zeros get the data remaining in the resampler. spx_uint32_t out_index = out_len; in_len = speex_resampler_get_input_latency(resampler); out_len = resampled.Length() - out_index; RESAMPLER_PROCESS(resampler, 0, nullptr, &in_len, resampled.Elements() + out_index, &out_len); out_index += out_len; // There may be some uninitialized samples remaining for very low // sample rates. PodZero(resampled.Elements() + out_index, resampled.Length() - out_index); } speex_resampler_reset_mem(resampler); } #ifdef MOZ_SAMPLE_TYPE_S16 AutoTArray floatArray; floatArray.SetLength(resampledResponseLength); float* floatResponse = floatArray.Elements(); ConvertAudioSamples(resampledResponse, floatResponse, resampledResponseLength); #else float* floatResponse = resampledResponse; #endif #undef RESAMPLER_PROCESS return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate); } // The range of elevations for the IRCAM impulse responses varies depending on // azimuth, but the minimum elevation appears to always be -45. // // Here's how it goes: static int maxElevations[] = { // Azimuth // 90, // 0 45, // 15 60, // 30 45, // 45 75, // 60 45, // 75 60, // 90 45, // 105 75, // 120 45, // 135 60, // 150 45, // 165 75, // 180 45, // 195 60, // 210 45, // 225 75, // 240 45, // 255 60, // 270 45, // 285 75, // 300 45, // 315 60, // 330 45 // 345 }; nsReturnRef HRTFElevation::createBuiltin(int elevation, float sampleRate) { if (elevation < firstElevation || elevation > firstElevation + numberOfElevations * elevationSpacing || (elevation / elevationSpacing) * elevationSpacing != elevation) return nsReturnRef(); // Spacing, in degrees, between every azimuth loaded from resource. // Some elevations do not have data for all these intervals. // See maxElevations. static const unsigned AzimuthSpacing = 15; static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing; static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360, "Not a multiple"); static const unsigned InterpolationFactor = NumberOfTotalAzimuths / NumberOfRawAzimuths; static_assert( NumberOfTotalAzimuths == NumberOfRawAzimuths * InterpolationFactor, "Not a multiple"); HRTFKernelList kernelListL; kernelListL.SetLength(NumberOfTotalAzimuths); SpeexResamplerState* resampler = sampleRate == rawSampleRate ? nullptr : speex_resampler_init(1, rawSampleRate, sampleRate, SPEEX_RESAMPLER_QUALITY_MIN, nullptr); // Load convolution kernels from HRTF files. int interpolatedIndex = 0; for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) { // Don't let elevation exceed maximum for this azimuth. int maxElevation = maxElevations[rawIndex]; int actualElevation = std::min(elevation, maxElevation); kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation( rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate); interpolatedIndex += InterpolationFactor; } if (resampler) speex_resampler_destroy(resampler); // Now go back and interpolate intermediate azimuth values. for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) { int j = (i + InterpolationFactor) % NumberOfTotalAzimuths; // Create the interpolated convolution kernels and delays. for (unsigned jj = 1; jj < InterpolationFactor; ++jj) { float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1 kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel( kernelListL[i], kernelListL[j], x); } } return nsReturnRef( new HRTFElevation(std::move(kernelListL), elevation, sampleRate)); } nsReturnRef HRTFElevation::createByInterpolatingSlices( HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate) { MOZ_ASSERT(hrtfElevation1 && hrtfElevation2); if (!hrtfElevation1 || !hrtfElevation2) return nsReturnRef(); MOZ_ASSERT(x >= 0.0 && x < 1.0); HRTFKernelList kernelListL; kernelListL.SetLength(NumberOfTotalAzimuths); const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL(); const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL(); // Interpolate kernels of corresponding azimuths of the two elevations. for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) { kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i], kernelListL2[i], x); } // Interpolate elevation angle. double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle(); return nsReturnRef(new HRTFElevation( std::move(kernelListL), static_cast(angle), sampleRate)); } void HRTFElevation::getKernelsFromAzimuth( double azimuthBlend, unsigned azimuthIndex, HRTFKernel*& kernelL, HRTFKernel*& kernelR, double& frameDelayL, double& frameDelayR) { bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0; MOZ_ASSERT(checkAzimuthBlend); if (!checkAzimuthBlend) azimuthBlend = 0.0; unsigned numKernels = m_kernelListL.Length(); bool isIndexGood = azimuthIndex < numKernels; MOZ_ASSERT(isIndexGood); if (!isIndexGood) { kernelL = 0; kernelR = 0; return; } // Return the left and right kernels, // using symmetry to produce the right kernel. kernelL = m_kernelListL[azimuthIndex]; int azimuthIndexR = (numKernels - azimuthIndex) % numKernels; kernelR = m_kernelListL[azimuthIndexR]; frameDelayL = kernelL->frameDelay(); frameDelayR = kernelR->frameDelay(); int azimuthIndex2L = (azimuthIndex + 1) % numKernels; double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay(); int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels; double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay(); // Linearly interpolate delays. frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L; frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R; } } // namespace WebCore