/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2011-2016 Google Inc. // Use of this source code is governed by a BSD-style license that can be // found in the gfx/skia/LICENSE file. #include "SkConvolver.h" #include namespace skia { void convolve_vertically_avx2( const SkConvolutionFilter1D::ConvolutionFixed* filter, int filterLen, unsigned char* const* srcRows, int width, unsigned char* out, bool hasAlpha) { // It's simpler to work with the output array in terms of 4-byte pixels. auto* dst = (int*)out; // Output up to eight pixels per iteration. for (int x = 0; x < width; x += 8) { // Accumulated result for 4 (non-adjacent) pairs of pixels, // with each channel in signed 17.14 fixed point. auto accum04 = _mm256_setzero_si256(), accum15 = _mm256_setzero_si256(), accum26 = _mm256_setzero_si256(), accum37 = _mm256_setzero_si256(); // Convolve with the filter. (This inner loop is where we spend ~all our // time.) While we can, we consume 2 filter coefficients and 2 rows of 8 // pixels each at a time. auto convolve_16_pixels = [&](__m256i interlaced_coeffs, __m256i pixels_01234567, __m256i pixels_89ABCDEF) { // Interlaced R0R8 G0G8 B0B8 A0A8 R1R9 G1G9... 32 8-bit values each. auto _08194C5D = _mm256_unpacklo_epi8(pixels_01234567, pixels_89ABCDEF), _2A3B6E7F = _mm256_unpackhi_epi8(pixels_01234567, pixels_89ABCDEF); // Still interlaced R0R8 G0G8... as above, each channel expanded to 16-bit // lanes. auto _084C = _mm256_unpacklo_epi8(_08194C5D, _mm256_setzero_si256()), _195D = _mm256_unpackhi_epi8(_08194C5D, _mm256_setzero_si256()), _2A6E = _mm256_unpacklo_epi8(_2A3B6E7F, _mm256_setzero_si256()), _3B7F = _mm256_unpackhi_epi8(_2A3B6E7F, _mm256_setzero_si256()); // accum0_R += R0*coeff0 + R8*coeff1, etc. accum04 = _mm256_add_epi32(accum04, _mm256_madd_epi16(_084C, interlaced_coeffs)); accum15 = _mm256_add_epi32(accum15, _mm256_madd_epi16(_195D, interlaced_coeffs)); accum26 = _mm256_add_epi32(accum26, _mm256_madd_epi16(_2A6E, interlaced_coeffs)); accum37 = _mm256_add_epi32(accum37, _mm256_madd_epi16(_3B7F, interlaced_coeffs)); }; int i = 0; for (; i < filterLen / 2 * 2; i += 2) { convolve_16_pixels( _mm256_set1_epi32(*(const int32_t*)(filter + i)), _mm256_loadu_si256((const __m256i*)(srcRows[i + 0] + x * 4)), _mm256_loadu_si256((const __m256i*)(srcRows[i + 1] + x * 4))); } if (i < filterLen) { convolve_16_pixels( _mm256_set1_epi32(*(const int16_t*)(filter + i)), _mm256_loadu_si256((const __m256i*)(srcRows[i] + x * 4)), _mm256_setzero_si256()); } // Trim the fractional parts off the accumulators. accum04 = _mm256_srai_epi32(accum04, 14); accum15 = _mm256_srai_epi32(accum15, 14); accum26 = _mm256_srai_epi32(accum26, 14); accum37 = _mm256_srai_epi32(accum37, 14); // Pack back down to 8-bit channels. auto pixels = _mm256_packus_epi16(_mm256_packs_epi32(accum04, accum15), _mm256_packs_epi32(accum26, accum37)); if (hasAlpha) { // Clamp alpha to the max of r,g,b to make sure we stay premultiplied. __m256i max_rg = _mm256_max_epu8(pixels, _mm256_srli_epi32(pixels, 8)), max_rgb = _mm256_max_epu8(max_rg, _mm256_srli_epi32(pixels, 16)); pixels = _mm256_max_epu8(pixels, _mm256_slli_epi32(max_rgb, 24)); } else { // Force opaque. pixels = _mm256_or_si256(pixels, _mm256_set1_epi32(0xff000000)); } // Normal path to store 8 pixels. if (x + 8 <= width) { _mm256_storeu_si256((__m256i*)dst, pixels); dst += 8; continue; } // Store one pixel at a time on the last iteration. for (int i = x; i < width; i++) { *dst++ = _mm_cvtsi128_si32(_mm256_castsi256_si128(pixels)); pixels = _mm256_permutevar8x32_epi32( pixels, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0)); } } } } // namespace skia